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Abstract

This paper deals with the issue of dynamical left-invertibility for
linear continuous-time dynamical systems. More precisely, we pro-
vide sufficient conditions in order to estimate unknown inputs, using
known outputs, under sparse input assumptions for linear continuous-
time dynamical systems that are not necessarily square. In fact, there
exists an algorithm in the literature that allows verification of left-
invertibility for linear square systems; that is, systems with p known
outputs and p unknown inputs. However, a similar algorithm does
not exist for the rectangular case, where the number of inputs is much
larger than the number of outputs. In this paper, we first use the
square case algorithm as a stepping stone in order to propose a new
algorithm for the rectangular case. However, it shown that even if
the proposed algorithm converges successfully, it is not sufficient to
estimate the unknown inputs. Consequently, it has been deemed nec-
essary to include a sparse input assumption and to verify the well-
known Restrictive Isometric Property (RIP) conditions of a specific
matrix. Finally, an academic example is given in order to highlight
the feasibility of the proposed approach.
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1 Introduction

In the context of control systems, the problem of Dynamical Left-Invertibility
(DLI) refers to the estimation of unknown inputs from known outputs (mea-
surements) for dynamical systems. In this work, we investigate the DLI prob-
lem for multi-input multi-output linear continuous-time dynamical systems
whereby the number of unknown inputs is much larger than the number of
outputs, with the additional property that the number of non-zero unknown
inputs are s-sparse (i.e. only s unknown inputs are non-zero). One of the
motivations for considering such classes of system is that some diagnosis or
cyber attack detection problems can be treated as a left-invertible problem
under sparse assumptions [8]. Moreover, in the context of over-actuated sys-
tems or networks, left-invertibilty under sparsity assumptions can generate
a control design with a minimum of active actuators.

The main aim of this paper is to provide sufficient conditions for the
estimation of the unknown inputs, under sparsity assumption on the latter.
For this, we start by extending the left-invertibility algorithm presented in
[11] for square linear systems (see also for an other approach [4] and [2]
for the nonlinear case) to rectangular linear systems. Prior to that, some
essential definitions are introduced; namely, uniform observability, s-sparse
left-invertibility and relative degree with respect to the unknown inputs to be
estimated, which provide the necessary ingredients to develop the proposed
algorithm. After that, from the seminal works of Tao, Candes, Donoho [6, 8,
10] and other authors from the signal processing community (see references
herein), a specific exact input recovery method is employed in order to solve
the problem of left-invertibility for linear dynamical systems under sparse
assumptions. Finally, some conclusions are drawn together with some scope
for future works.

Notation: For any time function z(t) that is at least of class Cj, ż and z̈
denotes the first and second derivative with respect to time t and z(j) denotes
the jth derivative of z with respect to t.
Uppercase letters are employed to denote vectors or matrices and lowercase
letters to denote scalars.
For any two vectors U and V , we shall denote by (U, V ) = (U V ) and by

(U ;V ) =

(
U
V

)
.
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2 Preliminary discussions and problem state-

ment

Dynamical left-invertibility (DLI) is encountered in many engineering fields
and various results on this topic exist in the literature. Hereafter, we shall
present the DLI problem for linear systems with more unknown inputs that
outputs under sparse assumptions.

We consider linear continuous-time systems of the following form:

(ΣM :)

{
Ẋ = AX +BU +D1Wx

Y = CX +D2Wy +N
(1)

where X ∈ Rn is the state, Y ∈ Rp is the output, U ∈ Rm is the known
input, Wx ∈ Rqx is the unknown input on the state dynamics, Wy ∈ Rqy is
the unknown input with respect to the output, and finally N ∈ Rp is the
measurement noise vector.
Throughout the paper, we assume that the vector N is composed of p un-
correlated white noise, q := qx + qy >> p.

Moreover, the following assumptions are made:

Assumption 1 Rank{C} = p and without loss of generality Y is considered
to be equal to (x1;x2; ...;xp).

Assumption 2 The unknown input vector Wy with respect to the output

is assumed to be constant or at least slowly varying i.e. W
(j)
qy ' 0 for all

j ∈ {1, ..., n− 1}.

