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CRYSTALLOGRAPHIC GROUPS AND FLAT MANIFOLDS FROM SURFACE

BRAID GROUPS

DACIBERG LIMA GONÇALVES, JOHN GUASCHI, OSCAR OCAMPO,
AND CAROLINA DE MIRANDA E PEREIRO

Abstract. LetM be a compact surface without boundary, and n ≥ 2. We analyse the quotient group
Bn(M)/Γ2(Pn(M)) of the surface braid group Bn(M) by the commutator subgroup Γ2(Pn(M)) of the
pure braid group Pn(M). If M is different from the 2-sphere S2, we prove that Bn(M)/Γ2(Pn(M)) ∼=
Pn(M)/Γ2(Pn(M))⋊ϕ Sn, and that Bn(M)/Γ2(Pn(M)) is a crystallographic group if and only if M
is orientable.

If M is orientable, we prove a number of results regarding the structure of Bn(M)/Γ2(Pn(M)). We
characterise the finite-order elements of this group, and we determine the conjugacy classes of these
elements. We also show that there is a single conjugacy class of finite subgroups of Bn(M)/Γ2(Pn(M))
isomorphic either to Sn or to certain Frobenius groups. We prove that crystallographic groups whose
image by the projection Bn(M)/Γ2(Pn(M)) −→ Sn is a Frobenius group are not Bieberbach groups.

Finally, we construct a family of Bieberbach subgroups G̃n,g of Bn(M)/Γ2(Pn(M)) of dimension 2ng
and whose holonomy group is the finite cyclic group of order n, and if Xn,g is a flat manifold whose

fundamental group is G̃n,g, we prove that it is an orientable Kähler manifold that admits Anosov
diffeomorphisms.

1. Introduction

The braid groups of the 2-disc, or Artin braid groups, were introduced by Artin in 1925 and further
studied in 1947 [1, 2]. Surface braid groups were initially studied by Zariski [24], and were later
generalised by Fox and Neuwirth to braid groups of arbitrary topological spaces using configuration
spaces as follows [7]. Let M be a compact, connected surface, and let n ∈ N. The nth ordered
configuration space of M , denoted by Fn(M), is defined by:

Fn(M) = {(x1, . . . , xn) ∈Mn | xi 6= xj if i 6= j, i, j = 1, . . . , n} .

The n-string pure braid group Pn(M) of M is defined by Pn(M) = π1(Fn(M)). The symmetric group
Sn on n letters acts freely on Fn(M) by permuting coordinates, and the n-string braid group Bn(M)
of M is defined by Bn(M) = π1(Fn(M)/Sn). This gives rise to the following short exact sequence:

1 −→ Pn(M) −→ Bn(M)
σ

−→ Sn −→ 1. (1.1)

The map σ : Bn(M) −→ Sn is the standard homomorphism that associates a permutation to each
element of Sn. In [10, 11, 12], three of the authors of this paper studied the quotient Bn/Γ2(Pn),
where Bn is the n-string Artin braid group, Pn is the subgroup of Bn of pure braids, and Γ2(Pn) is
the commutator subgroup of Pn. In [10], it was proved that this quotient is a crystallographic group.
Crystallographic groups play an important rôle in the study of the groups of isometries of Euclidean
spaces (see Section 2 for precise definitions, as well as [4, 5, 23] for more details). Using different
techniques, Marin extended the results of [10] to generalised braid groups associated to arbitrary
complex reflection groups [16]. Beck and Marin showed that other finite non-Abelian groups, not
covered by [11, 16], embed in Bn/Γ2(Pn) [3].
In this paper, we study the quotient Bn(M)/Γ2(Pn(M)) of Bn(M), where Γ2(Pn(M)) is the com-

mutator subgroup of Pn(M), one of our aims being to decide whether it is crystallographic or not.
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The group extension (1.1) gives rise to the following short exact sequence:

1 −→ Pn(M)/Γ2(Pn(M)) −→ Bn(M)/Γ2(Pn(M))
σ

−→ Sn −→ 1. (1.2)

Note that if M is an orientable, compact surface of genus g ≥ 1 without boundary and n = 1 then
B1(M)/[P1(M), P1(M)] is the Abelianisation of π1(M), and is isomorphic to Z2g, so it is clearly a
crystallographic group.
In Section 2, we recall some definitions and facts about crystallographic groups, and ifM is an ori-

entable, compact, connected surface of genus g ≥ 1 without boundary, we prove thatBn(M)/Γ2(Pn(M))
is crystallographic.

Proposition 1. Let M be an orientable, compact, connected surface of genus g ≥ 1 without bound-
ary, and let n ≥ 2. Then there exists a split extension of the form:

1 −→ Z
2ng −→ Bn(M)/Γ2(Pn(M))

σ
−→ Sn −→ 1, (1.3)

where the holonomy representation ϕ : Sn −→ Aut(Z2ng) is faithful and where the action is defined
by (2.5). In particular, the quotient Bn(M)/Γ2(Pn(M)) is a crystallographic group of dimension 2ng
and whose holonomy group is Sn.

As for Bn/[Pn, Pn], some natural questions arise for Bn(M)/Γ2(Pn(M)), such as the existence
of torsion, the realisation of elements of finite order and that of finite subgroups, their conjugacy
classes, as well as properties of some Bieberbach subgroups of Bn(M)/Γ2(Pn(M)). In Theorem 2, we
characterise the finite-order elements of Bn(M)/Γ2(Pn(M)) and their conjugacy classes, from which
we see that the conjugacy classes of finite-order elements of Bn(M)/Γ2(Pn(M)) are in one-to-one
correspondence with the conjugacy classes of elements of the symmetric group Sn.

Theorem 2. Let n ≥ 2, and let M be an orientable surface of genus g ≥ 1 without boundary.

(a) Let e1 and e2 be finite-order elements of Bn(M)/Γ2(Pn(M)). Then e1 and e2 are conjugate if
and only if their permutations σ(e1) and σ(e2) have the same cycle type. Thus two finite cyclic
subgroups H1 and H2 of Bn(M)/Γ2(Pn(M)) are conjugate if and only if the generators of σ(H1)
and σ(H2) have the same cycle type.

(b) If H1 and H2 are subgroups of Bn(M)/Γ2(Pn(M)) that are isomorphic to Sn then they are con-
jugate.

The results of Theorem 2 lead to the following question: if H1 and H2 are finite subgroups of
Bn(M)/Γ2(Pn(M)) such that σ(H1) and σ(H2) are conjugate in Sn, then are H1 and H2 conjugate?
For each odd prime p, we shall consider the corresponding Frobenius group, which is the semi-direct
product Zp ⋊ Z(p−1)/2, the action being given by an automorphism of Zp of order (p − 1)/2. In
Proposition 12 we show that the conclusion of Theorem 2 holds for subgroups of B5(M)/Γ2(P5(M))
that are isomorphic to the Frobenius group Z5 ⋊ Z2.
In Section 3, we study some Bieberbach subgroups of Bn(M)/Γ2(Pn(M)) whose construction is

suggested by that of the Bieberbach subgroups of Bn/Γ2(Pn) given in [17].

Theorem 3. Let n ≥ 2, and let M be an orientable surface of genus g ≥ 1 without bound-

ary. Let Gn be the cyclic subgroup 〈(n, n− 1, . . . , 2, 1)〉 of Sn. Then there exists a subgroup G̃n,g

of σ−1(Gn)/Γ2(Pn(M)) ⊂ Bn(M)/Γ2(Pn(M)) that is a Bieberbach group of dimension 2ng whose

holonomy group is Gn. Further, the centre Z(G̃n,g) of G̃n,g is a free Abelian group of rank 2g.

