
HAL Id: hal-03280816
https://hal.science/hal-03280816

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of security and safety threats related to the
control of a SDN architecture

Loïc Desgeorges, Jean-Philippe Georges, Thierry Divoux

To cite this version:
Loïc Desgeorges, Jean-Philippe Georges, Thierry Divoux. Detection of security and safety threats
related to the control of a SDN architecture. 4th IFAC Conference on Embedded Systems, Computa-
tional Intelligence and Telematics in Control, CESCIT 2021, Jul 2021, Valenciennes (virtuel), France.
�hal-03280816�

https://hal.science/hal-03280816
https://hal.archives-ouvertes.fr


Detection of Security and Safety Threats
related to the Control of a SDN

Architecture

Löıc Desgeorges ∗ Jean-Philippe Georges ∗ Thierry Divoux ∗

∗Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
(e-mail: firstname.name@ univ-lorraine.fr).

Abstract: Software Defined Networking is a concept within the networking field which proposed
a centralized control considering the control and data planes. To overcome the safety and security
threats, solutions might be divided into two categories: enforcing the controller to make it more
robust or the architecture using a multi-controller approach. This work aims to pave the way for
a multi-controller architecture without East-West interface to avoid the spreading of an attack.
There is one nominal controller in charge of the control while the second observes the traffic
at the Southbound interface to detect anomalies of control. A detection method is introduced
theoretically and relies on Intrusion Detection System theory, more precisely the specification-
based. Here, the specification is a template determined through a projection function of the
control logic. The template is compared to the activity of the command observed such that any
deviation generates an alarm. The method is finally explained in use cases.

Keywords: Software-Defined Networking, Safety, Security, Multi-Controllers, Observability

1. INTRODUCTION

Software-Defined Networking (SDN), McKeown (2009),
has been introduced to provide a structured software envi-
ronment to deal with various application requirements and
dynamic networks, see Kreutz et al. (2014). It provides
an architecture within the data plane is separated from
the control part in a centralized control architecture man-
ner. SDN simplifies network management and facilitates
network evolution. The centralized control has two main
issues: scalability and robustness. To overcome it, a vari-
ant of this architecture has been proposed: a distributed
control. A multi-controller architecture permits to balance
the load between the controllers while it provides an active
redundancy, see Li et al. (2017). On top of that, it has
some challenges in terms of consistency, reliability, load
balancing and security as developed in Hu et al. (2018).

Indeed, each plane of the SDN architecture has its own
weakness, see Abd Elazim et al. (2018). The controller
is the heart of the network and has a global view of the
network. As a consequence, a security or safety threat of
the control plane has consequences on the entire network.
Some mechanisms have been proposed in the literature to
improve the security and/or safety of the control plane.
These methods might be divided into two categories: the
one which proposes a more robust controller to the threat
considered as in Porras et al. (2012). Merely, this archi-
tecture presents a single point of failure. To consider the
safety issue, it is mandatory to consider a multi-controller
architecture as in Fonseca et al. (2012). Thus, the sec-
ond category proposes to combine several controllers. The
role of the second controller may differ according to the
method. Qi et al. (2016) proposed a decision-making secu-
rity architecture for the control layer. In this architecture,

each commands is the result of a vote between all con-
trollers. Similarly, Liu et al. (2011) proposed to set a filter
which analyses the command sent by the controller and
validates it. However, the information is collected by com-
munication between the controllers through an East-West
interface. Regarding a security point of view, this interface
is opportune to the spread of attacks. To deal with this
issue, Lam et al. (2015) proposed to introduce a Private
Key Generator to encrypt the communication between the
controllers. In the same way, Shang et al. (2018) proposed
to use an indirect way of communication named ”inter-
domain agent flow”. Additionally, they proposed a multi-
granularity approach of the security and safety challenges
of the controller. However, little attention has been paid
for the consideration of both security and safety threats.

The objective of the paper is to pave the way to a
safe and secure multi-controller architecture without East-
West interface. In this architecture, one controller is in
charge of the nominal control of the network while the
second is in charge of the detection of a safety or security
issue of the first controller and take the lead in case of
anomalies. In this work, a novel detection method relying
on a deterministic algorithm is introduced. To develop
the logic, attention has been paid to Intrusion Detection
System (IDS) theory. Compared to Giotis et al. (2014) or
Tang et al. (2016), our method is based on the estimation
of the intern variables of the nominal controller only by
observation of the activity of the command and not on the
information from the nominal controller or from traffic on
the data plane (since both might be corrupted). We con-
sidered also the combination of anomaly and specification
based approaches as in Sekar et al. (2002) which proposes
to determine a model of the system’s recurrent behavior
based on a specification and then learn some statistical



properties to detect anomaly. Similarly we defined a spec-
ification of the command, formalized as a template as in-
troduced in Pandalai and Holloway (2000) and completed
on-line based on the estimation of the controller’s interns
variables in order to verify that there are no anomaly in
the control.

2. THE DETECTION PROBLEM

The multi-controller architecture proposed is represented
in Fig. 1. Without East-West interface, the detection
method will not be based on the information we get from
the other controller but on its capture activity and some
a priori knowledge of the control logic.

Fig. 1. Architecture proposed (c0: nominal controller,
D: the detector, h1 and h2: two hosts, s1 and sn:
the switches and tf : the time of the failure or the
beginning of the attack)

2.1 Principle

To develop the detection logic, attention has been paid
to IDS. According to Liao et al. (2013), IDS works might
be divided into two approaches: focusing on the attack
behavior or on the unfaulty behavior of the system. The
first approach is named signature-based detection and
is focused on the attack signature. Thus, this approach
concerns just the detection of attacks known and expected.
The second one is composed of Anomaly and Specification-
based approaches. They differ in their knowledge base
of the system behavior but both aims to compare the
unfaulty behavior known to the running behavior. Basi-
cally, anomaly detection techniques work on determining
a model of the unfaulty behavior of the system. Regard-
ing specification-based, the behavior is determined by a
specification directly extracted from documentation.

In our approach, the specification formalism is a tem-
plate, as introduced in Pandalai and Holloway (2000),
which represents the action/reaction of the command. This
specification evolved according to intern variables of the
controller. Nevertheless, without East-West interface there
is no access to these variables. Consequently, we proposed
an observation of the controller activity to estimate its
interns variables and then set up the specification’s tem-
plate to compare it with the activity of the command as
represented in Fig. 2. Again, it is not the relevance of
control that is judged but its consistency. If the controller
is attacked before the observation has started then the
malicious behavior will be considered as the reference and
a non-malicious packet inconsistent will be declared faulty.

Fig. 2. Representation of the steps of the detection method

2.2 Formalisation

This section aims to formalize the activity of the com-
mand. OpenFlow, developed by ONF (June 2012), is the
protocol which standardized the Southbound interface’s
communication and is considered in this study.

Events in the network From a controller’s point of view,
there are two kinds of events in the network: the incoming
messages ΣIn, the requests from the switches, and the
outgoing messages ΣOut, the commands for the switches:
Σ = ΣIn ∪ ΣOut

The first set, ΣIn, corresponds to the ”Packet In” which
is the packet received by the controller:

∀pin ∈ ΣIn there is pin = (Swp, b, src, dest) with:

• Swp = (p, S) ∈ N× N: the in-port p of the switch S.
• b ∈ N: an identifier named Buffer IDentifier which is

tagged to the original packet by the switch.
• src: the MAC source address of the packet.
• dest: the MAC destination address of the packet.

The second type of events is related to the commands sent
by the controller. There are two types of commands. First,
”Packet Out” ΣPO which is single uses: the switch does
not retain the information and will have to ask again to
the controller what to do. Secondly, ”Flow Mod” ΣFMOD

which is permanent: the switch adds this command to its
flow table. Thus: ΣOut = ΣPO ∪ ΣFMOD with:

∀pout ∈ ΣPO, pout = (act, b, S):

• act ∈ Actions: the action ordered defined nextly.
• b ∈ N: the buffer ID of the packet.
• S ∈ N: the switch destination of the command.

∀fmod ∈ ΣFMOD, fmod = (act, b, S, src, dest, idle):

• act, b and S are similar to pout.
• src: the MAC source address of the packet.
• dst: the MAC destination address of the packet.
• idle ∈ R+: the storage time of the order by the switch.

Actions The set of actions, Actions, can be divided into
two sets {Forward ∪ Set}. Here, layer 2 forwarding appli-
cations will be considered so just Forward is formalised.
It corresponds to actions sent by the controller to a switch
for the forwarding of a packet above a given output port.

So, an action can be modelled as a vector within each
component is a binary value, associated with a port of the
switch, representing the transmission or not.



Actions =
({∏N

j=1 bj (bj) ∈ B
})

Bias In case of an attack or a failure, the control algo-
rithm returns a biased command. This bias may have sev-
eral origins in the architecture as explained in Mubarakali
and Alqahtani (2019). It might be a bias bPin of the
Packet In from the data plane, due to a man in the middle
attack for example, or a bias bCgn of the consign from the
application plane, due to an application eviction attack
as presented in Shin et al. (2014) or a bias bCmd of the
command from the control plane. As the method does not
focus on isolating the fault, only bCmd will be considered.
Let us formalised a biased command pout′ ∈ ΣOut as:

pout′ = pout + bCmd

With:

• pout′ ∈ ΣOut: the biased packet.
• pout ∈ ΣOut: the original packet.
• bCmd ∈ ΣOut: the bias.
• + is the operator defined as:
∀i ∈ [1, lengh(pout)] pout′[i] = pout[i] + bCmd[i]

The challenge consists therefore in detecting the additive
bias, i.e. bCmd.

3. PROJECTION AND DETECTION

3.1 Projection

We assumed that the logic (limited here to layer 2 forward-
ing applications) embedded in the controller is known. The
capabilities of the attacker is to provoke a bias specifically
on the controller. Also, the reason of the detected anomaly
is not isolated. Regarding the behavior of the controller,
whatever the request of a switch, the same number of
commands is waited from the controller and the estimation
of the computation time is not developed. Moreover, at
the starting of the observation of the control, we assume
that the controller is not processing a request. We then
introduce the projection function which aims to determine
the specification template of command algorithms such as
Bellman Ford routing, packet filtering, etc.

Causality in the algorithm An hypothesis of this work
is that the command algorithms embedded in the con-
troller are known. The action/reaction causality of the
algorithm is located in the instructions. The output of the
algorithm, which corresponds to a Packet Out, is returned
if the condition of the instruction, which corresponds to a
specific Packet In, has occurred. Consequently, we decided
to model the algorithms Algo through the instructions I.

Algo = Im and I = ΣIn ×Op× Σn
Out

An instruction istr ∈ I is defined as:

• istr = (pin, op, POUT )
• cond ∈ (ΣIn)B: a boolean equation which is verified

by a set of Packet In pin ∈ ΣIn.
• op ∈ Op: a set of operations
• POUT = ∪ni=1pouti ∈ Σn

Out: the set of output
corresponding to the commands.

Template Inspired by Pandalai and Holloway (2000), we
define a template as an object which gathers a request from

a switch and the answered command. Consider T the set
of templates and temp ∈ T defined as:

• temp = {pin,∪ni=1(pouti, [ti, t
′
i])}

• pin ∈ ΣIn: the triggered event. It might be empty in
case of spontaneous command.

• ∪ni=1(pouti, [ti, t
′
i]) ∈ (ΣOut,R2)n: the set of com-

mand, pouti, expected to answer the event pin. Each
command is expected to occur during an interval of
time [ti, t

′
i].

Indeed, a command cannot be waited indefinitely. The
function Est is introduced to return this interval of time
but is not developed in this work. Est is defined as follows:

Est : I × (ΣIn ∪ ΣOut) → R2+

(istr, Li) 7→ iti

With:

• istr ∈ I: the instruction considered.
• Li ∈ ΣIn ∪ΣOut: the line of the instruction to reach.
• iti ∈ R2+: the interval of time within the line is

reached.

Projection’s tool The projection permits to obtain the
template for an algorithm. As an algorithm is modelled
as a set of instructions, first let us introduce the function
ProjIstr as:

ProjIstr : I × (I × Σ)
R2+

→ T
(istr, Est) 7→ {pin, {(pout, Est(istr, pout))}}

With:

• istr = (pin, op, POUT ): an instruction.
• {(pout, Est(istr, pout))} ∈ (POUT × R2+)n: the set

of expected commands

Moreover, to simplify the reading we assumed that for each
instruction the same number npout of commands is waited.

ProjAlgo : Algo → T
a 7→

{
pin,∪npout

i=1 (pouti, it)
}

With:

• it = [t1, t2]: fixed interval of time
• t1 = ministr∈Algominpout∈istr[3]Est(istr, pout):

the lower bound of the intervals of time.
• t2 = maxistr∈Algomaxpout∈istr[3]Est(istr, pout):

the upper bound of the intervals of time.

For a trigger event, pin, a set of commands pouti is ex-
pected. Besides, the function ProjAlgo permits to accom-
plish the step Projection of the Fig. 2. Intended changes
of the algorithms of the nominal controller would have to
be notified to the observer through its north interface.

3.2 Detection

As mentioned and developed in the section 2, the principle
of the method is to compare the trace of the messages
send/received by the controller to the instances of the tem-
plate. The process is synthesized in Fig. 3 and developed
here after. In this work, the intern variable to estimate
will be the MAC Table MTN of the controller in case of
a routing command defined as MTN = {(S,MT )} with:

• S: the switch considered.



• MT = {(p,MAC)}: the MAC Table of the switch S
with p the port to join the MAC Address MAC.

Fig. 3. Representation of the algorithms process

The input of the algorithm is the activity of the command,
so the first step is to treat those packets by Algo. 1 which
launches the algorithm related to the observed packet. It
corresponds to the junction of Fig. 3.

Algorithm 1 Analysis

Input: Packet p, MAC Table Estimated MTN and O
1 if p ∈ ΣIn then
2 Instance(p,MTN,O)
3 else
4 Match(p,MTN,O)

In case of a Packet In, Algo. 2 is launched and the template
is instantiated. The expected commands are completed
based on the knowledge stored about the controller’s intern
variables. It corresponds to launch the instance of the
template as represented in Fig. 3. The set of the template
instantiations at a date t is noted as O(t). We make the
hypothesis that initially there are no command expected:
O(t = 0) = ∅.

Algorithm 2 Activation

Input: Packet In pin, MAC Table Estimated MTN
and O

5 i = 1 , Know = 0 , MTNCheck = MTN [1]
6 Temp[1] = pin , Temp[2][2] = it
7 while MTNCheck[1]! = pin[1][2] do
8 MTNCheck = MTN [i + 1] , i = i + 1

9 MT = MTNCheck[2]
10 for Dest ∈MT [2] do
11 if Dest = pin[3] then
12 Temp[2][1] = MT [1] , Know = 1
13 O = O ∪ Temp , Timer(Temp)

14 if Know = 0 then
15 Temp[2][1] = ∅,O = O ∪ Temp,Timer(Temp)

As soon as the template is instantiated a timer is launched
through Algo. 3 to verify that the command is in time.
Basically, it consists into waiting the last action before
removing the instance from O.

On top of that, when a command is observed, the consis-
tency of the command is checked through Algo. 4 as rep-
resented in Fig. 3. For each instance, there is a verification
that the command was the one expected by this instance.
In addition, there is a formal verification of the safety of
the path installed by the controller, which is not developed

Algorithm 3 Timer

Input: An instance Temp
16 fault = False , sleep(min(Temp[2][2]))
17 if Temp /∈ O then
18 fault = True

19 sleep(max(Temp[2][2])−min(Temp[2][2]))
20 if Temp ∈ O then
21 fault = True

22 return fault

in Algo. 4 to ease the readability. It checks that there
are no forwarding loops, no-dead node and the destination
reaching. In such a case, the instance is deleted from O.
Else, the command was not expected and assumed to be
inconsistent. Moreover, when a command is observed it
is necessary to update the estimation of the controller’s
intern variables through Algo. 5.

Algorithm 4 Consistency

Input: Packet Out pout, MAC Table Estimated
MTN and O

23 fault = True , Learn = 0
24 for Temp ∈ O do
25 if Temp[2][1] = pout then
26 fault = False , O = O \ Temp
27 else if Temp[2][1] = ∅ and pout[3] = Temp[1][1][2]

then
28 fault = False , O = O \ Temp , Learn = 1

29 if Learn = 1 then
30 Learn(MTN, pout)

31 return fault

Algorithm 5 Learn

Input: Packet Out pout and MAC Table Estimated
MTN

32 MTNCheck = MTN [1] , newLigne = 1 , i = 1
33 while MTNCheck[1]! = pout[3] do
34 MTNCheck = MTN [i + 1] , i = i + 1

35 MT = MTNCheck[2]
36 for Dest ∈MT [2] do
37 if Dest = pout[5] then
38 newLigne = 0

39 if newLigne = 1 then
40 MLnew = (pout[5], pout[1])
41 MT [2] = MT [2] ∪MLnew

In these algorithms, the MAC Table Estimated MTN has
been considered as the intern variable of the controller.
But it can be changed by other intern variables on the
condition that Algo. 5 is updated in consequences.

4. USE CASES

The aim of this section is to illustrate the method pre-
sented just above in use cases.

4.1 Scenario

The topology represented in Fig. 4 is simulated using
Mininet. An ONOS (ONF (2021)) controller is loaded with



the MAC learning forwarding application. We name MTN
the MAC Table Estimated of the controller defined as in
section 3. The algorithm is structured in two instructions :
istr1 retransmits on a particular port the packet and istr2
floods the packet:

istr1 = pin1 ∪ op1 ∪ pout1 and istr2 = pin2 ∪ op2 ∪ pout2

The computation of the time constraints is not fur-
ther discussed here for the demonstration, we fixed
Est(istri, pouti) = [0.0005, 0.02] for i = 1, 2. Let’s apply
ProjIstr:

ProjIstr(istr1, Est) = {pin1, {(pout1, [0.0005, 0.02])}}
ProjIstr(istr2, Est) = {pin2, {(pout2, [0.0005, 0.02])}}

Thus, the algorithm’s template ∀pin ∈ ΣIn∀pout ∈ ΣPO:

ProjAlgo = {pin, {(pout, [0.0005, 0.02])}}

Fig. 4. The topology of the network

The scenario applied is a ping from h1 to h2. The detection
method will be put into practice in three cases: without
anomalies, with an attack and with a failure. The frames,
captured using wireshark, of the scenario without anoma-
lies is represented in Fig. 5. To ease the readability, the
value of the instances of the template and the evolution of
O are detailed in Fig. 5. It will be the same for the case of
attack and the case of failure.

Fig. 5. Packets exchanged during a ping without anomalies

The evolution of O(t) concerning the switch 4 is detailed in
Fig. 5. Firstly, the Packet In pin2158 is observed. The main
algorithm Algo. 1 launches the instantiation through Algo.
2. The condition line 11 is not fulfilled as pin2158 has not
yet been observed, so any specific command is expected.
The Packet Out pout2170 is observed in the direction of
the switch 4. Similarly, Algo. 1 launches the verification
through Algo. 4. As an instance expects ∅ for the switch
4, the condition line 27 is fulfilled and the instance will be
deleted from O. Moreover, Algo. 5 is launched to register
the command in MTN as represented in Fig. 5.

Secondly, at the observation of requests already seen, as
pin2199 or pin2413, the template instantiation is based on
the knowledge stored previously in MTN , according to
the condition line 11 of Algo. 2. Thereafter, commands
pout2200 and pout2415 are observed and are similar to the
one learned pout2182. As a consequence, the condition line
25 of Algo. 4 is fulfilled so no anomaly is detected.

4.2 Case of an attack

Let’s consider the dynamic flow tunneling attack devel-
oped in Porras et al. (2012). To model such an attack,
a bias bCmd of a command pout ∈ ΣOut which leads to
pout′ ∈ ΣOut is introduced:

∀i ∈ [1, lengh(pout)] pout′[i] = pout[i]
pout′[1] = 10 if pout[3] = of4, pout′[1] = pout[1] else

The attack is simulated by adding on the controller an
extra code modifying commands such that all traffic which
passes through the switch 4 is in practice retransmitted
on the port 10. In this section, two pings are considered:
a first which permits the detector to learn the unfaulty
behavior of the command and a second under attack. The
corresponding frames are represented in Fig. 6.

Fig. 6. Packets exchanged during two pings. The first is
the learning phase and the second is under the attack

The aim of what follows is to show how an anomaly
is detected. First, there is the learning phase with the
observation of pin149 and pout151 as with pin152 and
pout153. Based on those exchange of packets, the estima-
tion of MTN has been completed through Algo. 5. As a
consequence, in the observation of pin327 the template is
instantiated through Algo. 2 with the expectation of the
same command as pout139. But pout329 is different of the
command contained in the instance of O. Thus, the condi-
tion line 25 of Algo. 4 is not fulfilled and a fault is declared
as shown in Fig. 6. In this example, the bias considered was
a modification of the port of transmission but any other
bias of the command which can be formalized as in section
3 would be detected similarly.

4.3 Case of a failure

The case of link failure between the switch 4 and the
controller is considered it corresponds to a command
pout ∈ ΣOut biased pout′ ∈ ΣOut as follows:

if pout[3] = of4: pout′ = ∅ and else: pout′ = pout

To set up it, the code of ONOS is modified in order to not
send the packets in direction to the switch 4. The observed
frames are represented in Fig. 7.

At the observation of pin589 from the switch 4 the template
is instantiated in Algo. 2 and in parallel a timer is launched



Fig. 7. Packets exchanged during a ping. Case of a failure.

by Algo. 3. After the waiting of 0.02 seconds a fault is
declared in Algo. 3 as represented in Fig. 7.

5. CONCLUSION

To conclude, a secure and safe detection method, of both
security and safety issue, has been proposed theoretically.
In this objective, a multi-controller architecture is pro-
posed, without East-West interface, within a controller is
in charge of the control of the network while the second
observes the activity of the command and compares it to
the template specification. This template is determined
using a projection function and corresponds to the ex-
pected behavior of the command. The detection process
consists into instantiating this template by the observation
of the controller behavior to verify the consistency of its
control which permits to detect anomalies. To pursue in
this objective, this work would have to be experimented in
the future and extended to non-deterministic algorithms
using machine learning techniques. Moreover, techniques
to take the lead, after the detection of a fault, by the
second controller will have to be developed.

ACKNOWLEDGEMENTS

This work was supported partly by the French PIA
project “Lorraine Université d’Excellence”, referenceANR-
15-IDEX-04-LUE.

