
HAL Id: hal-03280892
https://hal.science/hal-03280892

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Key Management Protocol for Secure
Device-to-Device Communication in the Internet of

Things
Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine

Challal

To cite this version:
Mohamed Ali Kandi, Hicham Lakhlef, Abdelmadjid Bouabdallah, Yacine Challal. A Key Management
Protocol for Secure Device-to-Device Communication in the Internet of Things. IEEE Global Commu-
nications Conference (GLOBECOM 2019), Dec 2019, Waikoloa, United States. pp.1-6, �10.1109/globe-
com38437.2019.9013595�. �hal-03280892�

https://hal.science/hal-03280892
https://hal.archives-ouvertes.fr

A Key Management Protocol for Secure Device-to-Device
Communication in the Internet of Things

Mohamed Ali Kandi1, Hicham Lakhlef1, Abdelmadjid Bouabdallah1 and Yacine Challal1,2
1Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR7253 Heudiasyc-CS 60319-60203 Compiègne Cedex, France

2Laboratoire de Méthodes de Conception de Systèmes, École nationale Supérieure d’Informatique, Algiers, Algeria
2Centre de Recherche sur l’Information Scientifique et Technique, Algiers, Algeria

Email: {mohamed− ali.kandi, hicham.lakhlef,madjid.bouabdallah, yacine.challal}@hds.utc.fr

Abstract—The Internet of Things (IoT) is a network made up
of a large number of devices which are able to automatically com-
municate in a Peer-to-Peer manner. The aim is to provide various
services for the benefit of society. One of the main challenges fac-
ing the IoT is how to secure this Device-to-Device communication.
Among all the security issues, the Key Management is one of the
most difficult. This is mainly due to the fact that most of these
devices have limited resources in terms of storage, calculation,
communication and energy. Although different approaches have
been proposed to deal with this problem, each of them presents its
own limitations and weaknesses. In this paper, we propose a novel
Key Management protocol for Device-to-Device communication
in the Internet of Things. Compared to the existing Peer-to-Peer
schemes, our solution provides the best compromise between the
IoT requirements: resilience, connectivity, efficiency, scalability
and flexibility. To achieve this balance, the network members
are uniformly distributed into logical sets. A device shares
then a distinct pairwise key with each member of its set and
a unique pairwise set key with the members of each of the
other sets. We then prove that our solution is resilient as the
capture of a member compromises a negligible part of a large
network. Moreover, we show that our scheme has a good network
connectivity. It is then efficient as it does not require additional
calculation or communication costs on the network members. We
also demonstrate that our protocol is scalable as storage cost on
the network members does not significantly increase when the
network gets larger. We finally show that our solution is flexible.

Index Terms—Internet of Things, Device-to-Device communi-
cation, Security, Peer-to-Peer Key Management.

I. INTRODUCTION

The number of devices connected to the Internet is con-
stantly increasing since its appearance. Now that this number
far exceeds that of people in the world, we are no longer
talking about the Internet but about the Internet of Things
(IoT). This emerging technology gives rise to revolutionary
applications such as health care, environment monitoring,
smart homes, smart cities, autonomous vehicles...etc. The IoT
devices are able to automatically communicate to each other
in a Peer-to-Peer manner. The Vehicle-to-Vehicle communi-
cation, for example, allows vehicles to exchange information
about their speed and position to avoid crashes, ease traffic
congestion and improve the environment. One of the main
challenges facing the IoT is how to secure this Device-to-
Device communication. Among all the security issues, the Key
Management is one of the most difficult. This is mainly due
to the fact that most of these devices have limited resources in
terms of storage, calculation, communication and energy [1].