Assumption 3 W= (Wx;Wy) is an s-sparse vector (i.e. s is the maximum
number of non-zero component of W )

Now, it is necessary to make some definitions with respect to observability
and left-invertibility.

Definition 2.1 The system (1) is said to be uniformly observable with respect
to Wx, if it is possible to obtain x(t) with any desired convergence time from
the knowledge of its input U and its output Y at any positive time when
Wy = 0.
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Definition 2.2 The system (1) is said to be s-sparse left-invertible with re-
spect to Wx, if it is possible to obtain x(t) and Wx with any desired conver-
gence time from the knowledge of its input U and its output Y at any positive
time when Wy = 0.

And finally,

Definition 2.3 The system (1) is said to be s-sparse left-invertible with re-
spect to W , if it s-sparse left-invertible with respect to Wx and for Wy 6= 0 it
is possible, to obtain W with any desired convergence time.

From the previous definitions, it is obvious that the s-sparse left-invertibility
with respect to W implies s-sparse left-invertibility with respect to Wx. Sim-
ilarly, left-invertibility with respect to Wx implies the uniform observability
with respect to Wx and, finally, uniform observability with respect to Wx

implies the classical observability.

Now, it is necessary to introduce and adapt some computational tools in
the context of dynamical left-invertibility based on the above definitions.

Definition 2.4 The relative degree of yi, i ∈ {1, ..., p} with respect to Wx for
the system (ΣM) (1) is the smallest integer ρi > 0 such that ∃j ∈ {1, ..., qx}
such that CiA

ρi−1D1
j 6= 0.

It is obvious that, from the previous definition, it is possible to define the
following matrix:

Γqx =


C1A

ρ1−1D1
1 C1A

ρ1−1D1
2 ... C1A

ρ1−1D1
qx

C2A
ρ2−1D1

1 C2A
ρ2−1D1

2 ... C2A
ρ2−1D1

qx
...

...
...

...
CpA

ρp−1D1
1 CpA

ρp−1D1
2 ... CpA

ρp−1D1
qx

 (2)

The following preliminary proposition provides an aid for the adaptation
of the left-invertibility algorithm presented in [11] to the above rectangular
case.

Proposition 2.1 The system (1) is uniformly observable with respect to Wx,
if ρ :=

∑p
i=1 ρi = n and rank of Γqx is equal to p.
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Proof : As ρ :=
∑p

i=1 ρi = n the above state transformation matrix T is
composed of the following n independent co-vectors :

T =



C1

C1A
...

C1A
ρ1−1

...
Cp
CpA

...
CpA

ρp−1


(3)

As a result, the system in the Z := TX coordinates becomes:


ż1,1

...
żρ1−1,1
żρ1,1

 =


z2,1 + C1BU

...
zρ1,1 + C1A

ρ1−2BU
C1A

ρ1−1(AT−1Z +Bu+DWx)


· · · · · · · · ·

ż1,p
...

żρp−1,p
żρp,p

 =


z2,p + CpBU

...
zρp,p + CpA

ρp−2BU
CpA

ρp−1(AT−1Z +Bu+D2Wx)


(4)

which may be rewritten as follows:

ż1,1
...

żρ1−1,1
...
ż1,p

...
żρp−1,1

 żρ1,1
...

żρp,p



=



z2,1 + C1BU
...

zρ1,1 + C1A
ρ1−2BU

...
z2,p + CpBU

...
zρp,p + CpA

ρp−2BU

 C1A
ρ1−1(AT−1Z +BU)

...
CpA

ρp−1(AT−1Z +BU)

+ ΓqxWx

(5)
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As U is known and Wx is bounded it is possible to design an observer (for
example sliding mode [17, 18, 12] or a high gain [3, 5]) in order to estimate,
the state Z. �

The result of Proposition 2.1 is a particular case, in fact some output
dynamics can be independent of the unknown input Wx and some states
cannot be estimated directly. The next algorithm considers all these cases.

3 Uniform observability with respect to Wx

In this section, a modified version of the algorithm introduced in [11] is pro-
posed to determine whether or not the system (1) is uniformly observable
with respect to Wx.

