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Left-invertibility under sparse assumption: the linear case

This paper deals with the issue of dynamical left-invertibility for linear continuous-time dynamical systems. More precisely, we provide sufficient conditions in order to estimate unknown inputs, using known outputs, under sparse input assumptions for linear continuoustime dynamical systems that are not necessarily square. In fact, there exists an algorithm in the literature that allows verification of leftinvertibility for linear square systems; that is, systems with p known outputs and p unknown inputs. However, a similar algorithm does not exist for the rectangular case, where the number of inputs is much larger than the number of outputs. In this paper, we first use the square case algorithm as a stepping stone in order to propose a new algorithm for the rectangular case. However, it shown that even if the proposed algorithm converges successfully, it is not sufficient to estimate the unknown inputs. Consequently, it has been deemed necessary to include a sparse input assumption and to verify the wellknown Restrictive Isometric Property (RIP) conditions of a specific matrix. Finally, an academic example is given in order to highlight the feasibility of the proposed approach.

Introduction

In the context of control systems, the problem of Dynamical Left-Invertibility (DLI) refers to the estimation of unknown inputs from known outputs (measurements) for dynamical systems. In this work, we investigate the DLI problem for multi-input multi-output linear continuous-time dynamical systems whereby the number of unknown inputs is much larger than the number of outputs, with the additional property that the number of non-zero unknown inputs are s-sparse (i.e. only s unknown inputs are non-zero). One of the motivations for considering such classes of system is that some diagnosis or cyber attack detection problems can be treated as a left-invertible problem under sparse assumptions [START_REF] Candes | An introduction to compressive sampling[END_REF]. Moreover, in the context of over-actuated systems or networks, left-invertibilty under sparsity assumptions can generate a control design with a minimum of active actuators.

The main aim of this paper is to provide sufficient conditions for the estimation of the unknown inputs, under sparsity assumption on the latter. For this, we start by extending the left-invertibility algorithm presented in [START_REF] Floquet | State and unknown input estimation for linear discrete-time systems[END_REF] for square linear systems (see also for an other approach [START_REF] Estrada | Left invertibility and duality for linear systems[END_REF] and [START_REF] Barbot | An observation algorithm for nonlinear systems with unknown inputs[END_REF] for the nonlinear case) to rectangular linear systems. Prior to that, some essential definitions are introduced; namely, uniform observability, s-sparse left-invertibility and relative degree with respect to the unknown inputs to be estimated, which provide the necessary ingredients to develop the proposed algorithm. After that, from the seminal works of Tao, Candes, Donoho [START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candes | An introduction to compressive sampling[END_REF][START_REF] Donoho | Compressed sensing[END_REF] and other authors from the signal processing community (see references herein), a specific exact input recovery method is employed in order to solve the problem of left-invertibility for linear dynamical systems under sparse assumptions. Finally, some conclusions are drawn together with some scope for future works.

Notation: For any time function z(t) that is at least of class C j , ż and z denotes the first and second derivative with respect to time t and z (j) denotes the j th derivative of z with respect to t. Uppercase letters are employed to denote vectors or matrices and lowercase letters to denote scalars. For any two vectors U and V , we shall denote by (U, V ) = (U V ) and by

(U ; V ) = U V .

Preliminary discussions and problem statement

Dynamical left-invertibility (DLI) is encountered in many engineering fields and various results on this topic exist in the literature. Hereafter, we shall present the DLI problem for linear systems with more unknown inputs that outputs under sparse assumptions. We consider linear continuous-time systems of the following form:

(Σ M :) Ẋ = AX + BU + D 1 W x Y = CX + D 2 W y + N (1) 
where

X ∈ R n is the state, Y ∈ R p is the output, U ∈ R m is the known input, W x ∈ R qx
is the unknown input on the state dynamics, W y ∈ R qy is the unknown input with respect to the output, and finally N ∈ R p is the measurement noise vector.

Throughout the paper, we assume that the vector N is composed of p uncorrelated white noise, q := q x + q y >> p. Moreover, the following assumptions are made:

Assumption 1 Rank{C} = p and without loss of generality Y is considered to be equal to (x 1 ; x 2 ; ...; x p ).

Assumption 2

The unknown input vector W y with respect to the output is assumed to be constant or at least slowly varying i.e. W (j) qy 0 for all j ∈ {1, ..., n -1}.