The Key Management (KM) is the core of secure com-
munication. Its main role is to establish secure links between
the network members [11]. To achieve this, the KM provides
them with secret cryptographic keys that are used to encrypt
and decrypt the exchanged data. According to the encryption
technique used, the KM approaches can be classified into two
categories: symmetric and asymmetric. Symmetric schemes
involve the use of the same key for encryption and decryption,
while asymmetric approaches use two different keys. Asym-
metric approaches usually imply intensive computing, which
makes them impractical on the IoT constrained devices [15].

Although symmetric schemes are more suitable for the IoT
constrained devices, they rarely meets all its requirements:
resilience (Rsl), connectivity (Cnt), efficiency (Efc), scalability
(Scl) and flexibility (Flx). A protocol is resilient if the capture
of a node does not jeopardize the communications of the other
ones. When network connectivity is low, some neighboring
communicators may not share a common key and relay
on intermediate nodes to establish a secure link. Efficiency
implies minimal use of node resources in terms of storage,
calculation and communication. If increasing the network size
does not significantly degrade its performance, the protocol is
scalable. Finally, a flexible solution operates well regardless
of nodes location and supports their dynamic deployment [6].

In this paper, we propose a novel KM protocol for Device-
to-Device communication in the IoT. Compared to the existing
Peer-to-Peer schemes, it provides the best compromise be-
tween the IoT requirements mentioned above. To achieve this
balance, the network members are uniformly distributed into
logical sets. A device shares then a distinct pairwise key with
each member of its set and a unique pairwise set key with
the members of each of the other sets. We then prove that our
solution is resilient as the capture of a member compromises
a negligible part of a large network. Moreover, we show that
our scheme has a good connectivity. It is then efficient as it
does not require additional calculation or communication on
the devices. We also prove that our protocol is scalable as
storage cost does not significantly increase when the network
gets larger. We finally show that our solution is flexible.

The remainder of this paper is organized as follows: related
works are discussed in Section II. We detail then our solution
in Section III. Section IV presents the security analysis of our
protocol. In Section V, we evaluate the performance of our
solution. Finally, we conclude our work in Section VI.

II. RELATED WORKS

In this work, we focus on the symmetric schemes since
they require less resources than the asymmetric ones. This
makes them more suitable for the IoT constrained devices [15].
Symmetric schemes can in turn be classified into three sub-
categories: deterministic, pure probabilistic and deployment
knowledge based schemes.

A. Deterministic schemes

The basic deterministic scheme (Pairwise Key Protocol)
consists of storing a distinct pairwise key in each pair of nodes
before their deployment. Since such a technique [8] requires
a lot of storage, other approaches were proposed: Polynomial-
based protocols [2, 4], Matrix-based schemes [9, 14]...etc. The
deterministic approaches have the advantage of being resilient
against node capture. Moreover, they are usually efficient and
have a good connectivity. However, they suffer from poor
scalability (Figure 1a). Indeed, Pairwise Key schemes require
that a node stores as many keys as there are members in the
network. On the other hand, the larger is the network, the more
vulnerable the Polynomial and Matrix-based approaches are to
compromise. Finally, most of these schemes lack flexibility as
they are based on key pre-distribution.

B. Pure probabilistic schemes

The first pure probabilistic scheme was introduced in [10].
It consists of using a large pool of keys and to randomly
distribute some of them (a key ring) to each network member.
Two neighboring nodes can then communicate only if they
share a common key. Otherwise, they relay on intermediate
nodes to establish secure links. Other methods were proposed
to enhance the resilience. Using the Q-composite [5] scheme,
nodes can communicate only if they share Q keys. Also,
polynomial pool based schemes [13, 18] use a pool of poly-
nomials instead of keys. Probabilistic schemes are resilient
and more scalable than the deterministic ones. Nevertheless,
they suffer from poor flexibility, efficiency and connectivity
(Figure 1b). Indeed, they are usually based on key pre-
distribution. Moreover, intermediate nodes may be necessary
to establish secure links. This requires additional calculation
and communication and thereby more energy consumption
[17]. Some works tried to enhance the connectivity using
the unital design theory [3], system of equations [17]...etc.
However, as long as they are probabilistic, the connectivity is
rarely total.