REFERENCES

Abd Elazim, N.M., Sobh, M.A., and Bahaa-Eldin, A.M.
(2018). Software defined networking: attacks and coun-
termeasures. In 2018 13th International Conference on
Computer Engineering and Systems (ICCES), 555–567.
IEEE.

Fonseca, P., Bennesby, R., Mota, E., and Passito, A.
(2012). A replication component for resilient openflow-
based networking. In 2012 IEEE Network operations
and management symposium, 933–939. IEEE.

Giotis, K., Argyropoulos, C., Androulidakis, G.,
Kalogeras, D., and Maglaris, V. (2014). Combining
openflow and sflow for an effective and scalable
anomaly detection and mitigation mechanism on sdn
environments. Computer Networks, 62, 122–136.

Hu, T., Guo, Z., Yi, P., Baker, T., and Lan, J. (2018).
Multi-controller based software-defined networking: A
survey. IEEE Access, 6, 15980–15996.

Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg,
C.E., Azodolmolky, S., and Uhlig, S. (2014). Software-
defined networking: A comprehensive survey. Proceed-
ings of the IEEE, 103(1), 14–76.

Lam, J.H., Lee, S.G., Lee, H.J., and Oktian, Y.E. (2015).
Securing distributed sdn with ibc. In 2015 Seventh
International Conference on Ubiquitous and Future Net-
works, 921–925. IEEE.

Li, D., Wang, S., Zhu, K., and Xia, S. (2017). A survey of
network update in sdn. Frontiers of Computer Science,
11(1), 4–12.

Liao, H.J., Lin, C.H.R., Lin, Y.C., and Tung, K.Y. (2013).
Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1),
16–24.

Liu, X., Xue, H., Feng, X., and Dai, Y. (2011). Design
of the multi-level security network switch system which
restricts covert channel. In 2011 IEEE 3rd International
Conference on Communication Software and Networks,
233–237. IEEE.

McKeown, N. (2009). Software-defined networking. IN-
FOCOM Keynote Talk, 17, 30–32.

Mubarakali, A. and Alqahtani, A.S. (2019). A survey: Se-
curity threats and countermeasures in software defined
networking. In 2019 IEEE 2nd International Conference
on Information and Computer Technologies (ICICT),
180–185. IEEE.

ONF (2021). ONOS source:
https://opennetworking.org/onos/.

ONF (June 2012). OpenFlow specification
version 1.3.0 https://opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

Pandalai, D.N. and Holloway, L.E. (2000). Template
languages for fault monitoring of timed discrete event
processes. IEEE transactions on automatic control,
45(5), 868–882.

Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M.,
and Gu, G. (2012). A security enforcement kernel for
openflow networks. In Proceedings of the first workshop
on Hot topics in software defined networks, 121–126.

Qi, C., Wu, J., Hu, H., Cheng, G., Liu, W., Ai, J., and
Yang, C. (2016). An intensive security architecture
with multi-controller for sdn. In 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM
WKSHPS), 401–402. IEEE.

Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari,
A., Yang, H., and Zhou, S. (2002). Specification-
based anomaly detection: a new approach for detecting
network intrusions. In Proceedings of the 9th ACM
conference on Computer and communications security,
265–274.

Shang, F., Li, Y., Fu, Q., Wang, W., Feng, J., and He,
L. (2018). Distributed controllers multi-granularity
security communication mechanism for software-defined
networking. Computers & Electrical Engineering, 66,
388–406.

Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras,
P., Yegneswaran, V., Noh, J., and Kang, B.B. (2014).
Rosemary: A robust, secure, and high-performance net-
work operating system. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications
security, 78–89.

Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., and
Ghogho, M. (2016). Deep learning approach for network
intrusion detection in software defined networking. In
2016 international conference on wireless networks and
mobile communications (WINCOM), 258–263. IEEE.