Algorithm I

Step 1: Consider the output vector y1 = y = CX, and p1 = p.

a. Without loss of generality, one can reorder the components of y1 as
follows

y1 =
[
CT

1 ; · · · ; CT
η1 ; CT

η1+1; · · · ; CT
p1

]T
X (6)

so that for 1 ≤ j ≤ η1:

CjA
kD1 = 0, for all k ∈ N (7)

and for 1 ≤ j ≤ p1 − η1, there exists an integer ρ1j (i.e. the relative
degree associated to the jth output; see Definition 2.4) such that:{

Cη1+jA
kD1 = 0, ∀k < ρ1j − 1

Cη1+jA
ρ1j−1D1 6= 0, ∀k < ρ1j − 1

(8)

Note that the outputs y1j = CjX, j ≤ η1, are not affected by the
unknown inputs.

b. Compute the set of covectors

Φ1 = span
{
C1; ...;C1A

n−1; ...;Cη1 ; ...;Cη1A
n−1} (9)
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and denote the dimension of Φ1 by ϕ1. Define the integers ϕ1
j , 1 ≤

j ≤ η1 such that

I1 =
{
C1; ...;C1A

ϕ1
1−1...;Cη1 ; ...;Cη1A

ϕ1
η1
−1
}

(10)

is a basis of Φ1. A direct consequence of the previous definition is that
ϕ1 = ϕ1

1 + . . .+ ϕ1
η1 . Note that the choice of the ϕji is not unique [16].

If ϕ1 = n, it is possible to obtain all the state variables of system (1)
using a classical observer (Luenberger [20], Kalman and Bucy [15], ...),
then the algorithm stops and the system is uniformly observ-
able with respect to Wx. Note that in this case D1 = 0.

c. If ϕ1 < n, let us define the matrix

Γ1 =

 Cη1+1A
ρ11−1D1

...

CpA
ρ1
p−η1

−1
D1

 (11)

and the rank of note Γ1 is denoted by γ1. Compute the covectors space

Υ1 = span
{
Cη1+1; ...;Cη1+1A

ρ11−1;

...;Cp; ...;CpA
ρ1
p−η1

−1
}

(12)

and the dimension of the direct sum of Φ1 with Υ1 (i.e. dimension {Φ1 ⊕Υ1}
is equal to ϕ1 + δ1, where δ1 is equal to the dimension of Υ1. Define
the integers (δ11, ..., δ

1
p−η1) such that (after a possible reordering of the

Ci, η
1 + 1 ≤ i ≤ p), the set {I1; J1}, where

J1 =
{
Cη1+1; ...;Cη1+1A

δ11−1; , ...;Cp; ...;CpA
δ1
p−η1

−1
}

(13)

is a basis of Φ1 ⊕Υ1.
From (13) δ1 is equal to

∑p−η1
l=1 δ1l .

If ϕ1 + δ1 = n, the system is uniformly observable with respect
to Wx, since the observability matching condition is satisfied and it is
possible to estimate all the state variables using, for example, high gain
observer [14, 13] or sliding mode observer [26, 23].
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d. If ϕ1 + d1 < n, the algorithm continues. Then, define the matrix
Λ1 ∈ IR p2×(p−η1) of rank p2, where p2 = p1 − η1 − γ1, such that

Λ1Γ1 = 0p2×(p1−η1) (14)

Define also the auxiliary variable (dummy output)

y2 = Λ1

 Cη1+1A
ρ11

...

CpA
ρ1p−η1

x := C2x, C2 :=

 C2
1
...
C2
p2


and compute the rank of {I1; J1;C2A} if this rank is equal to the Rank
of {I1; J1}, this means that their are not new direction generated by
the dummy output then
if rank{I1; J1;C2A} = rank{I1; J1} the system (1) is not uni-
formly observable with respect to Wx

else go to step 2.

Step 2: Bearing in mind that the covector space Φ1 and Υ1 generated by C
and A, the procedure employed for y1 is now applied to y2 ∈ IR p2 .

a. After possible reordering of the components of y2, by analogy with Step
1.a), one can define the integers η2 and ρ2j , 1 ≤ j ≤ p2 − η2 so that
the η2 first components of y2 are not influenced by the unknown inputs
and the p2 − η2 components of y2 have relative degree equal to ρ2j .

b. The covector space Φ2 is defined as follows:

Φ2 = span
{
C2
1 ; ...;C2

1A
n−1;C2

2 ; ; ...;C2
η2A

n−1
}
. (15)

Similarly to b) of step 1, ϕ2 is defined such that dim (Φ1 ⊕Υ1 ⊕ Φ2) =
ϕ1 + δ1 + ϕ2. Then, define the integers ϕ2

j , 1 ≤ j ≤ η2 and the related
set I2 such that the set {I1; J1; I2} is a basis of Φ1 ⊕Υ1 ⊕ Φ2.

If ϕ1 + δ1 + ϕ2 = n the system (1) is uniformly observable with
respect to Wx
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c. If ϕ1 + δ1 + ϕ2 < n, then define the matrix

Γ2 =


Γ1

C2
η2+1A

ρ21−1D1

...

C2
p2A

ρ2
p2−η2

−1
D1

 (16)

and denote γ2 = rank Γ2. By analogy with the c) of step 1, it is defined
the covector space

Υ2 = span{C2
η2+1; ...;C

2
η2+1A

ρ21−1;

...;C2
p2 ; ...;C2

p2A
ρ2
p2−η2

−1} (17)

and
J2 = {C2

η2+1; ...;C
2
η2+1A

δ21 ; ...;C2
p2 ; ...;C

2
p2A

δ2
p2−η2} (18)

such that {I1; J1; I2; J2} is a basis of Φ1 ⊕Υ1 ⊕ Φ2 ⊕Υ2 and δ2 is the
rank of J2 (i.e. δ2 = δ21 + ...+ δ2p2−η2).

If ϕ1 + d1 + ϕ2 + d2 = n the system (1) is uniformly observable
with respect to Wx.

d. If ϕ1 + δ1 + ϕ2 + δ2 < n the algorithm continues and the matrix

Λ2 ∈ IR p3×((p1−η1)+(p2−η2)) is defined, where p3 = (p2 − η2) − γ2, such
that

Λ2Γ2 = 0 (19)

where Λ2 is composed of p3 independent co-vectors. Then a new aux-
iliary variable (dummy output) is introduced

Y 3 = Λ2



Cη1+1A
ρ11

...

Cp1A
ρ1
p1−η1

C2
η2+1A

ρ21

...

C2
p2A

ρ2
p2−η2


X := C3X. (20)

If rank{I1, J1, I2, C3A} = rank{I1, J1, I2}, the system (1) is not
uniformly observable with respect to Wx,
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else the algorithm continues and go to step 3.

Repeating the above procedure, one has:
Step k: The fictitious output yk ∈ IR pk , that has been defined in Step k−1,
is considered.

a. Determine integers ηk and ρkj 1 ≤ j ≤ pk − ηk.

b. Compute the co-vectors space

Φk = span
{
Ck

1 ; ...;Ck
1A

n, Ck
2 ;

...;Ck
2A

n; ...;Ck
ηk ; ...;C

k
ηkA

n
}

(21)

and define Ik as the following set of co-vectors

Ik =
{
Ck

1 ; ...;Ck
1A

ϕk1−1; ...;Ck
ηk ; ...;C

k
ηkA

ϕk
ηk
−1
}
, (22)

such that

(
k−1
∪
i=1
I i ∪ J i

)
∪ Ik is a basis of

(
k−1
∪
i=1

Φi ∪Υi

)
∪ Φk. So, the

relation

rank

((
k−1
∪
i=1

Φi ∪Υi

)
∪ Φk

)
=

k−1∑
i=1

(
ϕi + ρi

)
+ ϕk (23)

is verified with ϕk = ϕk1 + . . .+ ϕkηk .

c. Define

Γk =



Γ1

...
Γk−1

Ck
ηk+1

Aρ
k
1−1

...

Ck
pk
A
ρk
pk−ηk

−1


(24)

and denote by γk the rank of Γk. By analogy with c) in all the previous
steps, it is defined the co-vector space ;

Υk = span
{
Ckηk+1; ..., C

k
ηk+1A

ρk1−1;

...;Ckpk ; ...;CkpkA
ρk
pk−ηk

−1
}

(25)
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and
Jk = {Ckηk+1; ...;C

k
ηk+1A

δk1−1; ...;Ckpk ; ...;CkpkA
δk
pk−ηk

−1} (26)

such that {I1; J1; I2; J2; ..; IK ; Jk} is a basis of Φ1 ⊕ Υ1 ⊕ Φ2 ⊕ Υ2 ⊕
...⊕ Φk ⊕Υk and δk is the rank of Jk (i.e δk = δk1 + ...+ δk

pk−ηk).

If ϕ1 + δ1 + ϕ2 + δ2 + ... + ϕk + δk = n the system is uniformly
observable with respect to Wx.

d. If ϕ1 +δ1 +ϕ2 +δ2 + ...+ϕk+δk < n the algorithm continues and a

matrix Λk ∈ IR p3×((p1−η1)+(pk−ηk)) is defined, where pk+1 =
(
pk − ηk

)
−

γk, such that
ΛkΓk = 0 (27)

where Λk is composed of pk independent co-vectors, which has at least
one of this last term > ηk non null, (or equivalently the rank of Λk

is equal to pk). Then a new auxiliary variable (dummy output) is
introduced

Y k+1 = Λk



Cη1+1A
ρ11

...

Cp1A
ρ1
p1−η1

...

Ck
ηk+1

Aρ
k
1

...

Ck
pk
A
ρk
pk−ηk


X := Ck+1X. (28)

if rank{I1, J1.., Ik, Ck+1A} = rank{I1, J1.., Ik}, the system (1) is
not uniformly observable with respect to Wx.
else go to step k + 1

It is important to note that, as at d) for each step, the dummy output must
add at least one new direction, then the algorithm stops before step n−
p+1. Moreover, in the algorithm pl can be equal to zero. In this case no new
dummy output is generated and consequently rank{I1, J1, ..., I l, C l+1A} =
rank{I1, J1, ..., I l} and the algorithm concludes that the system is not uni-
formly observable with respect to Wx.
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4 Structural form for left-invertibility with

respect to W

In this section, a structural form is given in order to define the left-invertibility
problem with respect to W as a “classical” optimization problem.
From the previous algorithm, first of all we reorder the bases {I1; J1; ...; Ik; JK}
as follows {I1; ..., Ik, J1; ...; JK} where Jk is empty if the algorithm stops in
b) of step k. After that, it is possible to introduce the following change of
coordinates Z = TX:

T =



C1
...

C1A
ϕ1−2

...
Cηt

...
CηtA

ϕηt−2

Cηt+1
...

Cηt+1A
δηt+1−2

...
Cp′

...

Cp′A
δp′−2

C1A
ϕ1−1

...
CηtA

ϕηt−1

Cηt+1A
δηt+1−1

...

Cp′A
δp′−1



(29)

with ηt =
∑k

i=1 ηi and p′ = ηt +Carδ where Carδ is the cardinality of all δji .
Considering that the zi,j come directly from the sensors and, hence, are
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affected by the unknown inputs Wy, the change of coordinate yelds:

ż1,1
...

żϕ1−1,1
...

ż1,ηt
...

żϕηt−1, ηt
ż1,ηt+1

...
żδηt+1−1,ηt+1

...
ż1,p′

...
żδp′−1,p

′



=



z2,1 + C1BU
...

zϕ1,1 + C1A
ϕ1−2BU

...
z2,ηt + CηtBU

...
zϕt,ηt + CηtA

ϕt−2BU
z2,ηt+1 + Cηt+1BU

...
zδηt+1,ηt+1 + Cηt+1A

δηt+1−2BU
...

z2,p′ + Cp′BU
...

zδp′ ,p′ + CpA
δp′−2BU



(30)



żϕ1,1

...
żϕηt ,ηt

żδηt+1,ηt+1

...
żδp′ ,p′


=



C1A
ϕ1−1(AT−1Z +BU)

...
CηtA

ϕηt−1(AT−1Z +BU)
Cη+1A

δη+1−1(AT−1Z +BU)
...