C. Deployment knowledge based schemes

These schemes are neither deterministic nor purely prob-
abilistic. They are based on the location of nodes to max-
imize the connectivity. Thus, to increase the probability of
sharing keys, nodes are distributed into regional zones. Key
rings are then assigned to them so that neighboring nodes
share a maximum of keys. Like the other approaches, the
deployment knowledge based schemes can use pairwise keys
[7], polynomials [12] or matrices [16]. These approaches are
resilient, scalable and provide a better network connectivity
than the pure probabilistic schemes. However, they are not
flexible and are more suitable for static networks (Figure 1c).

III. OUR SOLUTION

Our literature review shows that none of the existing
solutions meets all the IoT requirements. To improve the
scalability of deterministic schemes without loss of efficiency
or connectivity, as it is the case with probabilistic schemes,
our solution uniformly distributes the network members into
logical sets. A node shares then a distinct pairwise key with
each member of its set and a unique pairwise set key with
the members of each of the other sets. The scalability of the
protocol is then improved as nodes store fewer keys. Although
the members of a set share the same pairwise set key, we
prove that our solution remains resilient against node capture.
Unlike deployment knowledge schemes, our protocol operates
well regardless of the position of nodes. Moreover, as keys are
dynamically distributed to the network members when nodes
join or leave the network, our solution is flexible (Figure 1d).

Since some keys are shared by several nodes, the KM must
ensure that they are known only by the current members.
Thus, when a node joins or leaves the network, these keys are
revoked and new ones are distributed to the remaining ones.
This rekeying ensures that a joining node will not have access
to the old keys (backward secrecy) and a leaving member will
no longer know the future ones (forward secrecy).

A. Overview

The network members are distributed into logical sets to
improve the protocol scalability. To each set S is associated
a unique ID , sidS . It is important to note that these grouping
is logical and transparent to the application layer. Although
nodes belonging to the same set are considered as cognates,
they can be physically far from one another. Each of them, u ,
is also associated with a unique ID , nidu .

(a) Deterministic schemes. (b) Pure probabilistic schemes. (c) Deployment knowledge. (d) Our solution.
Fig. 1: Symmetric Peer-to-Peer Key Management approaches.

The keys managed by our solution can be classified into
two types: Data Encryption Keys (DEKs) and Key Encryption
Keys (KEKs). The DEKs are symmetric pairwise keys that
are used by nodes to encrypt the data exchanged between them.
The KEK are used to secure the communications between the
KM and the nodes in order to protect the DEKs and thereby
ensure the backward and forward secrecy. A node u , belonging
to a set S , holds the following keys:

• A pairwise node key, K v
u , for each of its cognates v . It is

a DEK allowing the two nodes to communicate safely.
• A pairwise set key, KT

S , for each set T (T 6= S). This
is a DEK that allows the members of S to communicate
with those of T safely. This key is used, instead of the
pairwise node keys, to reduce the storage overhead on
nodes and thereby improve the protocol scalability.

• A node key, Ku , which is a KEK known only to u . It
allows the KM to communicate with the node safely.

• A set key, KS , which is a KEK known to the members of
S only. This key is used, instead of the node keys, when
the KM sends the same message to all the members of S .
The latter will then be encrypted once for more efficiency.

Figure 2 and Table I show an example of distribution
of the nodes of a network N and the keys they know.
Hereafter, the keys K v

u and K u
v are the same and can be used

interchangeably. The same goes for the keys KT
S and K S

T .
We also use the notations KR and KDF to refer to a refresh
key and a pseudo-random key derivation function, respectively.
Finally, KM → R :< {M }K > means that the KM sends the
message {M }, encrypted using the key K , to the node(s) R.

Fig. 2: Example of a distribution of nodes.