The conclusion of the first part of the statement of Theorem 3 probably does not remain valid if
we replace the finite cyclic group Gn by other finite groups. In this direction, if p is an odd prime,
in Proposition 13, we prove that there is no Bieberbach subgroup H of Bp(M)/[Pp(M), Pp(M)] for
which σ(H) is the Frobenius group Zp ⋊ Z(p−1)/2.
It follows from the definition that crystallographic groups act properly discontinuously and cocom-

pactly on Euclidean space, and that the action is free if the groups are Bieberbach. Thus there exists

a flat manifold Xn,g whose fundamental group is the subgroup G̃n,g of Theorem 3. Motivated by res-
ults about the holonomy representation of Bieberbach subgroups of the Artin braid group quotient
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Bn/[Pn, Pn] whose holonomy group is a 2-group obtained in [18], in Section 3, we make use of the

holonomy representation of G̃n,g given in (3.4) to prove some dynamical and geometric properties of
Xn,g. To describe these results, we recall some definitions.
If f : M −→ M is a self-map of a Riemannian manifold, M is said to have a hyperbolic structure

with respect to f if there exists a splitting of the tangent bundle T (M) of the form T (M) = Es⊕Eu

such that Df : Es −→ Es (resp. Df : Eu −→ Eu) is contracting (resp. expanding). Further, the map
f is called Anosov if it is a diffeomorphism and M has hyperbolic structure with respect to f . The
classification of compact manifolds that admit Anosov diffeomorphisms is a problem first proposed
by Smale [21]. Anosov diffeomorphisms play an important rôle in the theory of dynamical systems
since their behaviour is generic in some sense. Porteous gave a criterion for the existence of Anosov
diffeomorphisms of flat manifolds in terms of the holonomy representation [20, Theorems 6.1 and 7.1]
that we shall use in the proof of Theorem 4.
We recall that a Kähler manifold is a 2n-real manifold endowed with a Riemannian metric, a

complex structure, and a symplectic structure that is compatible at every point. For more about
such manifolds, see [22, Chapter 7]. A finitely-presented group is said to be a Kähler group if it is
the fundamental group of a closed Kähler manifold. We may now state Theorem 4.

Theorem 4. Let n ≥ 2, and let Xn,g be a 2ng-dimensional flat manifold whose fundamental group is

the Bieberbach group G̃n,g of Theorem 3. Then Xn,g is an orientable Kähler manifold with first Betti
number 2g that admits Anosov diffeomorphisms.

The proof of Theorem 4 depends mainly on the holonomy representation of the Bieberbach group

G̃n,g, and makes use of the eigenvalues of the matrix representation and the decomposition of the
holonomy representation in irreducible representations using character theory.
Finally, in Section 4, we prove in Proposition 17 that the conclusion of Proposition 1 no longer

holds if M is the sphere S2 or a compact, non-orientable surface without boundary. More precisely,
if n ≥ 1 then Bn(M)/Γ2(Pn(M)) is not a crystallographic group.

2. Crystallographic groups and quotients of surface braid groups

In this section, we start by recalling some definitions and facts about crystallographic groups. If
M is a compact, orientable surface without boundary of genus g ≥ 1, in Proposition 1, we prove that
the quotient Bn(M)/Γ2(Pn(M)) is a crystallographic group that is isomorphic to Z2ng⋊ϕSn. We also
determine the conjugacy classes of the finite-order elements of Bn(M)/Γ2(Pn(M)) in Theorem 2.

2.1. Crystallographic groups. In this section, we recall briefly the definitions of crystallographic
and Bieberbach groups, and the characterisation of crystallographic groups in terms of a represent-
ation that arises in certain group extensions whose kernel is a free Abelian group of finite rank and
whose quotient is finite. We also recall some results concerning Bieberbach groups and the funda-
mental groups of flat Riemannian manifolds. For more details, see [4, Section I.1.1], [5, Section 2.1]
or [23, Chapter 3].
Let G be a Hausdorff topological group. A subgroup H of G is said to be discrete if it is a discrete

subset. If H is a closed subgroup of G then the quotient space G/H admits the quotient topology for
the canonical projection π : G −→ G/H, and we say thatH is uniform if G/H is compact. From now
on, we identify Aut(Zm) with GL(m,Z). A discrete, uniform subgroup Π of Rm⋊O(m,R) ⊆ Aff(Rm)
is said to be a crystallographic group of dimension m. If in addition Π is torsion free then Π is called
a Bieberbach group of dimension m.
If Φ is a group, an integral representation of rank m of Φ is defined to be a homomorphism

Θ: Φ −→ Aut(Zm). Two such representations are said to be equivalent if their images are conjugate
in Aut(Zm). We say that Θ is a faithful representation if it is injective. We recall the following
characterisation of crystallographic groups.
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Lemma 5 ([10, Lemma 8]). Let Π be a group. Then Π is a crystallographic group if and only if there
exists an integer m ∈ N, a finite group Φ and a short exact sequence of the form:

0 −→ Z
m −→ Π

ζ
−→ Φ −→ 1, (2.1)

such that the integral representation Θ: Φ −→ Aut(Zm) induced by conjugation on Zm and defined
by Θ(ϕ)(x) = πxπ−1 for all x ∈ Zm and ϕ ∈ Φ, where π ∈ Π is such that ζ(π) = ϕ, is faithful.

If Π is a crystallographic group, the integer m, the finite group Φ and the integral representation
Θ: Φ −→ Aut(Zm) appearing in the statement of Lemma 5 are called the dimension, the holonomy
group and the holonomy representation of Π respectively.
We now recall the connection between Bieberbach groups and manifolds. A Riemannian manifold

M is called flat if it has zero curvature at every point. By the first Bieberbach Theorem, there is
a correspondence between Bieberbach groups and fundamental groups of flat Riemannian manifolds
without boundary (see [5, Theorem 2.1.1] and the paragraph that follows it). By [23, Corollary 3.4.6],
the holonomy group of a flat manifold M is isomorphic to the group Φ. In 1957, Auslander and
Kuranishi proved that every finite group is the holonomy group of some flat manifold (see [23,
Theorem 3.4.8] and [4, Theorem III.5.2]). It is well known that a flat manifold determined by
a Bieberbach group Π is orientable if and only if the integral representation Θ: Φ −→ GL(m,Z)
satisfies Im(Θ) ⊆ SL(m,Z) [5, Theorem 6.4.6 and Remark 6.4.7]. This being the case, Π is said to
be an orientable Bieberbach group.

2.2. The group Bn(M)/Γ2(Pn(M)). Let M be a compact, orientable surface without boundary of
genus g ≥ 1. Besides showing that the group Bn(M)/Γ2(Pn(M)) is crystallographic, we shall also
be interested in the conjugacy classes of its elements by elements of Pn(M)/Γ2(Pn(M)), as well as
the conjugacy classes of its finite subgroups. In order to study these questions, it is useful to have
an algebraic description of this quotient at our disposal. We will make use of the presentations of
the (pure) braid groups of M given in [13, Theorems 2.1 and 4.2], where for all 1 ≤ i < j ≤ n,
1 ≤ r ≤ 2g and 1 ≤ k ≤ n, the elements ak,r and Ti,j in Bn(M) are described in [13, Figure 9], and
for all 1 ≤ i ≤ n−1, the elements σi are the classical generators of the Artin braid group that satisfy
the Artin relations : {

σiσj = σjσi for all 1 ≤ i, j ≤ n− 1, |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2.
(2.2)

We recall that the full twist braid of Bn(M), denoted by ∆2
n, is defined by:

∆2
n = (σ1 · · ·σn−1)

n, (2.3)

and is equal to:

∆2
n = A1,2(A1,3A2,3) · · · (A1,nA2,n · · ·An−1,n), (2.4)

where for 1 ≤ i < j ≤ n, the elements Ai,j are the usual Artin generators of Pn defined by Ai,j =
σj−1 · · ·σi+1σ

2
i σ

−1
i+1 · · ·σ

−1
j−1. By abuse of notation, in what follows, if α ∈ Bn(M), we also denote its

Bn(M)/Γ2(Pn(M))-coset by α. The following proposition gives some relations in Bn(M) that will
be relevant to our study of Bn(M)/Γ2(Pn(M)).

