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In this work, we prove an optimal global-in-time L p -L q estimate for solutions to the Kramers-Fokker-Planck equation with short range potential in dimension three. Our result shows that the decay rate as t → +∞ is the same as the heat equation in x-variables and the divergence rate as t → 0 + is related to the sub-ellipticity with loss of 1/3 derivatives of the Kramers-Fokker-Planck operator.

Introduction

The Kramers-Fokker-Planck equation is the evolution equation for the distribution functions describing the Brownian motion of particles in an external field:

∂W ∂t = -v • ∇ x + ∇ v • (γv - F (x) m ) + γkT m ∆ v W, (1.1) 
where F (x) = -m∇V (x) is the external force and W = W (t; x, v) is the distribution function of particles for x, v ∈ R n and t > 0. In this equation, x and v represent the position and velocity variables of particles, m the mass, k the Boltzmann constant, γ the friction coefficient and T the temperature of the media. This equation, called the Kramers equation in the book of H. Risken [START_REF] Risken | The Fokker-Planck equation, Methods of solutions and applications[END_REF], was initially derived and used by H. A. Kramers [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF] to describe kinetics of chemical reaction. Later on it turned out that it had more general applicability to different fields such as supersonic conductors, Josephson tunneling junction and relaxation of dipoles. Equation 1.1, also often called the Fokker-Planck equation, is in fact a special case of the more general Fokker-Planck equation ( [START_REF] Risken | The Fokker-Planck equation, Methods of solutions and applications[END_REF]) or the Kolmogorov forward equation for continuous-time diffusion processes ( [START_REF] Kolmogorov | Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung[END_REF]).

After appropriate normalisation of physical constants and change of unknowns, the KFP equation can be written into the form

∂ t u(t; x, v) + P u(t; x, v) = 0, (x, v) ∈ R n × R n , t > 0, (1.2) 
with initial data u(0; x, v) = u 0 (x, v), (1.3) where P is the KFP operator defined by .4) In this work, V (x) is supposed to be a real-valued C 1 function verifying

P = -∆ v + 1 4 |v| 2 - n 2 + v • ∇ x -∇V (x) • ∇ v . ( 1 
|V (x)| + x |∇V (x)| ≤ C x -ρ , x ∈ R n , (1.5) 
for some ρ ≥ -1. Here x = (1 + |x| 2 ) 1/2 . Remark that V (x) is determined up to an additive constant. (1.5) implies that when with ρ > 0, this constant is chosen such that lim |x|→∞ V (x) = 0 which can be interpreted as a normalization condition for V (x). Let m be the function defined by

m(x, v) = 1 (2π) n 4 e -1 2 ( v 2 2 +V (x)) .
(1.6)

Then M = m 2 is the Maxwellian ( [START_REF] Risken | The Fokker-Planck equation, Methods of solutions and applications[END_REF]) and m verifies the stationary KFP equation

P m = 0 in R 2n x,v . (1.7) 
The large-time asymptotics of the solution to the KFP equation is mostly motivated by mathematical analysis of trend to equilibrium in statistical physics and is studied by many authors for confining potentials. See, for example, [START_REF] Desvillettes | On the trend to global equilibrium in spatially inhomogeneous entropydissipating systems: The linear Fokker-Planck equation[END_REF][START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF][START_REF] Hérau | Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications[END_REF]. In these works, the potential V (x) is supposed to be confining so that the spectre of P is discrete. The typical result is return to the equilibrium with exponential rate: ∃σ > 0 such that

u(t) = m, u 0 m + O(e -σt ), t → +∞, (1.8) 
where V (x) is assumed to be normalized by

R n e -V (x) dx = 1.
In [START_REF] Li | Large time behaviour for the Fokker-Planck equation with general potential[END_REF], sub-exponential convergence rate is obtained for weakly confining potential. For quickly decreasing potentials (or more precisely, for quickly decreasing |∇V (x)|), it is shown in [START_REF] Novak | On the Kramers-Fokker-Planck equation with decreasing potentials in dimension one[END_REF] for n = 1 and [START_REF] Wang | Large-time asymptotics of solutions to the Kramers-Fokker-Planck equation with a short-range potential[END_REF] for n = 3 that

u(t) = 1 (4πt) n 2 m, u 0 m + O(t -) , t → +∞, (1.9) 
in weighted L 2 -spaces with weight in x-variables.

In this work, we consider potentials V (x) satisfying (1.5) with ρ ≥ -1 and study L p -L q estimates of u(t) for t > 0. Here

L p = L p (R 2n
x,v ; dxdv) is equipped with the natural norm. For f ∈ L p and T bounded linear operator from L p to L q , we denote :

f p = f L p , T p→q = T L(L p ,L q ) . (1.10)
By an abuse of notation, for a closed linear operator T in L 2 with C ∞ 0 (R 2n ) as a core and for p ∈ [1, ∞[, we still denote by the same letter T its minimal closed extension in L p (i.e., the closure in L p of the restriction of T to C ∞ 0 (R 2n )). Similarly, the notation e -tP : L p → L q means that the restriction of e -tP on C ∞ 0 extends to a map from L p to L q . Under fairly general condition, e -tP is a strongly continuous positivity preserving contraction semigroup in L p . Since for 1 ≤ p < ∞,

e -tP | C ∞ 0 | L p = e -t (P | C ∞ 0 )| L p ,
our notation is consistent in some sense. The main result of this work is the following Theorem 1.1. Let n = 3 and condition (1.5) be satisfied with ρ > 1. For 1 ≤ p < q ≤ ∞, there exists some constant C > 0 such that

e -tP p→q ≤ C (γ(t)) 3 2p (1-p q ) , t ∈]0, ∞[, (1.11) 
where γ(t) = σ(t)θ(t) with

σ(t) = t -2 coth(t) + 2cosech(t), θ(t) = 4πe -t sinh(t).
(1.12)

The function γ(t) appears in the explicit formula of fundamental solution for the free KFP equation (see Section 2) and behaves like: γ(t) ∼ t as t → ∞ and γ(t) ∼ ct 4 as t → 0, c > 0. The two factors of γ(t) have different meanings. θ(t) arises from the semigroup generated by the harmonic oscillator

H = P = -∆ v + 1 4 |v| 2 - n 2 in L p (R 3 v ). For σ(t), remark that σ(t) ∼ t, as t → +∞; σ(t) ∼ t 3 6 , as t → 0 + . (1.13) 
For p = 1, q = ∞,

(σ(t)) -3 2 ∼ C 1 t 3 2 , t → ∞; (σ(t)) -3 2 ∼ C t 9 2
, t → 0 + .

One sees that the term (σ(t)) -3 2 is of the same order as that of the heat semigroup e t∆x as map from L 1 (R 3 ) to L ∞ (R 3 ) as t → ∞ and of the same order as that of e -t|Dx| 2 3 as t → 0 + . This may be explained by the fact that at low energies, the KFP operator P behaves like a Witten Laplacian ( [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Li | Global hypoellipticity and compactness of resolvent for Fokker-Planck operator[END_REF]), while globally it is sub-elliptic in x with the loss of 1 3 derivatives.

To prove Theorem 1.1, we first study the semigroup e -tP 0 in L p -L q setting, where

P 0 = -∆ v + 1 4 |v| 2 - n 2 + v • ∇ x .
Then we consider P as perturbation of P 0 and use Duhamel's formula to prove (1.11). The short-time estimate for e -tP can be easily obtained (see Theorem 4.1) and is valid for n ≥ 1 and ρ > -1. The proof of (1.11) for t large is based on a result of time-decay of e -tP in weighted L 2 spaces obtained in [START_REF] Wang | Large-time asymptotics of solutions to the Kramers-Fokker-Planck equation with a short-range potential[END_REF].

In this work, we often use an argument of duality which is based on the relation

P * = JP J (1.14) in L 2 , where J is the reflection in v variable: Jf (x, v) = f (x, -v).
If one has some estimates for P or -tP in L p , one can often use the duality between L p and L q , p -1 +q -1 = 1, to affirm that the same statements are true for P * or (e -tP ) * in L q . Since J preserves any L p norm, the same estimates hold true for P or e -tP in L q .

The remaining part of this work is organized as follows. In Section 2, we establish an explicit useful formula for the fundamental solution of the free KFP operator P 0 . Global-in-time L p -L q estimates are obtained for e -tP 0 in Section 3. Theorem 1.1 is proved in Section 4.

Fondamental solution of the free KFP equation

In this Section, we use the method of complex deformation to calculate the fundamental solution of the free KFP equation. Let P 0 be the free KFP operator:

P 0 = v • ∇ x -∆ v + 1 4 |v| 2 - n 2 , (x, v) ∈ R 2n . (2.1)
In L 2 , using the partial Fourier transform in x-variables, we have for u ∈ D(P 0 )

P 0 u(x, v) = F -1 x→ξ P0 (ξ)û(ξ, v), where (2.2) P0 (ξ) = -∆ v + 1 4 n j=1 (v j + 2iξ j ) 2 - n 2 + |ξ| 2 (2.3) û(ξ, v) = (F x→ξ u)(ξ, v) R n e -ix•ξ u(x, v) dx. (2.4) Denote D( P0 ) = {f ∈ L 2 (R 2n ξ,v ); P0 (ξ)f ∈ L 2 (R 2n ξ,v )}. (2.5) Then P0 F x→ξ P 0 F -1 x→ξ is a direct integral of the family of complex harmonic operators { P0 (ξ); ξ ∈ R n }. { P0 (ξ), ξ ∈ R n } is a holomorphic family of type (A) in sense of Kato with constant domain D = D(-∆ v + v 2 4 ) in L 2 (R n v ). Let F j (s) = (-1) j e s 2 2 d j
ds j e -s 2 2 , j ∈ N, be the Hermite polynomials and

ϕ j (s) = (j! √ 2π) -1 2 e -s 2 4 F j (s) the normalized Hermite functions. For ξ ∈ R n and α = (α 1 , α 2 , • • • , α n ) ∈ N n , define ψ α (v) = n j=1 ϕ α j (v j ) and ψ ξ α (v) = ψ α (v + 2iξ). (2.6) Then P0 (ξ)ψ ξ α = (|α| + |ξ| 2 )ψ ξ α . (2.7) For α, β ∈ N n , ξ → ψ ξ α , ψ -ξ β
extends to an entire function for ξ ∈ C and is constant on iR. Therefore ψ ξ α , ψ -ξ β is constant for ξ ∈ C and one has

ψ ξ α , ψ -ξ β = δ αβ = 1, α = β, 0, α = β. , ∀α, β ∈ N n , ξ ∈ R n . (2.8) e -tP 0 is a contraction semigroup in L 2 (R 2n x,v
). Its distributional kernel can be explicitly computed, using Mehler's formula for harmonic oscillator ( [START_REF] Mehler | Über die Entwicklung einer Funktion von beliebig vielen variabeln nach Laplaschen Funktionen höherer Ordung[END_REF])(see also [START_REF] Bouchut | Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions[END_REF]), where this fundamental solution is calculated with different method and expressed in slightly different way. Recall ( [START_REF] Cycon | Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry[END_REF]) that for the heat kernel of n-dimensional harmonic oscillator -∆ + x 2 is given by

E(x, y; t) = 1 (2π sinh(2t)) n 2 exp - coth(2t) 2 (x 2 + y 2 ) + cosech(2t)x • y , t > 0.
(2.9)

Lemma 2.1. Let n ≥ 1.
The distributional kernel of e -tP 0 is given by

F (x, v, x , v ; t) = 1 (4πσ(t)) n 2 exp - 1 4σ(t) |x -x -ω(t)(v + v )| 2 K(v, v ; t). (2.10)
where

K(v, v ; t) = 1 (4π sinh(t)) n 2 exp nt 2 - coth(t) 4 (|v| 2 + |v | 2 ) + cosech(t) 2 v • v (2.11
)

ω(t) = coth(t) -cosech(t) σ(t) = t -2 coth(t) + 2cosech(t).
Proof. Since the n-dimensional free KFP operator P 0 is a direct sum of n one dimensional operators, it suffices to prove the lemma for n = 1. Applying (2.9) and making use of change of scale, we deduce that the Mehler's formula for the heat kernel of the one-dimensional harmonic oscillator

H = -d 2 dv 2 + 1 4 v 2 -1 2 is
given by:

e -tH u = R K(v, v ; t)u(v )dv , t > 0, u ∈ C ∞ 0 , (2.12) 
where

K(v, v ; t) = 1 4π sinh(t) exp t 2 - coth(t) 4 (v 2 + v 2 ) + cosech(t) 2 vv , (2.13) 
which is an entire function in v and

v in C. Set K(v, v , ξ; t) = e -|ξ| 2 t K(v + 2iξ, v + 2iξ; t). (2.14) 
Since ψ ξ l is an eigenfunction of P0 (ξ) associated with the eigenvalue l + |ξ| 2 , one has e -t P0 (ξ) ψ ξ l = e -t(l+|ξ| 2 ) ψ ξ l On the other hand, one has

R K(v + 2iξ, v ; t)ψ l (v )dv = e -tl ψ ξ l ,
since the both sides are entire functions in v ∈ C. Using deformation of contour and the decay properties of K(v, v ; t), one obtains