Node ID Node key
Pairwise

Set key
Pairwise

node keys set keys

1 K1 K 2
1 ,K 3

1

KS1 KS2
S1

,KS3
S1

2 K2 K 1
2 ,K 3

2

3 K3 K 1
3 ,K 2

3

4 K4 K 5
4 ,K 6

4

KS2 KS1
S2

,KS3
S2

5 K5 K 4
5 ,K 6

5

6 K6 K 4
6 ,K 5

6

7 K7 K 8
7 ,K 9

7

KS3 KS1
S3

,KS2
S3

8 K8 K 7
8 ,K 9

8

9 K9 K 7
9 ,K 8

9

TABLE I: Example of keys held by nodes.

B. Rekeying upon joining

Let us consider a node u joining the network. The node is
first assigned to a set S following the steps described in section
III-D. The KM generates then some new keys and updates
some of the previously existing ones. The aim of this update
is to ensure the backward secrecy. Indeed, if these keys are
not updated and if the joining node u has stored the messages
previously exchanged, it will be able to decipher some of them.
Next, the KM provides some nodes with the new keys and
sends to others the elements allowing them to update some
of the keys they hold. The process of rekeying upon joining
consists of the four following steps.

1) Key generation: The first step in the rekeying process
consists of determining the secret key, Ku , of the joining node
u . After that, the KM generates a pairwise node key, K v

u , for
each node v of the set S . The KM also determines the unique
node ID, nidu , associated to u .

2) Key update: The KM starts by randomly generating KR.
Then using it and the KDF , the KM updates the set key of S
and the pairwise set keys known by its members (Formulas 1
and 2, respectively). As previously said, the aim of this update
is to guarantee the backward secrecy.

K+
S = KDF (KS ||KR) (1)

KT+
S = KDF (KT

S ||KR),∀T ∈ N (2)

3) Key distribution: After the keys generation and update
are completed, the KM distributes these new keys to the
appropriate nodes. Thus, it sends to each node v of the set
S the unicast message JM1 encrypted by means of the node
secret key, Kv . The message contains the ID of the joining
node and the pairwise node key, K v

u , associated to it. The KM
also broadcasts for each set T (including S) the message JM2
encrypted using KT , the current set key of T . The message
contains the ID of the set S and KR. Finally, the KM provides
u , via a pre-existing secure channel, with its secret key, the
new set key, the pairwise node keys to share with its cognates
and all the new pairwise set keys associated to S . After the
keys distribution, the KM discards KR.

JM1 : KM → v :< {nidu ,K v
u }Kv

> (∀v ∈ S)

JM2 : KM → T :< {sidS ,KR}KT
> (∀T ∈ N)

4) Key installation: When a member of the set S , v ,
receives the messages JM1 and JM2 , it first decrypts them
using its secret and set keys, respectively. Then, it installs K v

u

as the pairwise key to use for encrypting the communications
with the joining node u . The node v also uses KR and the
KDF to update the set key and all the pairwise set keys it
knows (Formulas 1 and 2, respectively). After that, v discards
KR. On the other hand, when a node w , not belonging to S ,
receives JM2 , it first decrypts the message, using the current
set key, and retrieves KR. Then, using the KDF , it updates
the pairwise set key it shares with the members of S (Formula
2). Once done, w discards KR.

C. Rekeying upon leaving

A node u can leave the network or be evicted when it get
compromised. In both cases, the keys it knows must be re-
voked. The KM removes then some of them and updates some
others. The aim of this update is to ensure the forward secrecy.
Indeed, if these keys are not updated, the leaving node will be
able to decipher some of the future communications. Next,
the KM provides the network members with the elements
allowing them to remove the keys that should be removed and
to update those that must be updated. The process of rekeying
upon leaving consists of the four following steps.

1) Key removal: The KM starts by removing the secret
key, Ku , of the leaving node as well as its ID , nidu . Next,
the KM deletes all its pairwise keys, K v

u (v ∈ S , v 6= u).
2) Key update: The KM starts by randomly generating KR.