Assumption 3 W = (W x ; W y ) is an s-sparse vector (i.e. s is the maximum number of non-zero component of W ) Now, it is necessary to make some definitions with respect to observability and left-invertibility. Definition 2.1 The system (1) is said to be uniformly observable with respect to W x , if it is possible to obtain x(t) with any desired convergence time from the knowledge of its input U and its output Y at any positive time when W y = 0. Definition 2. [START_REF] Barbot | An observation algorithm for nonlinear systems with unknown inputs[END_REF] The system (1) is said to be s-sparse left-invertible with respect to W x , if it is possible to obtain x(t) and W x with any desired convergence time from the knowledge of its input U and its output Y at any positive time when W y = 0. And finally, Definition 2. [START_REF] Bijalwan | Machine learning approach for text and document mining[END_REF] The system (1) is said to be s-sparse left-invertible with respect to W , if it s-sparse left-invertible with respect to W x and for W y = 0 it is possible, to obtain W with any desired convergence time.

From the previous definitions, it is obvious that the s-sparse left-invertibility with respect to W implies s-sparse left-invertibility with respect to W x . Similarly, left-invertibility with respect to W x implies the uniform observability with respect to W x and, finally, uniform observability with respect to W x implies the classical observability. Now, it is necessary to introduce and adapt some computational tools in the context of dynamical left-invertibility based on the above definitions. Definition 2.4 The relative degree of y i , i ∈ {1, ..., p} with respect to W x for the system (Σ M ) (1) is the smallest integer ρ i > 0 such that ∃j ∈ {1, ..., q x } such that

C i A ρ i -1 D 1 j = 0.
It is obvious that, from the previous definition, it is possible to define the following matrix:

Γ qx =      C 1 A ρ 1 -1 D 1 1 C 1 A ρ 1 -1 D 1 2 ... C 1 A ρ 1 -1 D 1 qx C 2 A ρ 2 -1 D 1 1 C 2 A ρ 2 -1 D 1 2 ... C 2 A ρ 2 -1 D 1 qx . . . . . . . . . . . . C p A ρp-1 D 1 1 C p A ρp-1 D 1 2 ... C p A ρp-1 D 1 qx      (2) 
The following preliminary proposition provides an aid for the adaptation of the left-invertibility algorithm presented in [START_REF] Floquet | State and unknown input estimation for linear discrete-time systems[END_REF] to the above rectangular case.

Proposition 2.1 The system (1) is uniformly observable with respect to W x , if ρ := p i=1 ρ i = n and rank of Γ qx is equal to p.

Proof : As ρ := p i=1 ρ i = n the above state transformation matrix T is composed of the following n independent co-vectors :

T =                 C 1 C 1 A . . . C 1 A ρ 1 -1 . . . C p C p A . . . C p A ρp-1                 (3) 
As a result, the system in the Z := T X coordinates becomes:

                                    ż1,1 . . . żρ 1 -1,1 żρ 1 ,1      =      z 2,1 + C 1 BU . . . z ρ 1 ,1 + C 1 A ρ 1 -2 BU C 1 A ρ 1 -1 (AT -1 Z + Bu + DW x )      • • • • • • • • •      ż1,p . . . żρp-1,p żρp,p      =      z 2,p + C p BU . . . z ρp,p + C p A ρp-2 BU C p A ρp-1 (AT -1 Z + Bu + D 2 W x )      (4)
which may be rewritten as follows:

             ż1,1 . . . żρ 1 -1,1 . . . ż1,p . . . żρp-1,1                 żρ 1 ,1 . . . żρp,p    =              z 2,1 + C 1 BU . . . z ρ 1 ,1 + C 1 A ρ 1 -2 BU . . . z 2,p + C p BU . . . z ρp,p + C p A ρp-2 BU                 C 1 A ρ 1 -1 (AT -1 Z + BU ) . . . C p A ρp-1 (AT -1 Z + BU )    + Γ qx W x ( 5 
)
As U is known and W x is bounded it is possible to design an observer (for example sliding mode [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF][START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF][START_REF] Fridman | Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems[END_REF] or a high gain [START_REF] Bijalwan | Machine learning approach for text and document mining[END_REF][START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF]) in order to estimate, the state Z.

The result of Proposition 2.1 is a particular case, in fact some output dynamics can be independent of the unknown input W x and some states cannot be estimated directly. The next algorithm considers all these cases.