Cp′A
δp′−1(AT−1Z +BU)


+ ΓW (31)

where Γ is equal to:

Γ =

(
−Γ1,1 0
−Γ2,1 Γ2,2

)
with

Γ1,1 =

 C1A
ϕ1D2,ex

...
CηtA

ϕηtD2,ex



Γ2,1 =

 Cηt+1A
δηt+1D2,ex

...
Cp′A

δp′D2,ex


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Γ2,2 =

 Cηt+1A
δηt+1D1

...
Cp′A

δp′D1


and D2,ex ∈ Rn×qy is defined as follows:

D2,ex :=


D2

0
...
0

 (32)

Then, equation (31) gives
Ȳ = ΓW (33)

where Ȳ is composed of the estimated state, the derivative of the state and
the known input

Ȳ =



żϕ1,1
...

żϕηt ,ηt
żδηt+1,ηt+1

...
żδp′ ,p′


−



C1A
ϕ1−1(AT−1Z +BU)

...
CηtA

ϕηt−1(AT−1Z +BU)
Cη+1A

δη+1−1(AT−1Z +BU)
...

Cp′A
δp′−1(AT−1Z +BU)


(34)

Ȳ is available for example from sliding mode observer [22, 19]. Now, from
(33), it is possible to determine if Γ verifies the RIP condition (defines in the
next section), for the prefixed s-sparsity.

5 Exact recovery for dynamical system

The objective of this method is to reconstruct the most parsimonious solution
of the huge unknown input vector W (t) from the small measurements vector
Ȳ and the matrix Γ. This leads to the following optimization problem:

min
W∈Rq

‖W‖0, under the constraint Ȳ = ΓW, (35)

where ‖W‖0 is a pseudo-norm and corresponds to the number of non-zero
values of W .

14



The problem in (35) can be rewritten as follows

min
W∈Rq

{1

2
‖Ȳ − ΓW‖22 + λ‖W‖0}. (36)

where λ is a balancing parameter (see, for example, [7]):
In order to solve this problem a preliminary assumptions is made:

Assumption 4 Ȳ ∈ Rp′ verifies:

2s+ 1 ≤ p′. (37)

Nevertheless, the optimization problem using the pseudo-norm zero in
(36) remains a very difficult one and it is considered as an N.P-complete
problem. However, from the seminal works [8, 6, 25, 10] if the matrix Γ
satisfies the following property, the so-called Restricted Isometry Property
(RIP), problem (36) can be transformed into an equivalent one where the
pseudo-norm ‖.‖0 is replaced by the norm ‖.‖1.

A matrix Γ is said to satisfy the s-order RIP condition, if for any s-sparse
signal W , the following condition is verified:

(1− δs)‖W‖22 ≤ ‖ΓW‖22 ≤ (1 + δs)‖W‖22, (38)

where δs ∈ (0, 1) is a constant parameter. This property will be called the
s-order RIP condition.

There exist some conditions in order to check if a matrix Γ satisfies the
RIP condition [8, 27], but this is out of the scope of this paper. If Γ of
relation (33) does not verify the RIP condition, it is possible to reduce the
number s or/and to cluster some unknown inputs (see for example [28] ),
but this is also out of the scope of the paper. Consequently, the following
assumption is made:

Assumption 5 The matrix Γ satisfies the s-sparse RIP.

[7] gives

Proposition 5.1 Under Assumption 5, the parsimony problem (36) becomes:

min
W∈Rq

{1

2
‖Ȳ − ΓW‖22 + λ‖W‖1}, (39)

and its solution exists and is unique.
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From this proposition it is possible to conclude as follow:

Theorem 5.1 The system (8) is s-parse left invertible with respect to W if
the system is informally observable with respect to Wx (algorithm 1) and the
assumption 5 is verified.

From this Theorem, it is possible to use a continuous optimisation algo-
rithm in order to obtain W in real time. Hereafter, in order to solve (39),
the following dynamical algorithm, based on sliding mode techniques [24],
proposed by [29] (see also [1] for exponential convergence instead of finite
time convergence) is used:{

τ u̇ = −du+ (ΓTΓ− Id)Ŵ − ΓT Ȳ cα
Ŵ = ϕλ(u(t)),

, (40)

where d.cα = |.|αsign(.), u(t) ∈ Rq is the internal state vector, ϕλ(u(t)) =
max(|u|−λ, 0)sign(u) is the continuous soft thresholding function, λ ∈ Rq is
a vector of constant positive parameters that has to be suitably chosen based
on the noise and the minimum possible absolute values of the disturbances,
the vector Ŵ represents the estimation of the sparse signal W , τ is a (q× q)
diagonal matrix with constant parameters, τi, with i ∈ {1, ..., q}, determined
by the physical properties of the implementing system, Id is the (q × q)
identity matrix and 0 ≤ α ≤ 1 represents the exponential coefficient.

In many recent applications this algorithm was successfully applied for
diagnostics [9], Cyber attacks [21], and in signal processing [28].

6 An academic example

Let us consider the following academic system:

ẋ1 = −x1 +B1,1u1

ẋ2 = x3 +Wx,1 + 0.5Wx,2 +Wx,3 −Wx,4

ẋ3 = −x2 +B3,2u2 +Wx,1 +Wx,2 + 0.5Wx,3 +Wx,4

ẋ4 = x5 (41)

ẋ5 = −3x4 + x5 +B5,3u3 +Wx,1

+ 1.5Wx,2 + 0.75Wx,3 + 0.5Wx,4

16



with outputs (sensors)

y1 = x1 +Wy,1

y2 = x2 +Wy,2

y3 = x3 +Wy,3 (42)

y4 = x4 +Wy,4

where the Wx,i for i ∈ {1, .., 4} are the unknown inputs affecting the state
dynamics, and the Wy,i for i ∈ {1, .., 4} are constant (or slowly varying or
piece-wise constant).
The step 1 of the algorithm I section 3 gives:

I1 = {(1, 0, 0, 0, 0)}

J1 =


(0 1 0 0 0)
(0 0 1 0 0)
(0 0 0 1 0)
(0 0 0 0 1)

 (43)

This implies that ϕ1+δ1 = 5 = n, then the system (41) is uniform observable
with respect to Wx. Consequently, it is possible to obtain the equation (33),
with

Ȳ =


ẏ1 + y1 −B1,1u1

ẏ2 − y3
ẏ3 + y2 −B3,2u2

ÿ4 − ẏ4 + 3y4 −B5, 3u3

 (44)

and

Γ =


1 0 0 0 0 0 0 0
0 0 −1 0 1 0.5 1 −1
0 1 0 0 1 1 0.5 1
0 0 0 3 1 1.5 0.75 0.5

 (45)

The specificity of this matrix shows that the unknown input Wy,1 can be
estimate independently from the other ones and consequently the first row of
Γ can be studied separately. So the RIP of Γ for s = 1 (i.e. W is one sparse)
is reduced to the sparsity of Γr

Γr =

 0 −1 0 1 0.5 1 −1
1 0 0 1 1 0.5 1
0 0 3 1 1.5 0.75 0.5

 (46)
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and Γr verifies the RIP for s = 1, so from (40), it is possible to estimate the
vector (Wy,2;Wy,3;Wy,4;Wx,1;Wx,2;Wx,3;Wx,4) if it is one sparse. Moreover,
Wy,1 is given by:

Wy,1 = ẏ1 + y1 −B1,1u1

7 conclusion

In this paper, we have presented an algorithm that allows to determine
whether a rectangular linear dynamical system with more unknown inputs
than outputs is potentially left-invertible under the assumption that the un-
known inputs are s-sparse. To achieve this, it is shown that it is necessary to
determine if the matrix Γ, given by the algorithm, satisfies the well-known
RIP condition. A direct extension of this paper is to consider the nonlinear
case.
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