Proposition 6. Let M be a compact, orientable surface without boundary of genus g ≥ 1, let

1 ≤ i ≤ n − 1, 1 ≤ j ≤ n and 1 ≤ r ≤ 2g, and let Ãj,r = aj,1 · · · aj,r−1a
−1
j,r+1 · · · a

−1
j,2g. The following

relations hold in Bn(M):

(a) σiaj,rσ
−1
i =





ai+1,rσ
−2
i if j = i and r is even

σ2
i ai+1,r if j = i and r is odd

σ2
i ai if j = i+ 1 and r is even

ai,rσ
−2
i if j = i+ 1 and r is odd

aj,r if j 6= i, i+ 1.
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(b) Ti,j = σiσi+1 · · ·σj−2σ
2
j−1σj−2 · · ·σi where 1 ≤ i, j ≤ n and i + 1 < j, and Ti,i+1 = σ2

i for all
1 ≤ i ≤ n− 1.

(c) Ti,j = [ai,1 · · · ai,r, Ãj,r]Ti,j−1, for all 1 ≤ i < j ≤ n and 1 ≤ r ≤ 2g.
(d) For all 1 ≤ i ≤ j ≤ n, Ti,j and ∆2

n belong to Γ2(Pn(M)).

Proof. Part (a) is a consequence of relations (R7) and (R8) of [13, Theorem 4.2, step 3], with the
exception of the case j 6= i, i+1, which is clear. Part (b) is relation (R9) of [13, Theorem 4.2, step 3],
and part (c) is relation (PR3) of [13, Theorem 4.2, presentation 1]. By [13, page 439], Tj−1,j−1 = 1
for all 1 < j ≤ n+1, and it follows from part (c) that Tj−1,j ∈ Γ2(Pn(M)) for all 2 ≤ j ≤ n, and then
by induction on j − i that Ti,j ∈ Γ2(Pn(M)) for all 1 ≤ i ≤ j ≤ n. Using the Artin relations (2.2)
and part (b), we have Ai,j = T−1

i,j−1Ti,j for all 1 ≤ i < j ≤ n, so Ai,j also belongs to Γ2(Pn(M)) by

part (c), and thus ∆2
n ∈ Γ2(Pn(M)) by (2.4). �

This allows us to compute the Abelianisation of Pn(M).

Corollary 7. Let M be a compact, orientable surface without boundary of genus g ≥ 1, and let
n ≥ 1. Then the Abelianisation of Pn(M) is a free Abelian group of rank 2ng, for which {ai,r |
i = 1, . . . , n and r = 1, . . . , 2g} is a basis.

Proof. The result follows from the presentation of Pn(M) given in [13, Theorem 4.2] and the fact
that for all 1 ≤ i < j ≤ n, Ti,j ∈ Γ2(Pn(M)) by Proposition 6(d). �

For all 1 ≤ i ≤ n − 1, we have σ(σi) = τi, where τi denotes the transposition (i, i + 1) in Sn.
Using Proposition 6(a), and identifying Z2ng with Pn(M)/Γ2(Pn(M)) via Corollary 7, we obtain the
induced action ϕ : Sn −→ Aut(Z2ng), that for all 1 ≤ i ≤ n−1, 1 ≤ j ≤ n and 1 ≤ r ≤ 2g, is defined
by:

ϕ(τi)(aj,r) = σiaj,rσ
−1
i = aτi(j),r. (2.5)

The following result is the analogue of [10, Proposition 12] for braid groups of orientable surfaces.

Proposition 8. LetM be a compact, orientable surface without boundary of genus g ≥ 1, and let n ≥
1. Let α ∈ Bn(M)/Γ2(Pn(M)), and let π = σ(α−1). Then αai,rα

−1 = aπ(i),r in Bn(M)/Γ2(Pn(M))
for all 1 ≤ i ≤ n and 1 ≤ r ≤ 2g.

Proof. The proof is similar to that of [10, Proposition 12], and makes use of (2.5). The details are
left to the reader. �

We now give a presentation of Bn(M)/Γ2(Pn(M)).

Proposition 9. Let M be a compact, orientable surface without boundary of genus g ≥ 1, and let
n ≥ 1. The quotient group Bn(M)/Γ2(Pn(M)) has the following presentation:
Generators: σ1, . . . , σn−1, ai,r, 1 ≤ i ≤ n, 1 ≤ r ≤ 2g.
Relations:

(a) the Artin relations (2.2).
(b) σ2

i = 1, for all i = 1, . . . , n− 1.
(c) [ai,r, aj,s] = 1, for all i, j = 1, . . . , n and r, s = 1, . . . , 2g.
(d) σiaj,rσ

−1
i = aτi(j),r for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n and 1 ≤ r ≤ 2g.

Proof. The given presentation of Bn(M)/Γ2(Pn(M)) may be obtained by applying the standard
method for obtaining a presentation of a group extension [14, Proposition 1, p. 139] to the short
exact sequence (1.2) for M satisfying the hypothesis, and using Corollary 7, the equality σ(σi) = τi
for all i = 1, . . . , n− 1, and the fact that the relations (a) and (b) constitute a presentation of Sn for
the generating set {τ1, . . . , τn−1}. �

We may now prove Proposition 1.

Proof of Proposition 1. Assume that n ≥ 2. The short exact sequence (1.3) is obtained from (1.2) us-
ing Corollary 7. To prove that the short exact sequence (1.3) splits, let ψ : Sn −→ Bn(M)/Γ2(Pn(M))
be the map defined on the generating set {τ1, . . . , τn−1} of Sn by ψ(τi) = σi for all i = 1, . . . , n− 1.
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Relations (a) and (b) of Proposition 9 imply that ψ is a homomorphism. Consider the action
ϕ : Sn −→ Aut(Z2ng) defined by (2.5). By Proposition 8, ϕ(θ) is the identity automorphism if and
only if θ is the trivial permutation, from which it follows that ϕ is injective. The rest of the statement
of Proposition 1 is a consequence of Lemma 5. �

Corollary 10. Let M be a compact, orientable surface without boundary of genus g ≥ 1, let n ≥ 2,
and let H be a subgroup of Sn. Then the group σ−1(H)/Γ2(Pn(M)) is a crystallographic group of
dimension 2ng whose holonomy group is H.

Proof. The result is an immediate consequence of Proposition 1 and [10, Corollary 10]. �

We now turn to the proof of Theorem 2. For this, we will require the following lemma.

Lemma 11. Let M be a compact, orientable surface without boundary of genus g ≥ 1, and let n ≥ 1.
Let z ∈ Bn(M)/Γ2(Pn(M)). Let z = ω

∏n
i=1

∏2g
r=1 a

si,r
i,r ∈ Bn(M)/Γ2(Pn(M)), where ω = ψ(σ(z)),

and si,r ∈ Z for all 1 ≤ i ≤ n and 1 ≤ r ≤ 2g. Suppose that σ(z) is the m-cycle (l1, . . . , lm), where

m ≥ 2, and let k ∈ N be such that m divides k. Then zk =
∏n

i=1

∏2g
r=1 a

ti,r
i,r where for all 1 ≤ i ≤ n

and 1 ≤ r ≤ 2g, ti,r ∈ Z is given by:

ti,r =

{
ksi,r if i /∈ {l1, . . . , lm}
k
m
Σm

j=1slj ,r if i = lj, where 1 ≤ j ≤ m.
(2.6)

Proof. Let z ∈ Bn(M)/Γ2(Pn(M)) be as in the statement, let σ(z) = (l1, . . . , lm), where m ≥ 2, and
let ω = ψ(σ(z)). By Proposition 1, ω is of order m, and the decomposition z = ω

∏n
i=1

∏2g
r=1 a

si,r
i,r

arises from (1.3). By Corollary 7 and Proposition 8 and using the fact that ωk = 1, we obtain:

zk =

(
ω

n∏

i=1

2g∏

r=1

a
si,r
i,r

)k

= ωk

[
k∏

j=1

ωj−k

(
n∏

i=1

2g∏

r=1

a
si,r
i,r

)
ωk−j

]
=

k∏

j=1

n∏

i=1

2g∏

r=1

a
si,r
σ(ωk−j )(i),r

=

n∏

i=1

2g∏

r=1

k∏

j=1

a
s
σ(ωj−k)(i),r

i,r =

n∏

i=1

2g∏

r=1

a
ti,r
i,r , (2.7)

where ti,r =
∑k

j=1 sσ(ωj−k)(i),r for all 1 ≤ i ≤ n and 1 ≤ r ≤ 2g. Equation (2.6) then follows, using

the fact that σ(ω−u)(li) = li−u for all u ∈ Z, where the index i− u is taken modulo m. �

We now prove Theorem 2.

Proof of Theorem 2.

(a) Let ψ : Sn −→ Bn(M)/Γ2(Pn(M)) be the section for the short exact sequence (1.3) given in the
proof of Proposition 1, and let e1 and e2 be finite-order elements of Bn(M)/Γ2(Pn(M)). If e1 and
e2 are conjugate in Bn(M)/Γ2(Pn(M)) then σ(e1) and σ(e2) are conjugate in Sn, and so have
the same cycle type. Conversely, suppose that the permutations σ(e1) and σ(e2) have the same
cycle type. Then they are conjugate in Sn, so there exists ξ ∈ Sn such that σ(e1) = ξσ(e2)ξ

−1,
and up to substituting e2 by ψ(ξ−1)e2ψ(ξ) if necessary, we may assume that σ(e1) = σ(e2). We
claim that if θ is any finite-order element of Bn(M)/Γ2(Pn(M)) then θ and ψ(σ(θ)) are conjugate
in Bn(M)/Γ2(Pn(M)). This being the case, for i = 1, 2, ei is conjugate to ψ(σ(ei)), but since
ψ(σ(e1)) = ψ(σ(e2)), it follows that e1 and e2 are conjugate as required, which proves the first

part of the statement. To prove the claim, set θ = ω
∏n

i=1

∏2g
r=1 a

si,r
i,r ∈ Bn(M)/Γ2(Pn(M)) as

in the proof of Lemma 11, where ω = ψ(σ(θ)). It thus suffices to prove that θ and ω are
conjugate in Bn(M)/Γ2(Pn(M)). Let σ(θ) = τ1 · · · τd be the cycle decomposition of σ(θ), where
for i = 1, . . . , d, τi = (li,1, . . . , li,mi

) is an mi-cycle, and mi ≥ 2, and let k = lcm(m1, . . . , md) be
the order of σ(θ), which is also the order of θ and of ω. For t = 1, . . . , n and r = 1, . . . , 2g, we
define pt,r ∈ Z as follows. If t does not belong to the support Supp(σ(θ)) of σ(θ), let pt,r = 0. If
t ∈ Supp(σ(θ)) then t = li,q for some 1 ≤ i ≤ d and 1 ≤ q ≤ mi, and we define pt,r = −

∑q
j=1 sli,j ,r.
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It follows from Lemma 11 and the fact that θ is of order k that pli,mi
,r = 0, for all i = 1, . . . , d.

Then for all 1 ≤ i ≤ d, 2 ≤ q ≤ mi and 1 ≤ r ≤ 2g, we have:

pli,q−1,r − pli,q ,r = sli,q,r and pli,mi
,r − pli,1,r = −pli,1,r = sli,1,r. (2.8)

Let α =
∏n

i=1

∏2g
r=1 a

pi,r
i,r ∈ Pn(M)/Γ2(Pn(M)). By Corollary 7 and Proposition 8, we have:

αωα−1 = ω. ω−1

(
n∏

i=1

2g∏

r=1

a
pi,r
i,r

)
ω.

n∏

i=1

2g∏

r=1

a
−pi,r
i,r = ω

(
n∏

i=1

2g∏

r=1

a
p
σ(ω−1)(i),r

i,r

)
.

n∏

i=1

2g∏

r=1

a
−pi,r
i,r

= ω
n∏

i=1

2g∏

r=1

a
p
σ(ω−1)(i),r−pi,r

i,r = ω
n∏

i=1

2g∏

r=1

a
si,r
i,r = θ,

where we have also made use of (2.8). Thus θ is conjugate to ω, which proves the claim, and
thus the first part of the statement.

(b) We start by showing that if H ⊂ Bn(M)/Γ2(Pn(M)) is isomorphic to Sn then H and ψ(σ(H))
are conjugate. This being the case, it follows that each of the subgroups H1, H2 is conjugate to
ψ(σ(H)), and the result follows. Suppose that H is a group isomorphic to Sn that embeds in
(Zn ⊕ · · · ⊕ Zn) ⋊ Sn. Using the Z[Sn]-module structure of Z2ng given above, it follows that H
embeds in Zn ⋊ Sn, for any one of 2g summands of Zn. Let us first prove that the result holds
for such an embedding. Let s : H −→ Zn ⋊ Sn be an embedding, let π : Zn ⋊ Sn −→ Sn be
projection onto the second factor, and let ψ : Sn −→ Z

n
⋊ Sn be inclusion into the second factor.

Since Ker (π) = Zn is torsion free, the restriction of π to s(H) is injective, and so π ◦ s : H −→ Sn

is an isomorphism. Let us prove that the subgroups s(H) and Sn of Zn ⋊ Sn are conjugate. Let
{τ1, . . . , τn−1} be the generating set of Sn defined previously, and for i = 1, . . . , n − 1, let αi

be the unique element of H for which π ◦ s(αi) = τi. Then H is generated by {α1, . . . , αn−1},
subject to the Artin relations and α2

i = 1 for all i = 1, . . . , n − 1. There exist ai,j ∈ Z, where
1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, such that s(αi) = (ai,1, . . . , ai,n)τi in Zn ⋊ Sn. Using the action of
Sn on Zn and the fact that α2

i = 1, it follows that ai,j = 0 for all j 6= i, i+ 1, and ai,i+1 = −ai,i.
Then s(αi) = (0, . . . , 0, ai,−ai, 0, . . . , 0)τi for all 1 ≤ i ≤ n− 1, where ai = ai,i, and the element
ai is in the ith position. One may check easily that these elements also satisfy the Artin relations
in Z

n
⋊ Sn. Let x1 ∈ Z, and for i = 2, . . . , n, let xi = x1 −

∑i−1
j=1 aj . Thus xi − xi+1 = ai for

all i = 1, . . . , n − 1, and so (x1, x2, . . . , xi, xi+1, . . . , xn)τi(−x1,−x2, . . . ,−xi,−xi+1, . . . − xn) =
(0, . . . , 0, ai,−ai, 0, . . . , 0)τi = s(αi). We conclude that the subgroups s(H) and Sn of Zn ⋊ Sn

are conjugate.
Returning to the general case where H embeds in (Zn⊕· · ·⊕Zn)⋊Sn, the previous paragraph

shows that the embedding of H into each Z
n
⋊ Sn is conjugate by an element of the same factor