Uniform observability with respect to W x

In this section, a modified version of the algorithm introduced in [START_REF] Floquet | State and unknown input estimation for linear discrete-time systems[END_REF] is proposed to determine whether or not the system (1) is uniformly observable with respect to W x .

Algorithm I

Step 1: Consider the output vector y 1 = y = CX, and p 1 = p. a. Without loss of generality, one can reorder the components of y 1 as follows

y 1 = C T 1 ; • • • ; C T η 1 ; C T η 1 +1 ; • • • ; C T p 1 T X (6) 
so that for 1 ≤ j ≤ η 1 :

C j A k D 1 = 0, for all k ∈ N (7) 
and for 1 ≤ j ≤ p 1 -η 1 , there exists an integer ρ 1 j (i.e. the relative degree associated to the j th output; see Definition 2.4) such that:

C η 1 +j A k D 1 = 0, ∀k < ρ 1 j -1 C η 1 +j A ρ 1 j -1 D 1 = 0, ∀k < ρ 1 j -1 (8) 
Note that the outputs y 1 j = C j X, j ≤ η 1 , are not affected by the unknown inputs.

b. Compute the set of covectors

Φ 1 = span C 1 ; ...; C 1 A n-1 ; ...; C η 1 ; ...; C η 1 A n-1 (9)
and denote the dimension of Φ 1 by ϕ 1 . Define the integers ϕ 1 j , 1 ≤ j ≤ η 1 such that

I 1 = C 1 ; ...; C 1 A ϕ 1 1 -1 ...; C η 1 ; ...; C η 1 A ϕ 1 η 1 -1 (10) 
is a basis of Φ 1 . A direct consequence of the previous definition is that

ϕ 1 = ϕ 1 1 + . . . + ϕ 1 η 1 .
Note that the choice of the ϕ j i is not unique [START_REF] Krener | Nonlinear observer with linearizable error dynamics[END_REF]. If ϕ 1 = n, it is possible to obtain all the state variables of system (1) using a classical observer (Luenberger [START_REF] Luenberger | Observer for multivariable systems[END_REF], Kalman and Bucy [START_REF] Kalman | New results in linear filtering and prediction theory[END_REF], ...), then the algorithm stops and the system is uniformly observable with respect to W x . Note that in this case D 1 = 0. c. If ϕ 1 < n, let us define the matrix

Γ 1 =    C η 1 +1 A ρ 1 1 -1 D 1 . . . C p A ρ 1 p-η 1 -1 D 1    (11) 
and the rank of note Γ 1 is denoted by γ 1 . Compute the covectors space

Υ 1 = span C η 1 +1 ; ...; C η 1 +1 A ρ 1 1 -1 ;
...; C p ; ...; C p A

ρ 1 p-η 1 -1 (12) 
and the dimension of the direct sum of Φ 1 with Υ 1 (i.e. dimension {Φ 1 ⊕ Υ 1 } is equal to ϕ 1 + δ 1 , where δ 1 is equal to the dimension of Υ 1 . Define the integers (δ 1 1 , ..., δ 1 p-η 1 ) such that (after a possible reordering of the C i , η 1 + 1 ≤ i ≤ p), the set {I 1 ; J 1 }, where

J 1 = C η 1 +1 ; ...; C η 1 +1 A δ 1 1 -1 ; , ...; C p ; ...; C p A δ 1 p-η 1 -1 (13) is a basis of Φ 1 ⊕ Υ 1 . From (13) δ 1 is equal to p-η 1 l=1 δ 1 l . If ϕ 1 + δ 1 =
n, the system is uniformly observable with respect to W x , since the observability matching condition is satisfied and it is possible to estimate all the state variables using, for example, high gain observer [START_REF] Praly | Highâgain observers in nonlinear feedback control[END_REF][START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF] or sliding mode observer [START_REF] Xiong | Sliding mode observer for nonlinear uncertain systems[END_REF][START_REF] Shtessel | Sliding Mode Control and Observation[END_REF].

d. If ϕ 1 + d 1 < n, the algorithm continues. Then, define the matrix Λ 1 ∈ IR p 2 ×(p-η 1 ) of rank p 2 , where

p 2 = p 1 -η 1 -γ 1 , such that Λ 1 Γ 1 = 0 p 2 ×(p 1 -η 1 ) (14) 
Define also the auxiliary variable (dummy output)

y 2 = Λ 1    C η 1 +1 A ρ 1 1 . . . C p A ρ 1 p-η 1    x := C 2 x, C 2 :=    C 2 1 . . . C 2 p 2   
and compute the rank of {I 1 ; J 1 ; C 2 A} if this rank is equal to the Rank of {I 1 ; J 1 }, this means that their are not new direction generated by the dummy output then if rank{I 1 ; J 1 ; C 2 A} = rank{I 1 ; J 1 } the system (1) is not uniformly observable with respect to W x else go to step 2.

