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GLOBAL-IN-TIME Lp − Lq ESTIMATES FOR SOLUTIONS OF THE
KRAMERS-FOKKER-PLANCK EQUATION

XUE PING WANG AND LU ZHU

Abstract. In this work, we prove an optimal global-in-time Lp−Lq estimate for solu-
tions to the Kramers-Fokker-Planck equation with short range potential in dimension
three. Our result shows that the decay rate as t→ +∞ is the same as the heat equa-
tion in x-variables and the divergence rate as t → 0+ is related to the sub-ellipticity
with loss of 1/3 derivatives of the Kramers-Fokker-Planck operator.

1. Introduction

The Kramers-Fokker-Planck equation is the evolution equation for the distribution
functions describing the Brownian motion of particles in an external field:

∂W

∂t
=

(
−v · ∇x +∇v · (γv −

F (x)

m
) +

γkT

m
∆v

)
W, (1.1)

where F (x) = −m∇V (x) is the external force and W = W (t;x, v) is the distribution
function of particles for x, v ∈ Rn and t > 0. In this equation, x and v represent the
position and velocity variables of particles, m the mass, k the Boltzmann constant, γ
the friction coefficient and T the temperature of the media. This equation, called the
Kramers equation in the book of H. Risken [14], was initially derived and used by H. A.
Kramers [8] to describe kinetics of chemical reaction. Later on it turned out that it had
more general applicability to different fields such as supersonic conductors, Josephson
tunneling junction and relaxation of dipoles. Equation 1.1, also often called the Fokker-
Planck equation, is in fact a special case of the more general Fokker-Planck equation
([14]) or the Kolmogorov forward equation for continuous-time diffusion processes ([7]).

After appropriate normalisation of physical constants and change of unknowns, the
KFP equation can be written into the form

∂tu(t;x, v) + Pu(t;x, v) = 0, (x, v) ∈ Rn × Rn, t > 0, (1.2)

with initial data
u(0;x, v) = u0(x, v), (1.3)

where P is the KFP operator defined by

P = −∆v +
1

4
|v|2 − n

2
+ v · ∇x −∇V (x) · ∇v. (1.4)
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In this work, V (x) is supposed to be a real-valued C1 function verifying

|V (x)|+ 〈x〉|∇V (x)| ≤ C〈x〉−ρ, x ∈ Rn, (1.5)

for some ρ ≥ −1. Here 〈x〉 = (1 + |x|2)1/2. Remark that V (x) is determined up to an
additive constant. (1.5) implies that when with ρ > 0, this constant is chosen such that

lim
|x|→∞

V (x) = 0

which can be interpreted as a normalization condition for V (x). Let m be the function
defined by

m(x, v) =
1

(2π)
n
4

e−
1
2

( v
2

2
+V (x)). (1.6)

Then M = m2 is the Maxwellian ([14]) and m verifies the stationary KFP equation

Pm = 0 in R2n
x,v. (1.7)

The large-time asymptotics of the solution to the KFP equation is mostly motivated
by mathematical analysis of trend to equilibrium in statistical physics and is studied
by many authors for confining potentials. See, for example, [3, 4, 5, 6]. In these works,
the potential V (x) is supposed to be confining so that the spectre of P is discrete. The
typical result is return to the equilibrium with exponential rate: ∃σ > 0 such that

u(t) = 〈m, u0〉m +O(e−σt), t→ +∞, (1.8)

where V (x) is assumed to be normalized by∫
Rn
e−V (x)dx = 1.

In [9], sub-exponential convergence rate is obtained for weakly confining potential. For
quickly decreasing potentials (or more precisely, for quickly decreasing |∇V (x)|), it is
shown in [12] for n = 1 and [16] for n = 3 that

u(t) =
1

(4πt)
n
2

(
〈m, u0〉m +O(t−ε)

)
, t→ +∞, (1.9)

in weighted L2-spaces with weight in x-variables.

In this work, we consider potentials V (x) satisfying (1.5) with ρ ≥ −1 and study
Lp − Lq estimates of u(t) for t > 0. Here

Lp = Lp(R2n
x,v; dxdv)

is equipped with the natural norm. For f ∈ Lp and T bounded linear operator from Lp

to Lq, we denote :

‖f‖p = ‖f‖Lp , ‖T‖p→q = ‖T‖L(Lp,Lq). (1.10)

By an abuse of notation, for a closed linear operator T in L2 with C∞0 (R2n) as a core
and for p ∈ [1,∞[, we still denote by the same letter T its minimal closed extension in
Lp (i.e., the closure in Lp of the restriction of T to C∞0 (R2n)). Similarly, the notation
e−tP : Lp → Lq means that the restriction of e−tP on C∞0 extends to a map from Lp to
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Lq. Under fairly general condition, e−tP is a strongly continuous positivity preserving
contraction semigroup in Lp. Since for 1 ≤ p <∞,(

e−tP |C∞0
)
|Lp = e

−t (P |C∞0 )|Lp ,

our notation is consistent in some sense. The main result of this work is the following

Theorem 1.1. Let n = 3 and condition (1.5) be satisfied with ρ > 1. For 1 ≤ p < q ≤
∞, there exists some constant C > 0 such that

‖e−tP‖p→q ≤
C

(γ(t))
3
2p

(1− p
q

)
, t ∈]0,∞[, (1.11)

where γ(t) = σ(t)θ(t) with

σ(t) = t− 2 coth(t) + 2cosech(t), θ(t) = 4πe−t sinh(t). (1.12)

The function γ(t) appears in the explicit formula of fundamental solution for the free
KFP equation (see Section 2) and behaves like: γ(t) ∼ t as t → ∞ and γ(t) ∼ ct4 as
t → 0, c > 0. The two factors of γ(t) have different meanings. θ(t) arises from the
semigroup generated by the harmonic oscillator

H = <P = −∆v +
1

4
|v|2 − n

2

in Lp(R3
v). For σ(t), remark that

σ(t) ∼ t, as t→ +∞; σ(t) ∼ t3

6
, as t→ 0+. (1.13)

For p = 1, q =∞,

(σ(t))−
3
2 ∼ C1

t
3
2

, t→∞; (σ(t))−
3
2 ∼ C

t
9
2

, t→ 0+.

One sees that the term (σ(t))−
3
2 is of the same order as that of the heat semigroup et∆x

as map from L1(R3) to L∞(R3) as t → ∞ and of the same order as that of e−t|Dx|
2
3 as

t → 0+. This may be explained by the fact that at low energies, the KFP operator P
behaves like a Witten Laplacian ([4, 10]), while globally it is sub-elliptic in x with the
loss of 1

3
derivatives.

To prove Theorem 1.1, we first study the semigroup e−tP0 in Lp − Lq setting, where

P0 = −∆v +
1

4
|v|2 − n

2
+ v · ∇x.

Then we consider P as perturbation of P0 and use Duhamel’s formula to prove (1.11).
The short-time estimate for e−tP can be easily obtained (see Theorem 4.1) and is valid
for n ≥ 1 and ρ > −1. The proof of (1.11) for t large is based on a result of time-decay
of e−tP in weighted L2 spaces obtained in [16].

In this work, we often use an argument of duality which is based on the relation

P ∗ = JPJ (1.14)

in L2, where J is the reflection in v variable: Jf(x, v) = f(x,−v). If one has some esti-
mates for P or −tP in Lp, one can often use the duality between Lp and Lq, p−1+q−1 = 1,
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to affirm that the same statements are true for P ∗ or (e−tP )∗ in Lq. Since J preserves
any Lp norm, the same estimates hold true for P or e−tP in Lq.

The remaining part of this work is organized as follows. In Section 2, we establish
an explicit useful formula for the fundamental solution of the free KFP operator P0.
Global-in-time Lp − Lq estimates are obtained for e−tP0 in Section 3. Theorem 1.1 is
proved in Section 4.

2. Fondamental solution of the free KFP equation

In this Section, we use the method of complex deformation to calculate the funda-
mental solution of the free KFP equation. Let P0 be the free KFP operator:

P0 = v · ∇x −∆v +
1

4
|v|2 − n

2
, (x, v) ∈ R2n. (2.1)

In L2, using the partial Fourier transform in x-variables, we have for u ∈ D(P0)

P0u(x, v) = F−1
x→ξP̂0(ξ)û(ξ, v), where (2.2)

P̂0(ξ) = −∆v +
1

4

n∑
j=1

(vj + 2iξj)
2 − n

2
+ |ξ|2 (2.3)

û(ξ, v) = (Fx→ξu)(ξ, v) ,
∫
Rn
e−ix·ξu(x, v) dx. (2.4)

Denote
D(P̂0) = {f ∈ L2(R2n

ξ,v); P̂0(ξ)f ∈ L2(R2n
ξ,v)}. (2.5)

Then P̂0 , Fx→ξP0F−1
x→ξ is a direct integral of the family of complex harmonic operators

{P̂0(ξ); ξ ∈ Rn}. {P̂0(ξ), ξ ∈ Rn} is a holomorphic family of type (A) in sense of Kato

with constant domain D = D(−∆v+ v2

4
) in L2(Rn

v ). Let Fj(s) = (−1)je
s2

2
dj

dsj
e−

s2

2 , j ∈ N,
be the Hermite polynomials and

ϕj(s) = (j!
√

2π)−
1
2 e−

s2

4 Fj(s)

the normalized Hermite functions. For ξ ∈ Rn and α = (α1, α2, · · · , αn) ∈ Nn, define

ψα(v) =
n∏
j=1

ϕαj(vj) and ψξα(v) = ψα(v + 2iξ). (2.6)

Then
P̂0(ξ)ψξα = (|α|+ |ξ|2)ψξα. (2.7)

For α, β ∈ Nn, ξ → 〈ψξα, ψ
−ξ
β 〉 extends to an entire function for ξ ∈ C and is constant

on iR. Therefore 〈ψξα, ψ
−ξ
β 〉 is constant for ξ ∈ C and one has

〈ψξα, ψ
−ξ
β 〉 = δαβ =

{
1, α = β,
0, α 6= β.

, ∀α, β ∈ Nn, ξ ∈ Rn. (2.8)

e−tP0 is a contraction semigroup in L2(R2n
x,v). Its distributional kernel can be explicitly

computed, using Mehler’s formula for harmonic oscillator ([11])(see also [1]), where
this fundamental solution is calculated with different method and expressed in slightly
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different way. Recall ([2]) that for the heat kernel of n- dimensional harmonic oscillator
−∆ + x2 is given by

E(x, y; t) =
1

(2π sinh(2t))
n
2

exp

(
−coth(2t)

2
(x2 + y2) + cosech(2t)x · y

)
, t > 0.

(2.9)

Lemma 2.1. Let n ≥ 1. The distributional kernel of e−tP0 is given by

F (x, v, x′, v′; t) =
1

(4πσ(t))
n
2

exp

(
− 1

4σ(t)
|x− x′ − ω(t)(v + v′)|2

)
K(v, v′; t). (2.10)

where

K(v, v′; t) =
1

(4π sinh(t))
n
2

exp

(
nt

2
− coth(t)

4
(|v|2 + |v′|2) +

cosech(t)

2
v · v′

)
(2.11)

ω(t) = coth(t)− cosech(t)

σ(t) = t− 2 coth(t) + 2cosech(t).

Proof. Since the n-dimensional free KFP operator P0 is a direct sum of n one dimen-
sional operators, it suffices to prove the lemma for n = 1. Applying (2.9) and making
use of change of scale, we deduce that the Mehler’s formula for the heat kernel of the
one-dimensional harmonic oscillator H = − d2

dv2
+ 1

4
v2 − 1

2
is given by:

e−tHu =

∫
R
K(v, v′; t)u(v′)dv′, t > 0, u ∈ C∞0 , (2.12)

where

K(v, v′; t) =
1√

4π sinh(t)
exp

(
t

2
− coth(t)

4
(v2 + v′2) +

cosech(t)

2
vv′
)
, (2.13)

which is an entire function in v and v′ in C. Set

K̃(v, v′, ξ; t) = e−|ξ|
2tK(v + 2iξ, v′ + 2iξ; t). (2.14)

Since ψξl is an eigenfunction of P̂0(ξ) associated with the eigenvalue l + |ξ|2, one has

e−tP̂0(ξ)ψξl = e−t(l+|ξ|
2)ψξl

On the other hand, one has∫
R
K(v + 2iξ, v′; t)ψl(v

′)dv′ = e−tlψξl ,

since the both sides are entire functions in v ∈ C. Using deformation of contour and
the decay properties of K(v, v′; t), one obtains∫

R
K(v + 2iξ, v′ + 2iξ; t)ψξl (v

′)dv′ =

∫
R
K(v + 2iξ, v′; t)ψl(v

′)dv′ (2.15)

for ξ ∈ R. It follows that

e−tP̂0(ξ)ψξl =

∫
R
K̃(v, v′, ξ; t)ψξl (v

′)dv′ = e−t(l+|ξ|
2)ψξl .



6 XUE PING WANG AND LU ZHU

Since the span of {ψξl , l ∈ N} is dense is L2(Rv), one concludes that the heat kernel of

P̂0(ξ) is equal to K̃(v, v′, ξ; t) for t > 0. K̃(v, v′, ξ; t) can be written as

K̃(v, v′, ξ; t) = K(v, v′; t)ĝ(v, v′, ξ; t) (2.16)

where

ĝ(v, v′, ξ; t) = exp
(
−iω(t)(v + v′)ξ − |ξ|2σ(t)

)
(2.17)

with

ω(t) = coth(t)− cosech(t), σ(t) = t− 2 coth(t) + 2cosech (t). (2.18)

Since σ(t) > 0 for t > 0, the inverse Fourier transform of ĝ in ξ can be explicitly
calculated:

g(v, v′, x; t) =
1

2π

∫
R
eixξĝ(v, v′, ξ; t) dξ

=
1

2π

∫
R
ei(x−ω(t)(v+v′))ξe−σ(t)|ξ|2 dξ

=
1√

4πσ(t)
exp

(
− 1

4σ(t)
(x− ω(t)(v + v′))2

)
.

Therefore, the integral kernel of e−tP0 is given by

F (x, v, x′, v′; t) =
1√

4πσ(t)
exp

(
− 1

4σ(t)
(x− x′ − ω(t)(v + v′))2

)
K(v, v′; t). (2.19)

�

The fundamental solution F (x, v, x′, v′; t) for the free KFP equation has several nice
properties. For example, one has for f ∈ C∞0 (R2n),∫

(e−tP0f)(x, v)dx = (e−tHg)(v), v ∈ Rn, (2.20)

where g(v) =
∫
f(x, v)dx and H is the harmonic oscillator: H = −∆v + 1

4
v2 − n

2
.

3. Global-in-time estimates for the free KFP operator

In this section, we give some global-in-time Lp−Lq estimates for e−tP0 needed in the
proof of Theorem 1.1.

Proposition 3.1. Let n ≥ 1. For t > 0, e−tP0 defined on C∞0 (R2n) extends to an
operator bounded from L1 to L∞ and the following estimate is true for the free KFP
operator:

‖e−tP0‖1→∞ ≤
1

(4πγ(t))
n
2

(3.1)

for t > 0. Here where

γ(t) = σ(t)θ(t), θ(t) = 4πe−t sinh(t).
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Proof. Let f ∈ C∞0 (R2n). By Lemma 2.1, one has

|e−tP0f(x, v)| ≤ 1

(4πσ(t))
n
2

∫
R2n

K(v, v′; t)|f(x′, v′)|dx′dv′ (3.2)

which gives

|e−tP0f(·, v)|L∞x ≤ 1

(4πσ(t))
n
2

∫
Rn
K(v, v′; t)‖f(·, v′)‖L1

x
dv′

=
1

(4πσ(t))
n
2

(e−tHg)(v) (3.3)

where g(v′) = ‖f(·, v′)‖L1
x
, since K(v, v′, t) is the distributional kernel of e−tH . From

(2.11), it follows that

‖e−tP0f‖∞ ≤
1

(4πγ(t))
n
2

‖f‖1, f ∈ C∞0 (R2n). (3.4)

(refe3.1) is derived by an argument of density. �

Part of following results may be known. We include a proof for reason of completeness.

Corollary 3.2. (a). One has
‖e−tP0‖p→p ≤ 1 (3.5)

for 1 ≤ p ≤ ∞ and

‖e−tP0‖Lp→Lq ≤
1

(4πγ(t))
n
2p

(1− p
q

)
, t > 0, (3.6)

for 1 ≤ p ≤ q ≤ ∞.
(b). e−tP0, t ≥ 0, is a strongly continuous positivity preserving contraction semigroup

in Lp for 1 ≤ p <∞.

Proof. (a). P0 is closed and accretive in L2. Therefore e−tP0 , t ≥ 0, is a strongly
continuous contraction semigroup in L2. In particular, (3.5) is true for p = 2. We
denote by the same symbol e−tP0 the operator induced in Lp(R2n). By (2.20), one has

‖e−tP0f‖1 ≤ ‖e−tHf‖1 ≤ ‖f‖1 (3.7)

‖(e−tP0 − 1)f‖1 ≤ ‖(e−tH − 1)f‖1 (3.8)

for f ∈ L1. The first estimate implies (3.5) for p = 1. By arguments of duality and
interpolation, we obtain (3.5) for p ∈ [1,∞]. (3.6) follows from (3.1) and (3.5) by
interpolation.

(b). Since C∞0 (R2n) is a common core of P in Lp, 1 ≤ p <∞, the semigroup property
of e−tP in Lp follows from that of e−tP in L2. By Theorem X.55 in [13], e−tH is a strongly
continuous contraction semigroup in Lp(Rn

v ), 1 ≤ p < ∞. The strongly continuity of
e−tP0 in L1 follows from (3.8). The general case 1 < p < ∞ can be deduced from the
cases p = 1 and p = 2. e−tP0 is positivity preserving, because its distributional kernel
F (x, v, x′, v′; t) is positive. �

To study the full KFP operator P , we want to treat the W = −∇V (x) · ∇v as per-
turbation and need some more estimates for e−tP0 .
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Proposition 3.3. Let k ∈ N. The following estimates are true for the free KFP equa-
tion:

‖〈v〉ke−tP0‖1→∞ + ‖〈Dv〉ke−tP0‖1→∞ ≤
C

(γ(t))
n
2

(
1 + t−

k
2

)
(3.9)

and for any p ∈ [1,∞],

‖〈v〉ke−tP0‖p→p + ‖〈Dv〉ke−tP0‖p→p ≤ C
(

1 + t−
k
2

)
(3.10)

for t > 0.

Proof. Remark that the distributional kernel K(v, v′, t) of e−tH satisfies the estimate

0 ≤ K(v, v′, t) ≤ 1

(4πθ(t))
n
2

e−
cosh2(t)−1
2 sinh(2t)

|v|2

uniformly in v′ and that cosh2(t)−1
2 sinh(2t)

∼ ct as t → 0, c > 0. As in the proof of Proposition

3.1, one has for f ∈ C∞0 (R2n)

‖〈v〉ke−tP0f(·, v)‖L∞x ≤ 1

(4πσ(t))
n
2

∫
Rn
〈v〉kK(v, v′, t)‖f(·, v′)‖L1

x
dv′

≤ 1

(4πσ(t))
n
2

sup
v,v′
〈v〉kK(v, v′, t)‖f‖1

≤ C

(γ(t))
n
2

(1 + t−
k
2 )‖f‖1, t > 0.

This shows

‖〈v〉ke−tP0‖1→∞ ≤
C

(γ(t))
n
2

(1 + t−
k
2 ), t > 0.

Similarly, one can estimate ‖∂αv e−tP0‖1→∞ by evaluating supv,v′ |∂αvK(v, v′, t)| for t > 0
and α ∈ Nn. (3.9) is proved.

In the same way, one has

‖〈v〉ke−tP0f‖1 ≤ C

∫
Rn
〈v〉kK(v, v′, t)dv′‖f(·, v′)‖L1

x
dv′dv

≤ C

∫
〈v〉k sup

v′
K(v, v′; t)dv‖f‖1

≤ C1(1 + t−
k
2 )‖f‖1, t > 0.

The same result holds true in L2, because

‖Hke−tH‖L2
v→L2

v
≤ t−k

by the Spectral Theorem for positive selfadjoint operators and (〈v〉2k+〈Dv〉2k)(H+1)−k

is bounded in L2. By arguments of duality and interpolation, we obtain for p ∈ [1,∞]

‖〈v〉ke−tP0‖p→p ≤ C
(

1 + t−
k
2

)
, t > 0.

Again using the formula of K(v, v′, t), one can show

‖∂αv e−tP0‖p→p ≤ Cα

(
1 + t−

|α|
2

)
, t > 0.

for any α ∈ Nn. This proves (3.10). �



THE KRAMERS-FOKKER-PLANCK EQUATION 9

As consequence of Proposition 3.3, one obtains the following

Corollary 3.4. For 1 ≤ p ≤ q ≤ ∞ and for any k ∈ N, one has

‖〈v〉ke−tP0‖p→q + ‖〈Dv〉ke−tP0‖p→q ≤
C

(γ(t))
n
2p

(1− p
q

)

(
1 + t−

k
2

)
, (3.11)

and

‖e−tP0〈v〉k‖p→q + ‖e−tP0〈Dv〉k‖p→q ≤
C

(γ(t))
n
2p

(1− p
q

)

(
1 + t−

k
2

)
, (3.12)

for t > 0.

4. Global-in-time estimates for e−tP

Set P = P0+W with W = −∇V (x)·∇v. Under the condition ρ ≥ −1, W is relatively
bounded perturbation of P0 with relative bound 0 and P is closed with D(P ) = D(P0).
Since

e−tWf(x, v) = f(x, v + t∇V (x)),

e−tW preserves Lp norm. e−tP0 and e−tW are strongly continuous semigroups of con-
tractions in Lp, 1 ≤ p <∞. By theorem on perturbation of semigroups of contractions
([13]), e−tP is a strongly continuous semigroup of contractions in Lp, p ∈ [1,∞[. It
follows from Trotter’s formula that e−tP is positivity preserving. We are interested in
e−tP when it is regarded as map from Lp to Lq, q > p.

4.1. Short-time estimates for e−tP .

Theorem 4.1. Let n ≥ 1 and (1.5) be satisfied with ρ ≥ −1. Then one has for
1 ≤ p < q ≤ ∞

‖e−tP‖p→q ≤
C

γ(t)
n
2p

(1− p
q

)
, t ∈]0, 1]. (4.1)

Proof. The proof is based on Duhamel’s formula

e−tP = e−tP0 +

∫ t

0

e−(t−s)P0We−sPds. (4.2)

Set

α(p, q) =
n

2
(
1

p
− 1

q
).

Remark that γ(t) ∼ ct4 as t→ 0+. For 1 ≤ p ≤ p′ ≤ 2 such that 1
p
− 1

p′
< 1

4n
, one has:

4α(p, p′) < 1
2
. Since e−tP is a contraction semigroup in Lp, by (3.11), one has

‖e−tP‖p→p′ ≤ ‖e−tP0‖p→p′ + C

∫ t

0

‖∇ve
−(t−s)P0‖p→p′‖e−sP‖p→pds

≤ C

(
γ(t)−α(p,p′) +

∫ t

0

|t− s|−
1
2
−4α(p,p′)ds

)
≤ C1γ(t)−α(p,p′), for t ∈]0, 1].
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For each n ≥ 1, take k = k(n) numbers p1, · · · , pk such that

1 = p1 < p2 < · · · < pk−1 < pk = 2 and
1

pj
− 1

pj+1

<
1

4n
.

Writing e−tP as (e−
t
k
P )k, one obtains

‖e−tP‖1→2 ≤ ‖e−
t
k
P‖p1→p2 · · · ‖e−

t
k
P‖pk−1→2

≤ Cγ(t)−α(1,p2)−···−α(pk−1,2)

= Cγ(t)−α(1,2)

for t ∈]0, 1]. This proves (4.1) for p = 1 and q = 2. The general case follows by duality
and interpolation. �

4.2. Large-time estimate for e−tP .

Theorem 4.2. Assume n = 3 and that (1.5) is satisfied with ρ > 1. One has for
1 ≤ p < q ≤ ∞

‖e−tP‖p→q ≤ Ct−
3
2p

(1− p
q

) (4.3)

for t ∈ [1,∞[.

Under the conditions of Theorem 4.2, it is proved in [16] that for s > 3
2
,

‖〈x〉−se−tP 〈x〉−s‖L2→L2 ≤ C〈t〉−
3
2 , t ≥ 0. (4.4)

It follows that for 0 < r ≤ 3
2

and s > r, one has

‖e−tP‖L2,s→L2,−s ≤ C〈t〉−r, t ≥ 0. (4.5)

Here L2,s = L2(R2n
x,v, 〈x〉2sdxdv).

Proof of Theorem 4.2 To obtain large time Lp − Lq estimate for e−tP , we use the
following decomposition which is deduced from Duhamel’s formula :

e−tP = e−tP0 + I(t) + J(t) (4.6)

where

I(t) =

∫ t

0

e−(t−s)P0We−sP0 ds, (4.7)

J(t) =

∫ t

0

∫ s

0

e−(t−s)P0We−τPWe−(s−τ)P0 dτds. (4.8)
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Decompose I(t) = I1(t) + I2(t) and J(t) = J1(t) + J2(t) where

I1(t) =

∫ t
2

0

e−(t−s)P0We−sP0 ds,

I2(t) =

∫ t

t
2

e−(t−s)P0We−sP0 ds,

J1(t) =

∫ t
2

0

∫ s

0

e−(t−s)P0We−τPWe−(s−τ)P0 dτds,

J2(t) =

∫ t

t
2

∫ s

0

e−(t−s)P0We−τPWe−(s−τ)P0 dτds

We estimate each term on the right hand side in L1 − L∞ norm. Remark first that
since ∇V (x) is bounded, the portion of the integral in I1(t) related to s ∈ [0, 1

4
] can be

bounded by

‖
∫ 1

4

0

e−(t−s)P0We−sP0 ds‖1→∞

≤
∫ 1

4

0

‖∇V ‖∞‖e−(t−s)P0‖1→∞‖∇ve
−sP0‖1→1 ds

≤ Ct−
3
2

∫ 1
4

0

s−
1
2 ds ≤ Ct−

3
2

for t ≥ 1. Under the assumption (1.5), ∇V (x) ∈ Lr(R3) for any r > 3
1+ρ

and r ≥ 1. By

Hölder’s inequality and (3.11), ∇V e−δP0 , δ > 0, maps continuously Lp to L1 where

3 < p =
r

r − 1
< 1 +

1 + ρ

2− ρ
.

This is possible, because 1+ρ
2−ρ > 2 for ρ > 1. It follows that

‖∇V e−sP0‖1→1 ≤ ‖∇V e−
1
8
P0‖p→1‖e−(s− 1

8
)P0‖1→p (4.9)

≤ Cs−
3
2

(1− 1
p

)(1 + s−
1
2 ).

This shows that s→ ‖∇V e−sP0‖1→1 is integrable in s ∈ [1
4
,∞[. Consequently, I1(t) can

be bounded as follows

‖I1(t)‖1→∞ ≤ Ct−
3
2 +

∫ t
2

1
4

‖∇ve
−(t−s)P0‖1→∞‖∇V e−sP0‖1→1 ds

≤ C1t
− 3

2

(
1 +

∫ t
2

1
4

‖∇V e−sP0‖1→1 ds

)
≤ C2t

− 3
2 , for t ≥ 1.

Since ∇V ∈ Lr(R3
x), by (3.12), e−δP0∇V is bounded from L∞ to Lr. Corollary 3.2 shows

‖e−(t−s)P0∇V ‖∞→∞ ≤ ‖(e−(t−s−δ)τP0‖r→∞‖e−δP0∇V ‖∞→r
≤ C〈t− s〉−

3
2r = C〈t− s〉−

1+ρ
2

+ε,
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for s ∈ [ t
2
, t− 1

4
] and t ≥ 1. Therefore, I2(t) can be estimated by

‖I2(t)‖1→∞ ≤ Ct−
3
2 +

∫ t− 1
4

t
2

‖e−(t−s)P0We−sP0‖1→∞ ds

≤ C1t
− 3

2

(
1 +

∫ t− 1
4

t
2

〈t− s〉−
1+ρ
2

+ε ds

)
≤ C2t

− 3
2 , for t ≥ 1.

It follows that
‖I(t)‖1→∞ ≤ Ct−

3
2 , for t ≥ 1. (4.10)

For the term J1(t), we split the domain of integration Ω = {(τ, s); 0 ≤ s ≤ t
2
, 0 ≤ τ ≤

s} into two parts: Ω = Ω1 ∪ Ω2, where

Ω1 = {(τ, s) ∈ Ω; either τ ≤ 1
4

or s− τ ≤ 1
4
}, Ω2 = Ω \ Ω1.

By Corollary 3.2 and the fact that e−tP is contraction in Lp, one can show as above
that the L1 − L∞ norm of the piece of J1(t) related to the integration with respect to

(τ, s) ∈ Ω1 can be bounded by Ct−
3
2 . To treat the remaining part, let p > 3 be close

enough to 3. Then

‖
∫

Ω2

e−(t−s)P0We−τPWe−(s−τ)P0 dτds‖1→∞

≤ Ct−
3
2

∫
Ω2

‖e−
1
8
P0∇V e−τP∇V e−

1
8
P0‖p→1〈s− τ〉−

3(p−1)
2p dτds

≤ C1t
− 3

2

∫ t
2

1
4

‖e−
1
8
P0∇V e−τP∇V e−

1
8
P0‖p→1

〈x〉−( 1
2

+ε) : Lp(R3)→ L2(R3) is bounded. Condition (1.5) and (3.11) show that∇V e− 1
8
P0

is bounded from Lp(R6) to L2,ρ+ 1
2
−ε. By (3.12), e−

1
8
P0∇V is bounded from L2,−ρ+ 1

2
+ε to

L1. Using (4.5), we obtain

‖e−
1
8
P0∇V e−τP∇V e−

1
8
P0‖p→1 ≤ Cε〈τ〉−ρ+ 1

2
+ε

It follows that

‖J1(t)‖L1→L∞ ≤
{
Ct−

3
2 , if ρ > 3

2
Cεt
−ρ+ε, if 1 < ρ ≤ 3

2
.

(4.11)

The same estimates hold true for J2(t). Putting them together, we obtain

‖J(t)‖L1→L∞ ≤
{
Ct−

3
2 , if ρ > 3

2
Cεt
−ρ+ε, if 1 < ρ ≤ 3

2
.

(4.12)

From Corollary 3.2), (4.6), (4.10) and (4.12), we obtain

‖e−tP‖L1→L∞ ≤
{
Ct−

3
2 , if ρ > 3

2
Cεt
−ρ+ε, if 1 < ρ ≤ 3

2
.

If ρ > 3
2
, then Theorem 4.2 is proved by interpolation. If 1 < ρ ≤ 3

2
, one obtains

‖e−tP‖Lp→Lq ≤ Cεt
−ρ( 1

p
− 1
q

)+ε, (4.13)
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for t > 1 and 1 ≤ p < q ≤ ∞.

We now use (4.13) instead of (4.5) to improve large time decay of e−tP for ρ ∈]1, 3
2
].

Let β0(p, q) = ρ(1
p
− 1

q
). Using (4.6) and the results for e−tP0 , we can show as before

‖e−tP‖1→∞ ≤ Ct−
3
2 + ‖J1(t)‖1→∞ + ‖J2(t)‖1→∞ (4.14)

for t ≥ 1. To estimate ‖J1(t)‖1→∞. Again we spilt Ω = Ω1 ∪ Ω2 as before. The

L1 − L∞ norm of the piece of J1(t) given by integration over Ω1 is bounded by Ct−
3
2 .

For (τ, s) ∈ Ω2, we have

‖e−(t−s)P0We−(s−τ)PWe−τP0‖1→∞

≤ ‖e−(t−s−δ)P0∇v‖1→∞‖e−δP0∇V e−(s−τ)P∇V e−δP0‖p→1‖∇ve
−(τ−δ)P0‖1→p

where p = 3 + ε′, ε′ > 0, δ > 0. By Hölder’s inequality, (3.11) and (3.12), ∇V e−δP0 is
bounded from Lp → Lp1 and e−δP0∇V is bounded from Lq1 → L1, where

1

p1

=
1

p
+

1

r
and

1

q1

+
1

r
= 1.

By choosing p close to 3 and r close to 3
1+ρ

, p1 can be any number smaller than 3
2+ρ

and

q1 can be any number bigger than 3
2−ρ . Set

r1 = β0(
3

2 + ρ
,

3

2− ρ
) =

2ρ2

3

Making use of (4.13) instead of (4.5), one obtains

‖J1(t)‖1→∞ ≤
C

t
3
2

(
1 +

∫ t
2

1
4

s−r1+εds

)

In a similar way, one can show that ‖J2(t)‖1→∞ satisfies the same estimate. If ρ >
√

3
2
,

then r1 > 1 and Theorem 4.2 is proved. If 1 < ρ ≤
√

3
2
, one obtains for any ε > 0

‖e−tP‖Lp→Lq ≤ Cεt
−( 1

2
+r1)( 1

p
− 1
q

)+ε, (4.15)

for t > 1 and 1 ≤ p < q ≤ ∞. Set β1(p, q) = (1
2

+ r1)(1
p
− 1

q
) and

r2 = β1(
3

2 + ρ
,

3

2− ρ
) =

ρ(1 + 2r1)

3
.

Repeating the arguments from (4.13) to (4.15) with (4.13) replaced by (4.15), one
concludes that if r2 > 1, Theorem 4.2 is proved. Otherwise, one has

‖e−tP‖Lp→Lq ≤ Cεt
−( 1

2
+r2)( 1

p
− 1
q

)+ε, (4.16)

for t > 1 and 1 ≤ p ≤ q ≤ ∞. For k ≥ 3, set βk−1(p, q) = (1
2

+ rk−1)(1
p
− 1

q
) and

rk = βk−1(
3

2 + ρ
,

3

2− ρ
) =

ρ(1 + 2rk−1)

3
, . (4.17)
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Let ρ > 1 be fixed. By an induction on k, one can prove that for each k, either rk > 1,
then (4.3) is proved by the above argument; or 0 < rk ≤ 1, then one has

‖e−tP‖Lp→Lq ≤ Cεt
−( 1

2
+rk)( 1

p
− 1
q

)+ε, (4.18)

for t > 1 and 1 ≤ p < q ≤ ∞. We affirm that for each ρ > 1, there exists k ∈ N such
that rk > 1. In fact, if rk ≤ 1 for all k ∈ N, then {rk} would be an increasing sequence
bounded by 1. Let ` = limk→∞ rk. Then ` ∈]0, 1]. However, taking the limit k →∞ in
(4.17), one has

` =
ρ(1 + 2`)

3
which gives ` = ρ

3−2ρ
> 1, because ρ > 1. This contradiction in ` proves that for each

ρ > 1, there exists some k such that rk > 1. Therefore (4.3) follows by repeating at most
k times the arguments from (4.13) to (4.15) with (4.13) replaced by newly improved
estimate. This achieves the proof of Theorem 4.2 for any ρ > 1. �

Theorem 1.1 follows from Theorems 4.1 and 4.2.

Remark 4.3. Let n = 1 and condition (1.5) be satisfied with ρ > 4. It is known ([12])
that for s > 5

2

‖e−tP‖Ls→L−s ≤ C〈t〉−
1
2 , t ≥ 1. (4.19)

The method used in the proof of Theorem 4.2 does not allow to deduce from (4.19) any
decay of e−tP in L1−L∞ for t large. For example, for the term I1(t) given in (4.6), the
method used in the proof of Theorem 4.2 only gives

‖I1(t)‖1→∞ ≤ C

(
t−

1
2 +

∫ t
2

1
4

〈t− s〉−
1
2 〈s〉−

1
2ds

)
, t ≥ 1.

The last integral does not decay as t→∞.
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