Then using it and the KDF , the KM updates the set key of S
and all the pairwise set keys known by its members (Formulas
1 and 2, respectively). As previously said, the aim of this
update is to guarantee the forward secrecy.

3) Key distribution: After the keys removal and update are
completed, the KM distributes the new keys to the appropriate
nodes. Thus, it sends, to each node v of the set S , the unicast
message LM1 encrypted by means of the node key, Kv . The
message contains the ID of the leaving node and KR. The
KM also broadcasts, for each set T (T 6= S), the message
LM2 to provide its members with KR. The message LM2 is
encrypted using KT , the current set key of T . The message
LM2 is not sent to the members of S because the leaving
node u knows the set key KS . The refresh key is therefore
sent to the other members of S via the unicast message LM1
instead. After the keys distribution, the KM discards KR.

LM1 : KM → v :< {nidu ,KR}Kv
> (∀v ∈ S, v 6= u)

LM2 : KM → T :< {sidS ,KR}KT
> (∀T ∈ N,T 6= S)

4) Key installation: When a member of S , v , receives
LM1 , it first decrypts the message, using its secret key Kv , and
retrieves KR. Then, it removes the pairwise key K v

u , which
was used for encrypting the communications with the leaving
member u . The node v also uses the KDF to update the
set key and all the pairwise set keys it knows (Formulas 1
and 2, respectively). Once done, the node v discards KR. On
the other hand, when a node w , not belonging to the set S
receives LM2 , it first decrypts the message, using the current
set key, and retrieves KR. Then, using it and the KDF , the
node updates the pairwise set key it shares with the members
of the set S (Formula 2). Finally, the node w discards KR.

D. Set management

The set management consists of distributing nodes on sets
while minimizing the number of keys they store. The aim is
to improve the protocol scalability without significant loss of
resilience, efficiency nor network connectivity. In the follow-
ing, we use the notations n and p to refer to the number of
nodes and sets in the network, respectively. We also denote
the number of the members of a set S by ms .

A node stores one secret key, ms − 1 pairwise node keys,
one set key and p − 1 pairwise set keys. Storage on nodes is
therefore proportional to p +ms . The problem consists then
of creating sets and assigning nodes to them so as to satisfy:

∀S ,min (p +ms) (3)
p∑

s=1

ms = n (4)

To have the same number of keys stored on each net-
work member, we opted for a uniform distribution (i.e.
∀S ,ms = m). By replacing 4 in 3 and studying the monotony
of the resulting function (f (p) = p + n

p), we can easily show
that storage is minimized when p = m =

√
n . The set man-

agement aims then to uniformly distributes the n nodes of the
network into

√
n sets of

√
n members each (Figure 2).

The Assignment Algorithm (Algorithm 1) is run when nodes
join the network and assigns them to the right sets. It takes as
input n , the current number of network members, and assigns
the joining node to a set according to the input value. The
algorithm manipulates then a list of sets, ls , of size p. Each
of its items contains the ID of a set and its size.

Algorithm 1: Assignment Algorithm
Input : n = the number of network members

1 Search in ls a set S such that ms <
√
n;

2 if no set is found then
3 Create a new set S ;
4 end
5 Assign the joining node to S ;
6 Update ls;

The Reorder Algorithm (Algorithm 2) is run, after a node
leaving, to reduce the number of sets. It takes as input the
size of the network, n , the percentage of merging, pcm , and
tries to remove or merge sets when it is possible. Due to space
constraints, we do not discuss the set merging in this paper.

Algorithm 2: Reorder Algorithm
Input : n = the number of network members

pcm = percentage of merging
1 if ms = 0 then Remove S ;
2 else
3 if ms < pcm.