Step 2: Bearing in mind that the covector space Φ 1 and Υ 1 generated by C and A, the procedure employed for y 1 is now applied to y 2 ∈ IR p 2 .

a. After possible reordering of the components of y 2 , by analogy with Step 1.a), one can define the integers η 2 and ρ 2 j , 1 ≤ j ≤ p 2 -η 2 so that the η 2 first components of y 2 are not influenced by the unknown inputs and the p 2 -η 2 components of y 2 have relative degree equal to ρ 2 j .

b. The covector space Φ 2 is defined as follows:

Φ 2 = span C 2 1 ; ...; C 2 1 A n-1 ; C 2 2 ; ; ...; C 2 η 2 A n-1 . ( 15 
)
Similarly to b) of step 1,

ϕ 2 is defined such that dim (Φ 1 ⊕ Υ 1 ⊕ Φ 2 ) = ϕ 1 + δ 1 + ϕ 2 .
Then, define the integers ϕ 2 j , 1 ≤ j ≤ η 2 and the related set I 2 such that the set

{I 1 ; J 1 ; I 2 } is a basis of Φ 1 ⊕ Υ 1 ⊕ Φ 2 . If ϕ 1 + δ 1 + ϕ 2 = n the system (1) is uniformly observable with respect to W x c. If ϕ 1 + δ 1 + ϕ 2 < n, then define the matrix Γ 2 =      Γ 1 C 2 η 2 +1 A ρ 2 1 -1 D 1 . . . C 2 p 2 A ρ 2 p 2 -η 2 -1 D 1      (16) 
and denote γ 2 = rank Γ 2 . By analogy with the c) of step 1, it is defined the covector space

Υ 2 = span{C 2 η 2 +1 ; ...; C 2 η 2 +1 A ρ 2 1 -1 ; ...; C 2 p 2 ; ...; C 2 p 2 A ρ 2 p 2 -η 2 -1 } (17) 
and 1) is uniformly observable with respect to W x . d. If ϕ 1 + δ 1 + ϕ 2 + δ 2 < n the algorithm continues and the matrix Λ 2 ∈ IR p 3 ×((p 1 -η 1 )+(p 2 -η 2 )) is defined, where

J 2 = {C 2 η 2 +1 ; ...; C 2 η 2 +1 A δ 2 1 ; ...; C 2 p 2 ; ...; C 2 p 2 A δ 2 p 2 -η 2 } (18) such that {I 1 ; J 1 ; I 2 ; J 2 } is a basis of Φ 1 ⊕ Υ 1 ⊕ Φ 2 ⊕ Υ 2 and δ 2 is the rank of J 2 (i.e. δ 2 = δ 2 1 + ... + δ 2 p 2 -η 2 ). If ϕ 1 + d 1 + ϕ 2 + d 2 = n the system (
p 3 = (p 2 -η 2 ) -γ 2 , such that Λ 2 Γ 2 = 0 ( 19 
)
where Λ 2 is composed of p 3 independent co-vectors. Then a new auxiliary variable (dummy output) is introduced

Y 3 = Λ 2            C η 1 +1 A ρ 1 1 . . . C p 1 A ρ 1 p 1 -η 1 C 2 η 2 +1 A ρ 2 1 . . . C 2 p 2 A ρ 2 p 2 -η 2            X := C 3 X. ( 20 
)
If rank{I 1 , J 1 , I 2 , C 3 A} = rank{I 1 , J 1 , I 2 }, the system (1) is not uniformly observable with respect to W x , else the algorithm continues and go to step 3.