R K(v + 2iξ, v + 2iξ; t)ψ ξ l (v )dv = R K(v + 2iξ, v ; t)ψ l (v )dv (2.15) for ξ ∈ R. It follows that e -t P0 (ξ) ψ ξ l = R K(v, v , ξ; t)ψ ξ l (v )dv = e -t(l+|ξ| 2 ) ψ ξ l .
Since the span of {ψ ξ l , l ∈ N} is dense is L 2 (R v ), one concludes that the heat kernel of P0 (ξ) is equal to K(v, v , ξ; t) for t > 0. K(v, v , ξ; t) can be written as

K(v, v , ξ; t) = K(v, v ; t)ĝ(v, v , ξ; t) (2.16) where ĝ(v, v , ξ; t) = exp -iω(t)(v + v )ξ -|ξ| 2 σ(t) (2.17) with ω(t) = coth(t) -cosech(t), σ(t) = t -2 coth(t) + 2cosech (t). (2.18)
Since σ(t) > 0 for t > 0, the inverse Fourier transform of ĝ in ξ can be explicitly calculated:

g(v, v , x; t) = 1 2π R e ixξ ĝ(v, v , ξ; t) dξ = 1 2π R e i(x-ω(t)(v+v ))ξ e -σ(t)|ξ| 2 dξ = 1 4πσ(t) exp - 1 4σ(t) (x -ω(t)(v + v )) 2 .
Therefore, the integral kernel of e -tP 0 is given by

F (x, v, x , v ; t) = 1 4πσ(t) exp - 1 4σ(t) (x -x -ω(t)(v + v )) 2 K(v, v ; t). (2.19)
The fundamental solution F (x, v, x , v ; t) for the free KFP equation has several nice properties. For example, one has for

f ∈ C ∞ 0 (R 2n ), (e -tP 0 f )(x, v)dx = (e -tH g)(v), v ∈ R n , (2.20) 
where g(v) = f (x, v)dx and H is the harmonic oscillator:

H = -∆ v + 1 4 v 2 -n 2 .

Global-in-time estimates for the free KFP operator

In this section, we give some global-in-time L p -L q estimates for e -tP 0 needed in the proof of Theorem 1.1. Proposition 3.1. Let n ≥ 1. For t > 0, e -tP 0 defined on C ∞ 0 (R 2n ) extends to an operator bounded from L 1 to L ∞ and the following estimate is true for the free KFP operator:

e -tP 0 1→∞ ≤ 1 (4πγ(t)) n 2 (3.1)
for t > 0. Here where

γ(t) = σ(t)θ(t), θ(t) = 4πe -t sinh(t). Proof. Let f ∈ C ∞ 0 (R 2n ). By Lemma 2.1, one has |e -tP 0 f (x, v)| ≤ 1 (4πσ(t)) n 2 R 2n K(v, v ; t)|f (x , v )|dx dv (3.2)
which gives

|e -tP 0 f (•, v)| L ∞ x ≤ 1 (4πσ(t)) n 2 R n K(v, v ; t) f (•, v ) L 1 x dv = 1 (4πσ(t)) n 2 (e -tH g)(v) (3.3)
where

g(v ) = f (•, v ) L 1 x , since K(v, v , t)
is the distributional kernel of e -tH . From (2.11), it follows that

e -tP 0 f ∞ ≤ 1 (4πγ(t)) n 2 f 1 , f ∈ C ∞ 0 (R 2n ). (3.4) (refe3.1
) is derived by an argument of density.

Part of following results may be known. We include a proof for reason of completeness.

Corollary 3.2. (a). One has e -tP 0 p→p ≤ 1 (3.5)

for 1 ≤ p ≤ ∞ and e -tP 0 L p →L q ≤ 1 (4πγ(t)) n 2p (1-p q ) , t > 0, (3.6) 
for 1 ≤ p ≤ q ≤ ∞. (b). e -tP 0 , t ≥ 0, is a strongly continuous positivity preserving contraction semigroup in L p for 1 ≤ p < ∞.