√
n then

4 Find T such as mt < pcm.
√
n;

5 if a set T is found then Merge S and T ;
6 end
7 end
8 Update ls;

IV. SECURITY ANALYSIS

Since some keys are shared by several nodes, we start by
showing that our solution fulfills the backward and forward
secrecy requirements. We then prove that it provides a good
level of resilience. We assume that the KM itself is secure
and that only the network members can be compromised.

A. Backward and forward secrecy
The issue is to prove that a joining node cannot access the

old keys and that a leaving node cannot access the new ones.
Proposition 1: Backward secrecy is guaranteed as the join-

ing node never gets knowledge of the security material used
before it joins the network.

Proof: Let us consider a node u that joins a set S of the
network. The KM first updates the keys mentioned above.
Then, before u can actually join the network, the KM rekeys
all its current members by means of messages JM1 and JM2 .
The content of the former is encrypted using the nodes secret
keys and that of the latter is protected by means of the set
keys. Since none of these keys are known by u , the joining
node is excluded from the process of rekeying.

Proposition 2: Forward secrecy is guaranteed as the leaving
node does not have access to the new security material.

Proof: Let us consider a node u that leaves a set S of the
network. The KM first rekeys the cognates of u , by means of
the message LM1 , then the members of the other sets, using
LM2 . The content of the former is encrypted using the nodes
secret keys and that of the latter is protected by means of the
set keys. Since none of these keys are known by u , the leaving
node is excluded from the process of rekeying.

B. Resilience against node capture
According to [11], resilience is the measure of the impact

of one captured node on the rest of the network. The issue is
then to prove that, using our solution, this impact is negligible
for large networks such as the IoT.

1) Theoretical analysis: We start by analyzing the rate of
compromised links due to a node capture.

Lemma 1: A node can decrypt a number of links equal to:

D = n − 1 + (
√
n − 1)(n −

√
n) = (

√
n − 1)(n + 1) (5)

Proof: A node can decrypt the communications linking it to
the n − 1 other network members as well as the links between
its
√
n − 1 cognates and the n −

√
n other nodes.

Proposition 3: The percentage of links that a compromised
node can decipher is equal to:

P =
D

T
=

(
√
n − 1)(n + 1)

n(n−1)
2

=
2 (n + 1)

(
√
n + 1)n

(6)

Proof: On the one hand, we have the lemma 1. On the other,
the total number of links in a network of n nodes is equal to:

T = C 2
n =

n(n − 1)

2
(7)

Proposition 4: The compromise of the whole network
occurs if and only if all the network members are captured.

Proof: Deciphering all the intra-subgroup communications
requires the knowledge of all the pairwise node keys associated
to it. This is only possible if all the subgroup members are
captured. Also, deciphering all the inter-subgroup communica-
tions requires the knowledge of all the pairwise subgroup keys.
This is only possible if at least a member of each subgroup
is compromised. Deciphering all the communications is then
possible if and only if all the network members are captured.

2) Comparison: According to [13], a perfect resilience can
be reached if each pair of nodes share a distinct pairwise
key. Thus, a captured node can only decipher the n − 1
communications linking it to the other network members. The
percentage of compromised links is equal to 2(n−1)

n(n−1) =
2
n .

Due to space constraints, we only compare the resilience
of our solution to the Pairwise Key schemes. Providing a
perfect resilience, none of the other solutions can do better.
We consider then as example the work presented in [8]. We
proved that, using our solution, the rate of compromised links
due to a node capture is equal to P . Figure 3 shows that this
value is negligible for large networks such as the IoT. It is
even comparable to the percentage provided by the perfectly
resilient scheme. We also showed that the compromise of the
whole network requires the capture of all its members. Our
solution provides then a good level of resilience.

Fig. 3: Variation of the rate of captured links according to n .

V. PERFORMANCE EVALUATION

Due to space constraints, we assume that the KM has
plentiful of resources and focus on the protocol costs on nodes.

A. Theoretical analysis

We start by analyzing the protocol overheads on nodes.
Proposition 4: Storage and calculation costs on nodes are

of the order of O(
√
n), while the communication is O(1).

Proof: Using our solution, a node knows a secret key,√
n − 1 pairwise node keys, a set key and

√
n − 1 pairwise

set keys. It then stores in total 2 .
√
n keys. Moreover, regard-

less of the rekeying operation performed (node joining, node
leaving,...etc), a node receives a constant number of messages
and calculates the hash of the 2 .

√
n keys it knows.

B. Comparison

After showing that our solution provides a good level of
resilience, let us prove that it meets the other IoT requirements.

1) Scalability: Although having a perfect resilience, the
storage cost of the Pairwise Key schemes, in general, and the
work presented in [8], in particular, is of the order of O(n).
The deterministic solution (Kronecker) presented in [14] and
the probabilistic one (Trade) presented in [13] has a storage
proportional to O(

√
n). For the other schemes (e.g. [3]), it

is difficult to deduce the storage from the network size as it
depends on other parameters. Our solution also has a storage
proportional to O(

√
n).

Figure 4 shows that our solution stores fewer keys than the
Pairwise Key schemes and can operate on larger networks of
compromised nodes such as the IoT. It even provides a level of
scalability comparable to the solutions presented in [13, 14].

Fig. 4: Variation of nodes’ storage overhead according to n .

2) Connectivity: Although being scalable, the probabilistic
schemes, mentioned above, suffer from poor connectivity. The
probability that two neighboring nodes share a common key
does not exceed 0 .25 in [13], while in [3] it is approximately
lower bounded by 0 .632 . Using our solution, this probability
is always equal to 1 . Indeed, each pair of communicators share
a pairwise node or subgroup key and can establish a direct
secure link. It provides then a good connectivity.

3) Efficiency: Unlike most of the probabilistic schemes
[3, 13], our solution has a good connectivity. Thus, it does
not require additional calculation and communication costs
to establish secure links. It also stores fewer keys on nodes
than the Pairwise Key schemes [8] (Figure 4). Moreover, the
communication and calculation costs are the same as in [14],
while they are of the order of O((log(n))2) and O(log(n)) in
[13]. Note that communication is the operation that consumes
the most nodes’ energy. On top of that, our solution is based
on symmetric cryptography. It is therefore efficient.

4) Flexibility: Although deployment knowledge schemes
[7, 12, 16] provides good connectivity, they are based on
nodes’ location. Our solution operates well regardless of the
position of nodes and supports their dynamic deployment. We
previously showed that nodes can join and leave the network
at any time without jeopardizing its security. It is then more
flexible and suitable for dynamic networks such as the IoT.

To sum up, considering the IoT requirements (resilience,
connectivity, efficiency, scalability and flexibility) as a whole,
our solution provides the best compromise between them
(Figure 1).

VI. CONCLUSION

In this paper, we proposed a novel Key Management proto-
col for Device-to-Device communication in the IoT. Compared
to the existing Peer-to-Peer schemes, our solution provides
the best compromise between the IoT requirements: resilience,
connectivity, efficiency, scalability and flexibility. To achieve
this balance, the network members are uniformly distributed
into logical sets. A node shares then a distinct pairwise key
with each member of its set and a unique pairwise set key
with the members of each of the other sets.

We proved that our solution is resilient as the capture of a
member compromises a negligible part of a large network. We
then showed that it has a good connectivity. It is then efficient
as it does not require additional calculation or communication.
We also demonstrated that our scheme is scalable as storage
on nodes does not significantly increase when the network gets
larger. We finally showed that it is flexible.

In future works, we intend to decentralize the protocol in
order not to have a single point of failure.

ACKNOWLEDGMENTS

This work was carried out and funded by INS2I STFOC
project, Heudiasyc UMR CNRS 7253 and the Labex MS2T.

REFERENCES

[1] F. A. Alaba, M. Othman, I. A. T. Hashem and F. Alotaibi. “Internet
of Things security: A survey”. In: Journal of Network and Computer
Applications 88 (2017), pp. 10–28.

[2] E. Baburaj et al. “Polynomial and multivariate mapping-based triple-
key approach for secure key distribution in wireless sensor networks”.
In: Computers & Electrical Engineering 59 (2017), pp. 274–290.

[3] W. Bechkit, Y. Challal, A. Bouabdallah and V. Tarokh. “A highly
scalable key pre-distribution scheme for wireless sensor networks”.
In: IEEE Transactions on Wireless Communications 12.2 (2013),
pp. 948–959.

[4] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and
M. Yung. “Perfectly-secure key distribution for dynamic conferences”.
In: Annual international cryptology conference. Springer. 1992.

[5] H. Chan, A. Perrig and D. Song. “Random key predistribution
schemes for sensor networks”. In: Symposium on Security and Pri-
vacy. IEEE. 2003, pp. 197–213.

[6] O. Cheikhrouhou. “Secure group communication in wireless sensor
networks: a survey”. In: Journal of Network and Computer Applica-
tions 61 (2016), pp. 115–132.

[7] J. Choi, J. Bang, L. Kim, M. Ahn and T. Kwon. “Location-based
key management strong against insider threats in wireless sensor
networks”. In: IEEE Systems Journal 11.2 (2017), pp. 494–502.

[8] T. Choi, H. B. Acharya and M. G. Gouda. “The best keying protocol
for sensor networks”. In: Pervasive and Mobile Computing 9.4 (2013),
pp. 564–571.

[9] W. Du, J. Deng, Y.S. Han, P.K. Varshney, J. Katz and A. Khalili. “A
pairwise key predistribution scheme for wireless sensor networks”.
In: ACM Transactions on Information and System Security (TISSEC)
8.2 (2005), pp. 228–258.

[10] L. Eschenauer and V. D. Gligor. “A key-management scheme for dis-
tributed sensor networks”. In: Proceedings of the 9th ACM conference
on Computer and communications security. ACM. 2002, pp. 41–47.

[11] X. He, M. Niedermeier and H. De Meer. “Dynamic key management
in wireless sensor networks: A survey”. In: Journal of Network and
Computer Applications 36.2 (2013), pp. 611–622.

[12] D. Liu and P. Ning. “Improving key predistribution with deployment
knowledge in static sensor networks”. In: ACM Transactions on
Sensor Networks (TOSN) 1.2 (2005), pp. 204–239.

[13] S. Ruj, A. Nayak and I. Stojmenovic. “Pairwise and triple key
distribution in wireless sensor networks with applications”. In: IEEE
Transactions on Computers 62.11 (2013), pp. 2224–2237.

[14] I. Tsai, C. Yu, H. Yokota and S. Kuo. “Key Management in Internet
of Things via Kronecker Product”. In: IEEE 22nd Pacific Rim Inter-
national Symposium on Dependable Computing, 2017. Pp. 118–124.

[15] M. S. Yousefpoor and H. Barati. “Dynamic key management al-
gorithms in wireless sensor networks: A survey”. In: Computer
Communications (2018).

[16] Z. Yu and Y. Guan. “A robust group-based key management scheme
for wireless sensor networks”. In: IEEE Wireless Communications and
Networking Conference, 2005. Vol. 4. IEEE. 2005, pp. 1915–1920.

[17] F. Zhan, N. Yao, Z. Gao and G. Tan. “A novel key generation method
for wireless sensor networks based on system of equations”. In: Jour-
nal of Network and Computer Applications 82 (2017), pp. 114–127.

[18] J. Zhang, H. Li and J. Li. “Key establishment scheme for wireless
sensor networks based on polynomial and random key predistribution
scheme”. In: Ad Hoc Networks 71 (2018), pp. 68–77.