Repeating the above procedure, one has:

Step k: The fictitious output y k ∈ IR p k , that has been defined in Step k -1, is considered.

a. Determine integers η k and ρ k j 1 ≤ j ≤ p k -η k . b. Compute the co-vectors space Φ k = span C k 1 ; ...; C k 1 A n , C k 2 ; ...; C k 2 A n ; ...; C k η k ; ...; C k η k A n (21) 
and define I k as the following set of co-vectors

I k = C k 1 ; ...; C k 1 A ϕ k 1 -1 ; ...; C k η k ; ...; C k η k A ϕ k η k -1 , (22) 
such that

k-1 ∪ i=1 I i ∪ J i ∪ I k is a basis of k-1 ∪ i=1 Φ i ∪ Υ i ∪ Φ k . So, the relation rank k-1 ∪ i=1 Φ i ∪ Υ i ∪ Φ k = k-1 i=1 ϕ i + ρ i + ϕ k ( 23 
)
is verified with

ϕ k = ϕ k 1 + . . . + ϕ k η k . c. Define Γ k =           Γ 1 . . . Γ k-1 C k η k +1 A ρ k 1 -1 . . . C k p k A ρ k p k -η k -1           (24) 
and denote by γ k the rank of Γ k . By analogy with c) in all the previous steps, it is defined the co-vector space ;

Υ k = span C k η k +1 ; ..., C k η k +1 A ρ k 1 -1 ; ...; C k p k ; ...; C k p k A ρ k p k -η k -1 (25) 
and

J k = {C k η k +1 ; ...; C k η k +1 A δ k 1 -1 ; ...; C k p k ; ...; C k p k A δ k p k -η k -1 } ( 26 
)
such that {I 1 ; J 1 ; I 2 ; J 2 ; ..;

I K ; J k } is a basis of Φ 1 ⊕ Υ 1 ⊕ Φ 2 ⊕ Υ 2 ⊕ ... ⊕ Φ k ⊕ Υ k and δ k is the rank of J k (i.e δ k = δ k 1 + ... + δ k p k -η k ). If ϕ 1 + δ 1 + ϕ 2 + δ 2 + ... + ϕ k + δ k = n the system is uniformly observable with respect to W x . d. If ϕ 1 + δ 1 + ϕ 2 + δ 2 + ... + ϕ k + δ k < n the algorithm continues and a matrix Λ k ∈ IR p 3 ×((p 1 -η 1 )+(p k -η k )) is defined, where p k+1 = p k -η k - γ k , such that Λ k Γ k = 0 ( 27 
)
where Λ k is composed of p k independent co-vectors, which has at least one of this last term > η k non null, (or equivalently the rank of Λ k is equal to p k ). Then a new auxiliary variable (dummy output) is introduced

Y k+1 = Λ k               C η 1 +1 A ρ 1 1 . . . C p 1 A ρ 1 p 1 -η 1 . . . C k η k +1 A ρ k 1 . . . C k p k A ρ k p k -η k               X := C k+1 X. (28) 
if rank{I 1 , J 1 .., I k , C k+1 A} = rank{I 1 , J 1 .., I k }, the system (1) is not uniformly observable with respect to W x . else go to step k + 1

It is important to note that, as at d) for each step, the dummy output must add at least one new direction, then the algorithm stops before step np + 1. Moreover, in the algorithm p l can be equal to zero. In this case no new dummy output is generated and consequently rank{I 1 , J 1 , ..., I l , C l+1 A} = rank{I 1 , J 1 , ..., I l } and the algorithm concludes that the system is not uniformly observable with respect to W x .

4 Structural form for left-invertibility with respect to W

In this section, a structural form is given in order to define the left-invertibility problem with respect to W as a "classical" optimization problem.

From the previous algorithm, first of all we reorder the bases {I 1 ; J 1 ; ...; I k ; J K } as follows {I 1 ; ..., I k , J 1 ; ...; J K } where J k is empty if the algorithm stops in b) of step k. After that, it is possible to introduce the following change of coordinates Z = T X:

T =                                             C 1 . . . C 1 A ϕ 1 -2 . . . C ηt . . . C ηt A ϕη t -2 C ηt+1 . . . C ηt+1 A δ η t +1 -2 . . . C p . . . C p A δ p -2 C 1 A ϕ 1 -1 . . . C ηt A ϕη t -1 C ηt+1 A δ η t +1 -1 . . . C p A δ p -1
affected by the unknown inputs W y , the change of coordinate yelds:

                               ż1,1 . . . żϕ1-1,1 . . . ż1,ηt . . . żϕη t -1 , η t ż1,ηt+1 . . . żδη t +1-1,ηt+1 . . . ż1,p . . . żδ p -1 ,p                                =                                z 2,1 + C 1 BU . . . z ϕ1,1 + C 1 A ϕ1-2 BU . . . z 2,ηt + C ηt BU . . . z ϕt,ηt + C ηt A ϕt-2 BU z 2,ηt+1 + C ηt+1 BU . . . z δη t +1,ηt+1 + C ηt+1 A δη t +1-2 BU . . . z 2,p + C p BU . . . z δ p ,p + C p A δ p -2 BU                                (30)           żϕ1,1 . . . żϕη t ,ηt żδη t +1,ηt+1 . . . żδ p ,p           =           C 1 A ϕ1-1 (AT -1 Z + BU ) . . . C ηt A ϕη t -1 (AT -1 Z + BU ) C η+1 A δη+1-1 (AT -1 Z + BU ) . . . C p A δ p -1 (AT -1 Z + BU )           + ΓW ( 31 
)
where Γ is equal to:

Γ = -Γ 1,1 0 -Γ 2,1 Γ 2,2 with Γ 1,1 =    C 1 A ϕ 1 D 2,ex . . . C ηt A ϕη t D 2,ex    Γ 2,1 =    C ηt+1 A δ η t +1 D 2,ex . . . C p A δ p D 2,ex    Γ 2,2 =    C ηt+1 A δ η t +1 D 1 . . . C p A δ p D 1   
and D 2,ex ∈ R n×qy is defined as follows:

D 2,ex :=      D 2 0 . . . 0      (32) 
Then, equation (31

) gives Ȳ = ΓW ( 33 
)
where Ȳ is composed of the estimated state, the derivative of the state and the known input

Ȳ =           żϕ 1 ,1 . . . żϕη t ,ηt żδη t +1,ηt+1 . . . żδ p ,p           -           C 1 A ϕ 1 -1 (AT -1 Z + BU ) . . . C ηt A ϕη t -1 (AT -1 Z + BU ) C η+1 A δ η+1 -1 (AT -1 Z + BU ) . . . C p A δ p -1 (AT -1 Z + BU )           (34) 
Ȳ is available for example from sliding mode observer [START_REF] Perruquetti | Finite time observers: application to secure communication[END_REF][START_REF] Levant | Finite differences in homogeneous discontinuous control[END_REF]. Now, from (33), it is possible to determine if Γ verifies the RIP condition (defines in the next section), for the prefixed s-sparsity.

Exact recovery for dynamical system

The objective of this method is to reconstruct the most parsimonious solution of the huge unknown input vector W (t) from the small measurements vector Ȳ and the matrix Γ. This leads to the following optimization problem:

min W ∈R q W 0 , under the constraint Ȳ = ΓW, (35) 
where W 0 is a pseudo-norm and corresponds to the number of non-zero values of W .

The problem in (35) can be rewritten as follows

min W ∈R q { 1 2 Ȳ -ΓW 2 2 + λ W 0 }. ( 36 
)
where λ is a balancing parameter (see, for example, [START_REF] Candes | Decoding by linear programming[END_REF]):

In order to solve this problem a preliminary assumptions is made:

Assumption 4 Ȳ ∈ R p verifies: 2s + 1 ≤ p . (37) 
Nevertheless, the optimization problem using the pseudo-norm zero in (36) remains a very difficult one and it is considered as an N.P-complete problem. However, from the seminal works [START_REF] Candes | An introduction to compressive sampling[END_REF][START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Wakin | On the observability of linear systems from ramdon, compressive mesurements[END_REF][START_REF] Donoho | Compressed sensing[END_REF] if the matrix Γ satisfies the following property, the so-called Restricted Isometry Property (RIP), problem (36) can be transformed into an equivalent one where the pseudo-norm . 0 is replaced by the norm . 1 .

A matrix Γ is said to satisfy the s-order RIP condition, if for any s-sparse signal W , the following condition is verified:

(1 -δ s ) W 2 2 ≤ ΓW 2 2 ≤ (1 + δ s ) W 2 2 , (38) 
where δ s ∈ (0, 1) is a constant parameter. This property will be called the s-order RIP condition.