Zn to the factor Sn. The result follows by conjugating by the element of Zn⊕· · ·⊕Zn whose ith
factor is the conjugating element associated to the ith copy of Zn ⋊ Sn for all i = 1, . . . , 2g. �

With the statement of Theorem 2 in mind, one may ask whether the result of the claim extends
to other finite subgroups. More precisely, if G is a finite subgroup of Bn(M)/Γ2(Pn(M)), are G and
ψ(σ(G)) conjugate? We have a positive answer in the following case.

Proposition 12. Let M be a compact, orientable surface without boundary of genus g ≥ 1. If H1

and H2 are subgroups of B5(M)/Γ2(P5(M)) that are isomorphic to the Frobenius group Z5⋊Z2 then
they are conjugate.

Proof. Using Proposition 1, we identify B5(M)/Γ2(P5(M)) with Z10g ⋊ S5. As in the proof of The-
orem 2(b), we decompose the first factor as a direct sum Z10g = Z5 ⊕ · · · ⊕ Z5 of 2g copies of Z5,
which we interpret as a Z[S5]-module, the module structure being given by Proposition 8.
Let H be a group isomorphic to a subgroup of S5 that embeds in (Z5 ⊕ · · · ⊕ Z5) ⋊ S5

∼=
B5(M)/Γ2(P5(M)). Using the Z[S5]-module structure of Z10g given above, it follows that H em-
beds in Z5 ⋊ S5, for any one of the 2g summands of Z5. We will first prove the statement for the
embedding of the Frobenius group Z5 ⋊ Z2 in Z5 ⋊ S5, and then deduce the result in the general
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case. Let H be this Frobenius group, let s : H −→ Z5 ⋊ S5 be an embedding, let π : Z5 ⋊ S5 −→ S5

be projection onto the first factor, and let ψ : S5 −→ Z5 ⋊ S5 be inclusion into the second factor.
Since Ker (π) = Z5 is torsion free, the restriction of π to s(H) is injective, and so π ◦ s : H −→ S5

is an embedding of H into S5. Let us prove that the subgroups s(H) and ψ ◦ π ◦ s(H) of Z5 ⋊ S5

are conjugate. First observe that the Frobenius group Z5 ⋊Z2 embeds in S5 by sending a generator
ι5 of Z5 to the permutation w1 = (1, 2, 3, 4, 5) and the generator ι2 of Z2 to w2 = (1, 4)(2, 3). The
group S5 contains six cyclic subgroups of order 5 that are conjugate to 〈w1〉, from which we deduce
the existence of six pairwise conjugate subgroups of S5 isomorphic to Z5 ⋊ Z2, each of which con-
tains one of the cyclic subgroups of order 5. We claim that these are exactly the subgroups of S5

isomorphic to Z5 ⋊ Z2. To see this, let K be such a subgroup. Then the action of an element k of
K of order 2 on a 5-cycle (a1, . . . , a5) of K inverts the order of the elements a1, . . . , a5, and this can
only happen if k is a product of two disjoint transpositions. Further, there are exactly five products
of two disjoint transpositions whose action by conjugation on (a1, . . . , a5) inverts the order of the
elements a1, . . . , a5, and these are precisely the elements of K of order 2. In particular, each cyclic
subgroup of S5 of order 5 is contained in exactly one subgroup of S5 isomorphic to Z5 ⋊ Z2. This
proves the claim. So up to composing π by an inner automorphism of S5 if necessary, we may assume
that π ◦ s(H) = 〈w1, w2〉. Applying methods similar to those of the proof of Lemma 11, the relations
ι55 = 1 and ι22 = 1 imply that there exist a1, . . . , a5, x, y ∈ Z such that:

s(w1) = (a1, a2, a3, a4,−a1 − a2 − a3 − a4)w1 and s(w2) = (x, y,−y,−x, 0)w2. (2.9)

Taking the image of the relation w2w1w
−1
2 = w−1

1 by s, using (2.9) and simplifying the resulting
expression, we obtain:

x = −a2 − a3 − a4 and y = −a3. (2.10)

Any map s : H −→ Z
5
⋊ S5 of the form (2.9) for which the relations (2.10) hold gives rise to an

embedding of H in Z5 ⋊ S5. We claim that the image of the embedding is conjugate to the group
〈w1, w2〉 (viewed as a subgroup of the second factor of Z5 ⋊ S5). To do so, let s : H −→ Z5 ⋊ S5

of the form (2.9) for which the relations (2.10) hold. We will show that there exists a ∈ Z5 such

that awia
−1 = s(wi) for i = 1, 2. Let λ5 ∈ Z, and for i = 1, . . . , 4, let λi = λ5 +

∑i
j=1 ai, and let

a = (λ1, λ2, λ3, λ4, λ5) ∈ Z5. Then in Z5 ⋊ S5, using (2.9) and (2.10), we have:

aw1a
−1 = (λ1, λ2, λ3, λ4, λ5)w1(−λ1,−λ2,−λ3,−λ4,−λ5)

= (λ1, λ2, λ3, λ4, λ5). (−λ5,−λ1,−λ2,−λ3,−λ4)w1

= (λ1 − λ5, λ2 − λ1, λ3 − λ2, λ4 − λ3, λ5 − λ4)w1

= (a1, a2, a3, a4,−a1 − a2 − a3 − a4)w1 = s(w1),

and

aw2a
−1 = (λ1, λ2, λ3, λ4, λ5)w2(−λ1,−λ2,−λ3,−λ4,−λ5)

= (λ1, λ2, λ3, λ4, λ5). (−λ4,−λ3,−λ2,−λ1,−λ5)w2

= (λ1 − λ4, λ2 − λ3, λ3 − λ2, λ4 − λ1, 0)w2

= (−a2 − a3 − a4,−a3, a3, a2 + a3 + a4, 0)w2 = (x, y,−y,−x, 0)w2 = s(w2).

It follows that the subgroups s(H) and 〈w1, w2〉 are conjugate in Z5 ⋊ S5.
As in the proof of Theorem 2(b), returning to the general case where H embeds in (Z5 ⊕ · · · ⊕

Z5)⋊ S5, the previous paragraph shows that the embedding of H into each Z5 ⋊ S5 is conjugate by
an element of the same factor Z5 to the factor S5. The result follows by conjugating by the element
of Z5 ⊕ · · ·⊕Z5 whose ith factor is the conjugating element associated to the ith copy of Z5 ⋊S5 for
all i = 1, . . . , 2g. �
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3. Some Bieberbach subgroups of Bn(M)/Γ2(Pn(M)) and Kähler flat manifolds

By Corollary 10, for any subgroup H of Sn, the quotient group σ−1(H)/Γ2(Pn(M)) is a crys-
tallographic group that is not Bieberbach since it has torsion elements. We start by proving The-
orem 3, which states that Bn(M)/Γ2(Pn(M)) admits Bieberbach subgroups. More precisely, for all
n ≥ 2, we will consider the cyclic subgroup Gn = 〈(n, n− 1, . . . , 2, 1)〉 of Sn, and we show that

σ−1(Gn)/Γ2(Pn(M)) admits a Bieberbach subgroup G̃n,g of dimension 2ng whose holonomy group is

Gn. The group G̃n,g is thus the fundamental group of a flat manifold. In Theorem 4, we will prove
that this flat manifold is orientable and admits a Kähler structure as well as Anosov diffeomorphisms.

Proof of Theorem 3. Let αn−1 = σ1 · · ·σn−1 ∈ Bn(M)/Γ2(Pn(M)). By equation (1.3), σ(αn−1) gen-
erates the subgroup Gn of Sn. Further, the full twist of Bn(M) is a coset representative of αn

n−1

by (2.3), hence αn
n−1 = 1 in Bn(M)/Γ2(Pn(M)) using Proposition 6(d). By Proposition 8, the ac-

tion by conjugation of αn−1 on the elements of the basis {ai,r | i = 1, . . . , n and r = 1, . . . , 2g} of
Pn(M)/Γ2(Pn(M)) given by Corollary 7 is as follows:

αn−1 : a1,r 7−→ a2,r 7−→ · · · 7−→ an−1,r 7−→ an,r 7−→ a1,r for all r = 1, . . . , 2g. (3.1)

Using (3.1) and the fact that αn
n−1 = 1 in Bn(M)/Γ2(Pn(M)), we have:

(a1,1αn−1)
n = a1,1a2,1 · · · an,1(αn−1)

n = a1,1a2,1 · · · an,1∆
2
n =

n∏

i=1

ai,1. (3.2)

LetX = {a1,1αn−1, a
n
i,r | 1 ≤ i ≤ n and 1 ≤ r ≤ 2g}, let Y = {

∏n
i=1 ai,1, a

n
i,r | 1 ≤ i ≤ n and 1 ≤ r ≤ 2g},

and let G̃n,g (resp. L) be the subgroup of σ−1(Gn)/Γ2(Pn(M)) generated by X (resp. Y ). Then the

restriction σ
∣∣
G̃n,g

: G̃n,g −→ Gn is surjective, and using (3.2), we see that L is a subgroup of G̃n,g.

We claim that L = Ker
(
σ
∣∣
G̃n,g

)
. Clearly, L ⊂ Ker

(
σ
∣∣
G̃n,g

)
. Conversely, let w ∈ Ker

(
σ
∣∣
G̃n,g

)
. Writ-

ing w in terms of the generating set X of G̃n,g and using (3.1) and Corollary 7, it follows that

w = (a1,1αn−1)
m
∏

1≤i≤n
1≤r≤2g

a
nδi,r
i,r , where m ∈ Z and δi,r ∈ Z for all 1 ≤ i ≤ n and 1 ≤ r ≤ 2g. The fact

that w ∈ Ker
(
σ
∣∣
G̃n,g

)
implies that n divides m, and so w = ((a1,1αn−1)

n)m/n
∏

1≤i≤n
1≤r≤2g

a
nδi,r
i,r ∈ L, which

proves the claim. Thus the following extension:

1 −→ L −→ G̃n,g

σ

∣∣
G̃n,g

−→ Gn −→ 1, (3.3)

is short exact. Now L is also a subgroup of Pn(M)/Γ2(Pn(M)), which is free Abelian of rank 2ng by
Corollary 7. Since {ai,r | i = 1, . . . , n and r = 1, . . . , 2g} is a basis of Pn(M)/Γ2(Pn(M)), it follows
from analysing Y that Y ′ = {

∏n
i=1 ai,1, a

n
i,1, a

n
j,r | 2 ≤ i ≤ n, 1 ≤ j ≤ n and 2 ≤ r ≤ 2g} is a basis of

L. In particular L is free Abelian of rank 2ng. In terms of the basis Y ′, the holonomy representation
ρ : Gn −→ Aut(L) associated with the short exact sequence (3.3) is given by the block diagonal
matrix:

ρ((1, n, n− 1, . . . , 2)) =




M1
M2

...
M2g


 , (3.4)

where M1, . . . ,M2g are the n-by-n matrices satisfying:

M1 =




1 0 0 ··· 0 0 n
0 0 0 ··· 0 0 −1
0 1 0 ··· 0 0 −1
0 0 1 ··· 0 0 −1
...
...
...
...

...
...
...

0 0 0 ··· 1 0 −1
0 0 0 ··· 0 1 −1


 and M2 = · · · =M2g =




0 0 0 ··· 0 0 1
1 0 0 ··· 0 0 0
0 1 0 ··· 0 0 0
0 0 1 ··· 0 0 0
...
...
...
...

...
...
...

0 0 0 ··· 1 0 0
0 0 0 ··· 0 1 0


,
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where we have used the relation an1,1 = (
∏n

i=1 ai,1)
n ·
∏n

i=2(a
n
i,1)

−1. It follows from this description

that ρ is injective, and from Lemma 5 and (3.3) that G̃n,g is a crystallographic group of dimension
2ng and whose holonomy group is Zn.
Now we prove that G̃n,g is torsion free. Let ω ∈ G̃n,g be an element of finite order. Since L is torsion

free, the order of ω is equal to that of σ(ω) in the cyclic group Gn, in particular ωn = 1. Using (3.1)
and (3.2), as well as the fact that L is torsion free, there exist θ ∈ L and j ∈ {0, 1, 2, . . . , n− 1} such
that ω = θ(a1,1αn−1)

j. Making use of the basis Y ′ of L,

θ =

( n∏

i=1

ai,1

)λ1,1

.
n∏

i=2

a
nλi,1

i,1 .

2g∏

r=2

n∏

i=1

a
nλi,r

i,r , (3.5)

where λi,r ∈ Z for all i = 1, . . . , n and r = 1, . . . , 2g. On the other hand:

1 = ωn =

( n−1∏

k=0

(a1,1αn−1)
jkθ(a1,1αn−1)

−jk

)
(a1,1αn−1)

nj . (3.6)

By (3.2), (a1,1αn−1)
nj =

∏n
i=1 a

j
i,1, and thus the right-hand side of (3.6) belongs to Pn(M)/Γ2(Pn(M)).

We now compute the coefficient of a1,1 in (3.6) considered as one of the elements of the basis of

Pn(M)/Γ2(Pn(M)) given by Corollary 7. From (3.1), the terms appearing in the product
∏2g

r=2

∏n
i=1 a

nλi,r

i,r

of (3.5) do not contribute to this coefficient. Since conjugation by a1,1αn−1 permutes cyclically the
elements a1,1, a2,1, . . . , an,1 by (3.1), it follows that conjugation by a1,1αn−1 leaves the first term∏n

i=1 a
λ1,1

i,1 of (3.5) invariant, and so with respect to (3.6), it contributes nλ1,1 to the coefficient of a1,1.
In a similar manner, with respect to (3.6), the second term of (3.5) contributes n(λ2,1 + · · ·+ λn,1)
to the coefficient of a1,1. Putting together all of this information, the computation of the coefficient
of a1,1 in (3.6) yields the relation n(λ1,1 + λ2,1 + · · · + λn,1) + j = 0. We conclude that j = 0, so

ω = θ = 1 because L is torsion free, which using the first part of the statement, shows that G̃n,g is a
Bieberbach group.
To prove the last part of the statement, using [22, Lemma 5.2(3)] and the fact that Gn is cyclic,

the centre Z(G̃n,g) of G̃n,g is given by:

Z(G̃n,g) = {θ ∈ L | ρ(g)(θ) = θ for all g ∈ Gn} = {θ ∈ L | ρ((1, n, . . . , 2))(θ) = θ}. (3.7)

To compute Z(G̃n,g), let θ ∈ L. Writing θ with respect to the basis Y ′ of L as a vector

(
β1

...
β2g

)
, where

for all i = 1, . . . , 2g, βi is a column vector with n elements, and using the description of the action
ρ given by (3.4), it follows that θ ∈ Z(G̃n,g) if and only if βi belongs to the eigenspace of Mi with
respect to the eigenvalue 1 for all i = 1, . . . , 2g. It is straightforward to see that these eigenspaces

are of dimension 1, and are generated by

(
1
0
...
0

)
if i = 1 and by

(
1
...
1

)
if i = 2, . . . , 2g. We conclude

using (3.7) that Z(G̃n,g) is the free Abelian group generated by {
∏n

i=1 ai,1,
∏n

i=1 a
n
i,r | 2 ≤ r ≤ 2g}.

This generating set may be seen to be a basis of Z(G̃n,g), in particular, Z(G̃n,g) is free Abelian of
rank 2g. �

We do not know whether Bn(M)/Γ2(Pn(M)) admits a Bieberbach subgroup of maximal rank
whose holonomy group is non Abelian. The following proposition shows that a certain Frobenius
group cannot be the holonomy of any Bieberbach subgroup of Bn(M)/Γ2(Pn(M)).

Proposition 13. Let p be an odd prime, and let M be a compact, orientable surface without bound-
ary of genus g ≥ 1. In Bp(M)/Γ2(Pp(M)) there is no Bieberbach subgroup H such that σ(H) is
isomorphic to the Frobenius group Zp ⋊θ Z(p−1)/2, where the automorphism θ(ι(p−1)/2) is of order
(p− 1)/2, ι(p−1)/2 being a generator of Z(p−1)/2.
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Proof. Let H be a subgroup of Bp(M)/Γ2(Pp(M)) such that σ(H) is isomorphic to the Frobenius
group Zp⋊θZ(p−1)/2. Let us show that H has non-trivial elements of finite order. Using Proposition 1,
we also identify Bp(M)/Γ2(Pp(M)) with Z2gp ⋊ Sp. Each element Bp(M)/Γ2(Pp(M)) may thus be
written as x. ψ(w) where x ∈ Pp(M)/Γ2(Pp(M)) and w ∈ Sp, which we refer to as its normal form.
As in the proofs of Theorem 2(b) and Proposition 12, Pp(M)/Γ2(Pp(M)) splits as a direct sum

⊕2g
1 Zp that we interpret as a Z[Sp]-module, the module structure being given by Proposition 8. If

z ∈ Pp(M)/Γ2(Pp(M)) then for j = 1, . . . , 2g, let zj denote its projection onto the jth summand

of ⊕2g
1 Zp, and for (z, τ) ∈ Z2gp ⋊ Sp, let (z, τ)j = (zj , τ) ∈ Zp ⋊ Sp. Let ε : Zp −→ Z denote the

augmentation homomorphism. We extend ε to a map from Zp ⋊ Sp to Z, also denoted by ε, by
setting ε(z, τ) = ε(z) for all (z, τ) ∈ Z

p
⋊ Sp. Using the Z[Sp]-module structure, observe that:

ε((λzλ−1)j) = ε(zj) for all λ ∈ Bp(M)/Γ2(Pp(M)) and z ∈ Pp(M)/Γ2(Pp(M)). (3.8)

Hence for all (z, τ), (z′, τ ′) ∈ Z
p
⋊ Sp:

ε(zτ. z′τ ′) = ε(zτz′τ−1. ττ ′) = ε(z. τz′τ−1) = ε(z). ε(τz′τ−1) = ε(z) + ε(z′) = ε(z, τ) + ε(z′, τ ′),

and thus ε : Z
p
⋊ Sp −→ Z is a homomorphism. Identifying σ(H) with the Frobenius group Zp ⋊θ

Z(p−1)/2, let w1, w2 ∈ Sp be generators of Zp and Z(p−1)/2 respectively. For i = 1, 2, let vi ∈ H
be such that σ(vi) = wi, and let ai ∈ Pp(M)/Γ2(Pp(M)) be such that vi = aiψ(wi), where
ψ : Sp −→ Bp(M)/Γ2(Pp(M)) is the section for σ given in the proof of Proposition 1. Using the
relation w2w1w

−1
2 = wl

1 in the Frobenius group, where l is an element of the multiplicative group Z
∗
p

of order (p− 1)/2, we have v2v1v
−1
2 v−l

1 ∈ H ∩ Pp(M)/Γ2(Pp(M)). Further:

v2v1v
−1
2 v−l

1 =a2ψ(w2)a1ψ(w1)ψ(w2)
−1a−1

2 (a1ψ(w1))
−l

=a2ψ(w2)a1ψ(w2)
−1a−1

2 . a2. ψ(w2w1w
−1
2 )a−1

2 ψ(w2w1w
−1
2 )−1. ψ(w2w1w

−1
2 w−l

1 ).

l∏

k=1

(ψ(w1)
l−ka−1

1 ψ(w1)
k−l),

and applying (3.8) and using the relation w2w1w
−1
2 = wl

1, it follows that:

ε((v2v1v
−1
2 v−l

1 )i) = (1− l)ε((a1)i) (3.9)

for all 1 ≤ i ≤ 2g. Let v = v2v1v
−1
2 v−l

1 v
l−1
1 . The element vl−1

1 also belongs to H , so v ∈ H , and

since vl−1
1 = (a1ψ(w1))

l−1 =
(∏l−2

k=0(ψ(w1)
ka1ψ(w1)

−k)
)
ψ(w1)

l−1, for all 1 ≤ i ≤ 2g, it follows that

(v)i = βiψ(w1)
l−1, where βi ∈ Zp is given by:

βi = (v2v1v
−1
2 v−l

1 )i.

( l−2∏

k=0

(ψ(w1)
ka1ψ(w1)

−k)

)

i

. (3.10)

Using (3.8), (3.9) and (3.10), we see that:

ε(βi) = ε((v2v1v
−1
2 v−l

1 )i)+ε

(( l−2∏

k=0

(ψ(w1)
ka1ψ(w1)

−k)

)

i

)
= (1−l)ε((a1)i)+(l−1)ε((a1)i) = 0 (3.11)

for all 1 ≤ i ≤ 2g. Now in normal form, v may be written v = (β1, . . . , β2g)ψ(w1)
l−1. Since wl−1

1 is
non trivial, it follows that v is non trivial. Taking z = v and k = p in Lemma 11 and using (3.11) it
follows that v is of order p, and hence H has non-trivial torsion elements. In particular, H is not a
Bieberbach group. �

It seems to be an interesting question to classify the subgroups of Sn which can be the holonomy
of a Bieberbach subgroup of Bn(M)/Γ2(Pn(M)) of maximal rank. In the case where the subgroup
is a semi-direct product, the argument given in the proof of Proposition 13 may be helpful in the
study of the problem.
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Using the holonomy representation of the Bieberbach group G̃n,g of Theorem 3, given in equa-
tion (3.4), we now prove some dynamical and geometric properties of the flat manifold Xn,g whose

fundamental group is G̃n,g.

Proof of Theorem 4. Let n ≥ 2, let g ≥ 1, let Xn,g be a Riemannian compact flat manifold Xn,g

whose fundamental group is G̃n,g, the Bieberbach group given in the statement of Theorem 3, and
let Gn be the cyclic group of that theorem. Let 1 denote the generator (1, n, n− 1, . . . , 2) of Gn, and

consider the holonomy representation ρ : Zn −→ Aut(Z2ng) of G̃n,g given in the proof of Theorem 3.
By (3.4), if the characteristic polynomial of ρ(1) is equal to (xn−1)2g, where ρ : Zn −→ Aut(Z2ng) is

the holonomy representation of G̃n,g. To see this, if 2 ≤ i ≤ 2g then Mi is the companion matrix of
the polynomial xn − 1, and if we remove the first row and column of M1, we obtain the companion
matrix of the polynomial 1+x+x2 + · · ·+xn−1, so the characteristic polynomial of M1 is also equal
to (x− 1)(1 + x+ x2 + · · ·+ xn−1) = xn − 1. In particular, det(ρ(1)) = 1, from which it follows from
the end of Section 2.1 that Xn,g is orientable. Further, the eigenvalues of ρ(1) are the nth roots of
unity each with multiplicity 2g, and we conclude from [20, Theorem 7.1] that Xn,g admits Anosov
diffeomorphisms. By [5, Theorems 6.4.12 and 6.4.13], the first Betti number of Xn,g is given by:

β1(Xn,g) = 2ng − rank(ρ(1)− I2ng) = 2ng − 2g(n− 1) = 2g.

It remains to show that Xn,g admits a Kähler structure. In order to do this, we make use of the
following result from [15, Theorem 3.1 and Proposition 3.2] (see also [6, Theorem 1.1 and Propos-
ition 1.2]) that a Bieberbach group Γ of dimension m is the fundamental group of a Kähler flat
manifold with holonomy group H if and only if m is even, and each R-irreducible summand of the
holonomy representation ψ : H −→ GL(m,R) of Γ, which is also C-irreducible, occurs with even mul-

tiplicity. Since dim(Xn,g) = 2ng and the character vector of the representation ρ is equal to

(
2ng
0
...
0

)
,

it follows that each real irreducible representation of ρ appears 2g times in its decomposition, and
hence that Xn,g admits a Kähler structure. �

The Betti numbers of the Kähler manifold Xn,g may be computed using the formula βi(Xn,g) =
dim(Λi(R2n))Gn of [6, Page 370]. For real dimensions 4 and 6, we may identify the fundamental
group of Xn,g in the CARAT classification [19] and [6, Tables, pp. 368 and 370]. More precisely,

the CARAT symbol of the 4-dimensional Bieberbach group G̃2,1 (resp. the 6-dimensional Bieberbach

group G̃3,1) is 18.1 (resp. 291.1).

4. The cases of the sphere and non-orientable surfaces without boundary

LetM be a compact, connected surface without boundary. In this section, we describe the quotient
group Bn(M)/Γ2(Pn(M)) for the cases not covered by Proposition 1, namelyM is either the 2-sphere
S2 or a compact, non-orientable surface of genus g ≥ 1 without boundary, which we denote by Ng.
If g = 1 then N1 is the projective plane RP 2.

Lemma 14. Let M be either the 2-sphere S2 or a compact, non-orientable surface of genus g ≥ 1
without boundary, and let n ∈ N. The group Pn(M)/Γ2(Pn(M)) is isomorphic to:

(a) Z2 ⊕ Z
n(n−3)/2 if M = S

2 and n ≥ 3. Further, the Γ2(Pn(M))-coset of the full twist ∆2
n is the

generator of the summand Z2.
(b) Zn

2 ⊕ Z(g−1)n if M = Ng.

Proof. Part (a) follows from [8, page 674]. For part (b), if g = 1 then M = RP 2, and the result
is a consequence of [9, Proposition 8]. So suppose that g ≥ 2. We make use of [13, Theorem 5.1,
Presentation 3]. Since Ti,i = 1 for all 1 ≤ i ≤ n [13, page 439] then by relation (Pr3) of that
presentation, Ti,j = Ti,j−1 in Pn(M)/Γ2(Pn(M)) for all 1 ≤ i < j ≤ n, and it follows by induction
on j − i that Ti,j = 1. We conclude from the presentation that Pn(M)/Γ2(Pn(M)) is generated by
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{aj,r | 1 ≤ j ≤ n and 1 ≤ r ≤ g}, subject to the relations a2j,1a
2
j,2 · · · a

2
j,g = 1 for all 1 ≤ j ≤ n, from

which we obtain the given isomorphism. �

Proposition 15. Let M = Ng, where g ≥ 1. In terms of the presentation of Bn(M) given by [13,
Theorem 2.2], the map ψ : Sn −→ Bn(M)/Γ2(Pn(M)) defined on the generating set {τi | i = 1, . . . , n−
1} of Sn by ψ(τi) = σi for all 1 ≤ i ≤ n− 1 is an injective homomorphism. Consequently, the short
exact sequence (1.2) splits, and Bn(M)/Γ2(Pn(M)) ∼= (Zn

2 ⊕ Zn(g−1))⋊ Sn

Proof. Since τ1, . . . , τn−1 and σ1, . . . , σn−1 satisfy the Artin relations, and using (1.2), it suffices to
show that σ2

i = 1 in Bn(M)/Γ2(Pn(M)) for all i = 1, . . . , n− 1. We now prove that this is the case.
If g = 1 (resp. g ≥ 2), with the notation of [9, Theorem 7] (resp. [13, Theorem 2.2]), σ2

i = Ai,i+1

(resp. σ2
i = Ti,i+1) in Pn(M) for all 1 ≤ i ≤ n− 1, so σ2

i belongs to Γ2(Pn(M)) by [9, Proposition 8]
(resp. by the proof of Lemma 14), and thus its Γ2(Pn(M))-coset is trivial in Bn(M)/Γ2(Pn(M)) as
required. �

By Lemma 14, if M = S2 or Ng, where g ≥ 1, Pn(M)/Γ2(Pn(M)) has torsion, and we cannot use
the methods of the proof of Proposition 1 . But in fact, in these cases, the group Bn(M)/Γ2(Pn(M))
is not crystallographic. To see this, we first prove the following lemma.

Lemma 16. Let Π be a group, and suppose that there exists a group extension of the form:

1 −→ T ×H −→ Π −→ Φ −→ 1,

where H is torsion free, and T is finite and non-trivial. Then Π is not a crystallographic group.

Proof. To prove that Π is not crystallographic, by [5, page 34], it suffices to show that it possesses a
non-trivial, normal finite subgroup. Let us show that T is such a subgroup. By the hypotheses, it
suffices to prove that T is normal. To see this, we view the kernel T ×H as a subgroup of Π. Any
inner automorphism of Π thus restricts to an automorphism of T ×H . Since the image by such an
automorphism of any element of T is also a torsion element, it follows from the fact that H is torsion
free that T is indeed normal in Π. �

Proposition 17. LetM = S2 or Ng, where g ≥ 1. Then for all n ≥ 1, the quotient Bn(M)/Γ2(Pn(M))
is not a crystallographic group.

Proof. The result follows from (1.2) and Lemmas 14 and 16. �

Remark 18. If M = S2 (resp. M = Ng, where g ≥ 2), the subgroup T is that generated by the class
of the full twist braid (resp. by {aj,1aj,2 · · ·aj,g | j = 1, . . . , n} using the notation of [13, Theorem 5.1]).
If M = RP 2 then T = Pn(RP

2)/Γ2(Pn(RP
2)).
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