Proof. (a). P 0 is closed and accretive in L 2 . Therefore e -tP 0 , t ≥ 0, is a strongly continuous contraction semigroup in L 2 . In particular, (3.5) is true for p = 2. We denote by the same symbol e -tP 0 the operator induced in L p (R 2n ). By (2.20), one has ) is a common core of P in L p , 1 ≤ p < ∞, the semigroup property of e -tP in L p follows from that of e -tP in L 2 . By Theorem X.55 in [START_REF] Reed | Methods of Modern Mathematical Physics, II. Fourier Analysis[END_REF], e -tH is a strongly continuous contraction semigroup in L p (R n v ), 1 ≤ p < ∞. The strongly continuity of e -tP 0 in L 1 follows from (3.8). The general case 1 < p < ∞ can be deduced from the cases p = 1 and p = 2. e -tP 0 is positivity preserving, because its distributional kernel F (x, v, x , v ; t) is positive.

e -tP 0 f 1 ≤ e -tH f 1 ≤ f 1 (3.7) (e -tP 0 -1)f 1 ≤ (e -tH -1)f 1 (3.
To study the full KFP operator P , we want to treat the W = -∇V (x) • ∇ v as perturbation and need some more estimates for e -tP 0 . Proposition 3.3. Let k ∈ N. The following estimates are true for the free KFP equation:

v k e -tP 0 1→∞ + D v k e -tP 0 1→∞ ≤ C (γ(t)) n 2 1 + t -k 2 (3.9)
and for any p ∈ [1, ∞],

v k e -tP 0 p→p + D v k e -tP 0 p→p ≤ C 1 + t -k 2 (3.10)
for t > 0.

Proof. Remark that the distributional kernel K(v, v , t) of e -tH satisfies the estimate

0 ≤ K(v, v , t) ≤ 1 (4πθ(t)) n 2 e -cosh 2 (t)-1 2 sinh(2t) |v| 2
uniformly in v and that cosh 2 (t)-1 2 sinh(2t) ∼ ct as t → 0, c > 0. As in the proof of Proposition 3.1, one has for

f ∈ C ∞ 0 (R 2n ) v k e -tP 0 f (•, v) L ∞ x ≤ 1 (4πσ(t)) n 2 R n v k K(v, v , t) f (•, v ) L 1 x dv ≤ 1 (4πσ(t)) n 2 sup v,v v k K(v, v , t) f 1 ≤ C (γ(t)) n 2 (1 + t -k 2 ) f 1 , t > 0.
This shows

v k e -tP 0 1→∞ ≤ C (γ(t)) n 2 (1 + t -k 2 ), t > 0.
Similarly, one can estimate ∂ α v e -tP 0 1→∞ by evaluating sup v,v |∂ α v K(v, v , t)| for t > 0 and α ∈ N n . (3.9) is proved.

In the same way, one has

v k e -tP 0 f 1 ≤ C R n v k K(v, v , t)dv f (•, v ) L 1 x dv dv ≤ C v k sup v K(v, v ; t)dv f 1 ≤ C 1 (1 + t -k 2 ) f 1 , t > 0. The same result holds true in L 2 , because H k e -tH L 2 v →L 2
v ≤ t -k by the Spectral Theorem for positive selfadjoint operators and (

v 2k + D v 2k )(H +1) -k is bounded in L 2 .

By arguments of duality and interpolation, we obtain for

p ∈ [1, ∞] v k e -tP 0 p→p ≤ C 1 + t -k 2 , t > 0.
Again using the formula of K(v, v , t), one can show

∂ α v e -tP 0 p→p ≤ C α 1 + t -|α| 2 , t > 0.
for any α ∈ N n . This proves (3.10).

As consequence of Proposition 3.3, one obtains the following Corollary 3.4. For 1 ≤ p ≤ q ≤ ∞ and for any k ∈ N, one has

v k e -tP 0 p→q + D v k e -tP 0 p→q ≤ C (γ(t)) n 2p (1-p q ) 1 + t -k 2 , (3.11) 
and

e -tP 0 v k p→q + e -tP 0 D v k p→q ≤ C (γ(t)) n 2p (1-p q ) 1 + t -k 2 , (3.12) 
for t > 0.

Global-in-time estimates for e -tP

Set P = P 0 +W with W = -∇V (x)•∇ v . Under the condition ρ ≥ -1, W is relatively bounded perturbation of P 0 with relative bound 0 and P is closed with

D(P ) = D(P 0 ). Since e -tW f (x, v) = f (x, v + t∇V (x)
), e -tW preserves L p norm. e -tP 0 and e -tW are strongly continuous semigroups of contractions in L p , 1 ≤ p < ∞. By theorem on perturbation of semigroups of contractions ( [START_REF] Reed | Methods of Modern Mathematical Physics, II. Fourier Analysis[END_REF]), e -tP is a strongly continuous semigroup of contractions in L p , p ∈ [1, ∞[. It follows from Trotter's formula that e -tP is positivity preserving. We are interested in e -tP when it is regarded as map from L p to L q , q > p. 

≤ p < q ≤ ∞ e -tP p→q ≤ C γ(t) n 2p (1-p q ) , t ∈]0, 1]. (4.1)
Proof. The proof is based on Duhamel's formula

e -tP = e -tP 0 + t 0 e -(t-s)P 0 W e -sP ds. (4.2) Set α(p, q) = n 2 ( 1 p - 1 q ).
Remark that γ(t) ∼ ct 4 as t → 0 + . For 1 ≤ p ≤ p ≤ 2 such that 1 p -1 p < 1 4n , one has: 4α(p, p ) < 1 2 . Since e -tP is a contraction semigroup in L p , by (3.11), one has

e -tP p→p ≤ e -tP 0 p→p + C t 0 ∇ v e -(t-s)P 0 p→p e -sP p→p ds ≤ C γ(t) -α(p,p ) + t 0 |t -s| -1 2 -4α(p,p ) ds ≤ C 1 γ(t) -α(p,p ) , for t ∈]0, 1]. For each n ≥ 1, take k = k(n) numbers p 1 , • • • , p k such that 1 = p 1 < p 2 < • • • < p k-1 < p k = 2 and 1 p j - 1 p j+1 < 1 4n
.

Writing e -tP as (e -t k P ) k , one obtains

e -tP 1→2 ≤ e -t k P p 1 →p 2 • • • e -t k P p k-1 →2 ≤ Cγ(t) -α(1,p 2 )-•••-α(p k-1 ,2) = Cγ(t) -α(1,2)
for t ∈]0, 1]. This proves (4.1) for p = 1 and q = 2. The general case follows by duality and interpolation.

4.2. Large-time estimate for e -tP . Theorem 4.2. Assume n = 3 and that (1.5) is satisfied with ρ > 1. One has for

1 ≤ p < q ≤ ∞ e -tP p→q ≤ Ct -3 2p (1-p q ) (4.3) 
for t ∈ [1, ∞[.
Under the conditions of Theorem 4.2, it is proved in [START_REF] Wang | Large-time asymptotics of solutions to the Kramers-Fokker-Planck equation with a short-range potential[END_REF] that for s > 3 2 ,

x -s e -tP x -s

L 2 →L 2 ≤ C t -3 2 , t ≥ 0. (4.4) 
It follows that for 0 < r ≤ 3 2 and s > r, one has

e -tP L 2,s →L 2,-s ≤ C t -r , t ≥ 0. (4.5) 
Here

L 2,s = L 2 (R 2n x,v , x 2s dxdv).
Proof of Theorem 4.2 To obtain large time L p -L q estimate for e -tP , we use the following decomposition which is deduced from Duhamel's formula :

e -tP = e -tP 0 + I(t) + J(t) (4.6) 
where

I(t) = t 0 e -(t-s)P 0 W e -sP 0 ds, (4.7) 
J(t) = t 0 s 0
e -(t-s)P 0 W e -τ P W e -(s-τ )P 0 dτ ds.

Decompose I(t) = I 1 (t) + I 2 (t) and J(t) = J 1 (t) + J 2 (t) where

I 1 (t) = t 2 0
e -(t-s)P 0 W e -sP 0 ds,

I 2 (t) = t t 2
e -(t-s)P 0 W e -sP 0 ds,

J 1 (t) = t 2 0 s 0 e -(t-s)P 0 W e -τ P W e -(s-τ )P 0 dτ ds, J 2 (t) = t t 2
s 0 e -(t-s)P 0 W e -τ P W e -(s-τ )P 0 dτ ds

We estimate each term on the right hand side in L 1 -L ∞ norm. Remark first that since ∇V (x) is bounded, the portion of the integral in I 1 (t) related to s ∈ [0, 1 4 ] can be bounded by

1 4 0 e -(t-s)P 0 W e -sP 0 ds 1→∞ ≤ 1 4 0 ∇V ∞ e -(t-s)P 0 1→∞ ∇ v e -sP 0 1→1 ds ≤ Ct -3 2 1 4 0 s -1 2 ds ≤ Ct -3 2
for t ≥ 1. Under the assumption (1.5), ∇V (x) ∈ L r (R 3 ) for any r > 3 1+ρ and r ≥ 1. By Hölder's inequality and (3.11), ∇V e -δP 0 , δ > 0, maps continuously L p to L 1 where

3 < p = r r -1 < 1 + 1 + ρ 2 -ρ .
This is possible, because 1+ρ 2-ρ > 2 for ρ > 1. It follows that ∇V e -sP 0 1→1 ≤ ∇V e -1 8 P 0 p→1 e -(s-1 8 )P 0 1→p (4.9)

≤ Cs -3 2 (1-1 p ) (1 + s -1 2
). This shows that s → ∇V e -sP 0 1→1 is integrable in s ∈ [ 1 4 , ∞[. Consequently, I 1 (t) can be bounded as follows

I 1 (t) 1→∞ ≤ Ct -3 2 + t 2 1 4
∇ v e -(t-s)P 0 1→∞ ∇V e -sP 0 1→1 ds

≤ C 1 t -3 2 1 + t 2 1 4
∇V e -sP 0 1→1 ds

≤ C 2 t -3 2 , for t ≥ 1. Since ∇V ∈ L r (R 3 
x ), by (3.12), e -δP 0 ∇V is bounded from L ∞ to L r . Corollary 3.2 shows e -(t-s)P 0 ∇V ∞→∞ ≤ (e -(t-s-δ)τ P 0 r→∞ e -δP 0 ∇V ∞→r

≤ C t -s -3 2r = C t -s -1+ρ 2 + , for s ∈ [ t 2 , t -1 4
] and t ≥ 1. Therefore, I 2 (t) can be estimated by

I 2 (t) 1→∞ ≤ Ct -3 2 + t-1 4 t 2
e -(t-s)P 0 W e -sP 0 1→∞ ds

≤ C 1 t -3 2 1 + t-1 4 t 2 t -s -1+ρ 2 + ds ≤ C 2 t -3 2 , for t ≥ 1. It follows that I(t) 1→∞ ≤ Ct -3 2 , for t ≥ 1.
(4.10) For the term J 1 (t), we split the domain of integration Ω = {(τ, s);

0 ≤ s ≤ t 2 , 0 ≤ τ ≤ s} into two parts: Ω = Ω 1 ∪ Ω 2 ,
where

Ω 1 = {(τ, s) ∈ Ω; either τ ≤ 1 4 or s -τ ≤ 1 4 }, Ω 2 = Ω \ Ω 1 .
By Corollary 3.2 and the fact that e -tP is contraction in L p , one can show as above that the L 1 -L ∞ norm of the piece of J 1 (t) related to the integration with respect to (τ, s) ∈ Ω 1 can be bounded by Ct -3 2 . To treat the remaining part, let p > 3 be close enough to 3. Then e -1 8 P 0 ∇V e -τ P ∇V e -1 8 P 0 p→1

x It follows that

-( 1 2 + ) : L p (R 3 ) → L 2 (R
J 1 (t) L 1 →L ∞ ≤ Ct -3 2 , if ρ > 3 2 C t -ρ+ , if 1 < ρ ≤ 3 2 .
(4.11)

The same estimates hold true for J 2 (t). Putting them together, we obtain

J(t) L 1 →L ∞ ≤ Ct -3 2 , if ρ > 3 2 C t -ρ+ , if 1 < ρ ≤ 3 2 .
(4.12)

From Corollary 3.2), (4.6), (4.10) and (4.12), we obtain

e -tP L 1 →L ∞ ≤ Ct -3 2 , if ρ > 3 2 C t -ρ+ , if 1 < ρ ≤ 3 2 . If ρ > 3 2 , then Theorem 4.2 is proved by interpolation. If 1 < ρ ≤ 3 2 , one obtains e -tP L p →L q ≤ C t -ρ( 1 p -1 q )+ , (4.13) 
for t > 1 and 1 ≤ p < q ≤ ∞.

We now use (4.13) instead of (4.5) to improve large time decay of e -tP for ρ ∈]1, 3 2 ]. Let β 0 (p, q) = ρ( 1 p -1 q ). Using (4.6) and the results for e -tP 0 , we can show as before

e -tP 1→∞ ≤ Ct -3 2 + J 1 (t) 1→∞ + J 2 (t) 1→∞ (4.14) 
for t ≥ 1. To estimate J 1 (t) 1→∞ . Again we spilt Ω = Ω 1 ∪ Ω 2 as before. The L 1 -L ∞ norm of the piece of J 1 (t) given by integration over Ω 1 is bounded by Ct -3 2 . For (τ, s) ∈ Ω 2 , we have e -(t-s)P 0 W e -(s-τ )P W e -τ P 0 1→∞ ≤ e -(t-s-δ)P 0 ∇ v 1→∞ e -δP 0 ∇V e -(s-τ )P ∇V e -δP 0 p→1 ∇ v e -(τ -δ)P 0 1→p where p = 3 + , > 0, δ > 0. By Hölder's inequality, (3.11) and (3.12), ∇V e -δP 0 is bounded from L p → L p 1 and e -δP 0 ∇V is bounded from L q 1 → L 1 , where

1 p 1 = 1 p + 1 r and 1 q 1 + 1 r = 1.
By choosing p close to 3 and r close to 3 1+ρ , p 1 can be any number smaller than 3 2+ρ and q 1 can be any number bigger than 3 2-ρ . Set

r 1 = β 0 ( 3 2 + ρ , 3 2 -ρ ) = 2ρ 2 3 
Making use of (4.13) instead of (4.5), one obtains

J 1 (t) 1→∞ ≤ C t 3 2 1 + t 2 1 4 s -r 1 + ds
In a similar way, one can show that J 2 (t) 1→∞ satisfies the same estimate. If ρ > 3 2 , then r 1 > 1 and Theorem 4.2 is proved. If 1 < ρ ≤ 3 2 , one obtains for any > 0

e -tP L p →L q ≤ C t -( 1 2 +r 1 )( 1 p -1 q )+ , (4.15) 
for t > 1 and 1 ≤ p < q ≤ ∞. Set β 1 (p, q) = ( 1 2 + r 1 )( for t > 1 and 1 ≤ p ≤ q ≤ ∞. For k ≥ 3, set β k-1 (p, q) = ( 1 2 + r k-1 )( 1 p -1 q ) and

r k = β k-1 ( 3 2 + ρ , 3 2 -ρ ) = ρ(1 + 2r k-1 ) 3 , . (4.17) 
Let ρ > 1 be fixed. By an induction on k, one can prove that for each k, either r k > 1, then (4.3) is proved by the above argument; or 0 < r k ≤ 1, then one has e -tP L p →L q ≤ C t -( 1 2 +r k )( 1 p -1 q )+ , (4.18) for t > 1 and 1 ≤ p < q ≤ ∞. We affirm that for each ρ > 1, there exists k ∈ N such that r k > 1. In fact, if r k ≤ 1 for all k ∈ N, then {r k } would be an increasing sequence bounded by 1. Let = lim k→∞ r k . Then ∈]0, 1]. However, taking the limit k → ∞ in (4.17 19) The method used in the proof of Theorem 4.2 does not allow to deduce from (4.19) any decay of e -tP in L 1 -L ∞ for t large. For example, for the term I 1 (t) given in (4.6), the method used in the proof of Theorem 4.2 only gives

I 1 (t) 1→∞ ≤ C t -1 2 + t 2 1 4
t -s -1 2 s -1 2 ds , t ≥ 1.

The last integral does not decay as t → ∞.

8 ) for f ∈ L 1 .

 81 The first estimate implies (3.5) for p = 1. By arguments of duality and interpolation, we obtain (3.5) for p ∈ [1, ∞]. (3.6) follows from (3.1) and (3.5) by interpolation. (b). Since C ∞ 0 (R 2n

4. 1 .

 1 Short-time estimates for e -tP . Theorem 4.1. Let n ≥ 1 and (1.5) be satisfied with ρ ≥ -1. Then one has for 1

Ω 2 e 2 Ω 2 e -1 8 P 1 8 P 0 p→1 s -τ - 3

 2228103 -(t-s)P 0 W e -τ P W e -(s-τ )P 0 dτ ds 1→∞ ≤ Ct -3 0 ∇V e -τ P ∇V e -

ρ 3 -

 3 2ρ > 1, because ρ > 1. This contradiction in proves that for each ρ > 1, there exists some k such that r k > 1. Therefore(4.3) follows by repeating at most k times the arguments from (4.13) to (4.15) with (4.13) replaced by newly improved estimate. This achieves the proof of Theorem 4.2 for any ρ > 1. Theorem 1.1 follows from Theorems 4.1 and 4.2. Remark 4.3. Let n = 1 and condition (1.5) be satisfied with ρ > 4. It is known ([12]) that for s > 5 2 e -tP L s →L -s ≤ C t -1 2 , t ≥ 1. (4.

  Repeating the arguments from (4.13) to (4.15) with (4.13) replaced by(4.15), one concludes that if r 2 > 1, Theorem 4.2 is proved. Otherwise, one has e -tP L p →L q ≤ C t -( 1

						1 p -1 q ) and
	r 2 = β 1 (	3 2 + ρ	,	3 2 -ρ	) =	ρ(1 + 2r 1 ) 3	.
					2 +r 2 )( 1 p -1 q )+ ,	(4.16)