There exist some conditions in order to check if a matrix Γ satisfies the RIP condition [START_REF] Candes | An introduction to compressive sampling[END_REF][START_REF] Yu | Compressive sensing with chaotic sequence[END_REF], but this is out of the scope of this paper. If Γ of relation (33) does not verify the RIP condition, it is possible to reduce the number s or/and to cluster some unknown inputs (see for example [START_REF] Yu | Bayesian compressive sensing for cluster structured sparse signals[END_REF] ), but this is also out of the scope of the paper. Consequently, the following assumption is made: Assumption 5 The matrix Γ satisfies the s-sparse RIP.

[7] gives Proposition 5.1 Under Assumption 5, the parsimony problem (36) becomes:

min W ∈R q { 1 2 Ȳ -ΓW 2 2 + λ W 1 }, (39) 
and its solution exists and is unique.

with outputs (sensors)

y 1 = x 1 + W y,1 y 2 = x 2 + W y,2 y 3 = x 3 + W y,3 (42) 
y 4 = x 4 + W y,4
where the W x,i for i ∈ {1, .., 4} are the unknown inputs affecting the state dynamics, and the W y,i for i ∈ {1, .., 4} are constant (or slowly varying or piece-wise constant). The step 1 of the algorithm I section 3 gives:

I 1 = {(1, 0, 0, 0, 0)} J 1 =       
(0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1)

       (43) 
This implies that ϕ 1 +δ 1 = 5 = n, then the system (41) is uniform observable with respect to W x . Consequently, it is possible to obtain the equation ( 33 The specificity of this matrix shows that the unknown input W y,1 can be estimate independently from the other ones and consequently the first row of Γ can be studied separately. So the RIP of Γ for s = 1 (i.e. W is one sparse) is reduced to the sparsity of Γ r and Γ r verifies the RIP for s = 1, so from (40), it is possible to estimate the vector (W y,2 ; W y,3 ; W y,4 ; W x,1 ; W x,2 ; W x,3 ; W x,4 ) if it is one sparse. Moreover, W y,1 is given by: W y,1 = ẏ1 + y 1 -B 1,1 u 1

conclusion

In this paper, we have presented an algorithm that allows to determine whether a rectangular linear dynamical system with more unknown inputs than outputs is potentially left-invertible under the assumption that the unknown inputs are s-sparse. To achieve this, it is shown that it is necessary to determine if the matrix Γ, given by the algorithm, satisfies the well-known RIP condition. A direct extension of this paper is to consider the nonlinear case.

y 1 -

 1 B 1,1 u 1 ẏ2 -y 3 ẏ3 + y 2 -B 3,2 u 2 ÿ4 -ẏ4 + 3y 4 -B5, 3u 3

From this proposition it is possible to conclude as follow:

Theorem 5. [START_REF] Balavoine | Convergence and rateanalysis of neural networks for sparse approximation[END_REF] The system (8) is s-parse left invertible with respect to W if the system is informally observable with respect to W x (algorithm 1) and the assumption 5 is verified.

From this Theorem, it is possible to use a continuous optimisation algorithm in order to obtain W in real time. Hereafter, in order to solve (39), the following dynamical algorithm, based on sliding mode techniques [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF], proposed by [START_REF] Yu | Dynamical sparse recovery with finite-time convergence[END_REF] (see also [START_REF] Balavoine | Convergence and rateanalysis of neural networks for sparse approximation[END_REF] for exponential convergence instead of finite time convergence) is used:

where . α = |.| α sign(.), u(t) ∈ R q is the internal state vector, ϕ λ (u(t)) = max(|u| -λ, 0)sign(u) is the continuous soft thresholding function, λ ∈ R q is a vector of constant positive parameters that has to be suitably chosen based on the noise and the minimum possible absolute values of the disturbances, the vector Ŵ represents the estimation of the sparse signal W , τ is a (q × q) diagonal matrix with constant parameters, τ i , with i ∈ {1, ..., q}, determined by the physical properties of the implementing system, I d is the (q × q) identity matrix and 0 ≤ α ≤ 1 represents the exponential coefficient. In many recent applications this algorithm was successfully applied for diagnostics [START_REF] Derbel | Detection of gear faults via a dynamical sparse recovery method[END_REF], Cyber attacks [START_REF] Nateghi | Cyber attack reconstruction of nonlinear systems via higher-order sliding-mode observer and sparse recovery algorithm[END_REF], and in signal processing [START_REF] Yu | Bayesian compressive sensing for cluster structured sparse signals[END_REF].

An academic example

Let us consider the following academic system: