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Abstract. Surrogate based optimization is now well established in the field of derivative
free optimization. Among the various possible approaches, this study focuses on Bayesian
optimization using Gaussian process interpolation as surrogate models. From the pio-
neering work on unconstrained optimization based on the expected improvement to the
latest developments of enrichment criteria to deal with nonlinear constrained problems,
the Bayesian framework has been extensively studied and used in many application fields.
During the last few years a collaboration between the authors led to the publication of
several contributions aiming at the development and the evaluation of MDO formulations
based on disciplinary Gaussian process surrogate models. In these formulations each disci-
plinary solver is modeled by Gaussian processes that are coupled to solve the MDA. Hence,
the formulation is uncoupled as only the disciplinary surrogate models are coupled and not
the actual disciplinary solvers. It is proposed here to focus on two challenges raised by
this formulation, to which the authors contributed in the past. The first one concerns the
extension and application of the Bayesian framework to the case in which the objective
function is not modelled by a Gaussian random field. To make progress with respect to
this issue, an original representation of this random field using an adaptive discretization
strategy has been proposed leading to the Efficient Global Multidisciplinary Optimization
(EGMDO) formulation. The second one concerns the resolution of the interdisciplinary
coupling in the case of large vector valued coupling variables. As an example, static aero-
elasticity which couples a CFD solver and a FEM solver is studied. Some proposals, based
on model order reduction (e.g. Proper Orthogonal Decomposition) and Gaussian pro-
cess interpolation, have been evaluated by the authors. Objective of this paper is thus to
sum up these various contributions while presenting the potential benefits and remaining
challenges of these MDO formulation to the MDO researchers community.

Keywords: Multidisciplinary Design and Optimization, Bayesian Optimization, Gaus-
sian Process Interpolation, Model Order Reduction



1 INTRODUCTION

Multidisciplinary Design and Optimization (MDO) is an attractive approach for aero-
nautic industry compared to the sequential optimization of each discipline involved in the
design of a complex system (such as an aircraft). Indeed, by taking into account the inter-
actions between disciplines, MDO allows to solve both the performance optimization and
the consistency constraints between disciplines. Formally, this approach deals with the
optimization of complex systems involving several disciplinary solvers coupled together
in a non linear system of equations called Multidisciplinary Design Analysis (MDA). On
the counterpart, the main drawbacks of this approach are the difficulty to set up the
disciplinary coupling (non intrusive coupling between various numerical solvers) and the
numerical cost due to the resolution of the MDA’s non linear system of equations. Hence
many studies have been focused on the development of MDO formulations in order to ease
the implementation of the MDO and to reduce its computational cost. As representative
examples one can cite the Multidisciplinary Feasible approach (MDF) and the Individual
Discipline Feasible approach (IDF) [1]. These two approaches solve the exact MDO prob-
lem, MDF consists in solving the MDA by a non intrusive coupling of the disciplinary
solvers at each iteration of the optimization algorithm, and thus uncouples the resolution
of the optimization problem and the resolution of the MDA non linear system. It offers the
advantage to reach a physically relevant solution at each step of the optimization phase,
but leads to an important numerical cost as the MDA has to be solved at each iteration of
the optimization process. Contrarily, the IDF approach uncouples the disciplinary solvers
but couples the resolution of the optimization problem and the resolution of the MDA i.e.
the optimization algorithm handling both the design variables and the coupling variables.
Several other formulations have been proposed in the literature in order to solve the MDO
problem in an efficient way. A review of some of these approaches can be found in [2].
It should be noted that the majority of these approaches only solve an approximation of
the original MDO formulations.

In the following we are mainly interested in derivative free optimization (DFO), thus the
gradient based approaches and coupled adjoined based developments will not be discussed
here. Regarding the DFO approaches this paper will focus on Bayesian approaches.
Indeed, since the pioneer work of [3] leading to the Efficient Global Optimization algorithm
(EGO), the Bayesian framework has been regularly used and improved in many different
optimization contexts. As an example in MDO Xu et al. [4] used the EGO as optimizer
in the MDF, IDF and simultaneous analysis and design (SAND) MDO formulations and
compared the results with gradient based and genetic optimization algorithms. A similar
approach is also applied in [5] to a mixed discrete-continuous MDO problem. Another
application of Bayesian optimization to costly MDO problem is presented in [6]. However
these studies use the Bayesian framework with a minimal adaptation to the MDO context
and mainly substitute classical gradient based optimizers by Bayesian ones. This remark
was the starting point of several developments made by the authors to further increase the
coupling between MDO and the Bayesian framework in the last years. The ambition of
the present paper is thus to introduce these developments and to illustrate the advantages
and constraints of a Bayesian approach in a multidisciplinary context.

The starting point of Bayesian optimization is the approximation of the objective
function by a stochastic process, generally a Gaussian process. Then, this approximation
is sequentially enriched to increase its accuracy in promising areas for optimization. This



strategy relies on the exploitation of the stochastic character of the approximation. Several
criteria have been proposed in the literature to find these promising areas, the most famous
one being probably the Expected Improvement. Thus a light coupling between MDO and
Bayesian optimization consists in applying the previous strategy directly to the MDO
formulation. Although this approach can be efficient it does not exploit the partitioned
architecture of the MDA and our motivation is to take advantage of this partitioning to
further improve the efficiency of the approach in a multidisciplinary context.

As a consequence, the basic idea that drove the development of an Efficient Global
Multidisciplinary Design and Optimization (EGMDO) algorithm during the last 5 years
was to replace each disciplinary solver involved in the MDA by a disciplinary Gaussian
process (GP) surrogate model. This simple idea is illustrated in Fig. 1 on an MDO
problem involving two disciplines.

Discipline 1
y1 = c1(z, y2)

Discipline 2
y2 = c2(z, y1)

y1

y2

Objective
fobj = c3(z, y?1 , y

?
2)

EGMDO

GP Discipline 1
Ỹ1 = GPy1 (z, Ỹ2)

GP Discipline 2
Ỹ2 = GPy2 (z, Ỹ1)

Ỹ1

Ỹ2

Random Objective
Yobj = fobj(z, Ỹ

?
1 , Ỹ ?

2 )

Figure 1: Illustration of an MDO problem involving two coupled disciplines and an ob-
jective function. On the left, the disciplines are given by some costly black-boxes. On the
right, the disciplines have been replaced by some surrogate models (Gaussian Processes
denoted by GPs).

Besides the apparent simplicity of this formulation, it raises several questions about the
disciplinary surrogate model construction and their exploitation in a Bayesian framework.
It is proposed here to focus on the two following topics:

1. How to sample the disciplinary surrogate models with respect to the coupling vari-
ables? In the case of scalar coupling variables this difficulty is generally solved by
an expert judgement able to define appropriate variation bounds for each coupling
variable. However in the case of large vector valued coupling variables, such as in
the case of high fidelity aeroelastic coupling for example, this question is challenging
and will be discussed in Section 3.

2. How to deal with the error introduced by the use of GP disciplinary surrogate
models? Simplest answer is to construct disciplinary surrogate model as accurate
as possible and to neglect the error introduced in the optimization process (as for
example in [7], [8], [9] and [10]). Even if this approach can lead to satisfactory
results it is obvious that its numerical cost can be far from optimal and that the
accuracy at the minimum is hazardous.

Following the path of Bayesian optimization we proposed to sequentially enrich the
disciplinary GPs with respect to their accuracy in promising areas for optimization.
As a consequence the first step is to model the objective function as a stochastic
process. In our context this objective function cannot be modelled by a GP as the



non linear coupling between the disciplinary GP leads to a non Gaussian model for
the objective function. However this difficulty can be tackled by propagating the
uncertainties introduced by the disciplinary GPs through the MDA. Section 2 de-
scribed the proposed strategy to, propagate these uncertainties, model the objective
function as a non Gaussian random process, and enrich the disciplinary GPs.

2 EFFICIENT GLOBAL MULDISCIPLINARY DESIGN AND OPTIMIZA-
TION

2.1 Problem definition

First of all let us define the MDO problem that is of interest in the following:
Find the optimal design variables z? ∈ Z such that

z? = arg min
z∈Z

fobj(z, y
?
c(obj)(z)) (1)

where fobj is the objective function to minimize which depends on the design variables z
and on some (possibly all) of the converged coupling variables denoted by y?

c(obj)(z). The
design variables z belong to a design space Z ⊂ Rn. The converged coupling variables
are denoted by y?(z) = {y?i (z), i = 1, · · · , nd} and c(obj) is a set of indexes used to identify
the coupling variables involved in the computation of the objective function. We wrote
y?(z) as the solution of the non linear system of nd equations, called MDA,

yi = fi(z, yc(i)), i = 1, · · · , nd ∀z ∈ Z (2)

where yc(i) is the vector of the coupling variables for the discipline i and nd is the number
of disciplines. The set of indexes denoted by c(i) identifies the coupling variables i.e.
#(c(i)) ≤ (nd − 1) and i /∈ c(i). Finally, fi is the solver of discipline i. Let us note that,
with the previously introduced notations, disciplines i and j are said to have a feedback
loop (or coupling) if i ∈ c(j) and j ∈ c(i). In the following, it is assumed that Eq. (2)
contains at least one feedback coupling. It is also assumed that Eq. (2) has a unique
solution for any point of the design space.

As stand in the introduction, the idea of the proposed approach is to take advantage
of the partitioned formulation of the MDA to construct disciplinary GPs. Hence the
following notations are introduced to denote the disciplinary GPs. The GP that is used
to approximate the disciplinary solver fi is build from a Design of Experiments (denoted
by DoEfi) sampled over the space Z × C(i) where C(i) denoted the space of the coupling
variables yc(i) for the discipline i. The idea of GP approximation is then to condition a
prior GP on DoEfi and to estimate the parameters of this GP (by maximum likelihood
in this work). In the following, random quantities will be denoted by upper case letters.
This leads to the following stochastic approximation,

Ỹi(z, yc(i)) = µfi(z, yc(i)) + εi(z, yc(i)) (3)

where µfi(z, yc(i)) is the mean function of the GP and εi(z, yc(i)) is a zero mean GP whose
covariance function is the one of the prior GP conditioned on DoEfi . Thus for a given

couple (z(0), y
(0)

c(i)
) ∈ Rn×C(i) that does not belong to DoEfi , the obtained approximation

reads,
Ỹi(z

(0), y
(0)

c(i)
) = µfi(z

(0), y
(0)

c(i)
) + σfi(z

(0), y
(0)

c(i)
)ξi (4)



where µfi(z
(0), y

(0)

c(i)
) is the mean value, σfi(z

(0), y
(0)

c(i)
) is the standard deviation and ξi is a

standard Gaussian random variable. It should be noted that the expressions of εi, µfi and
σfi are fully specified by the kind of Gaussian process approximation used. For conciseness
we choose here to not detail the theory of Gaussian process interpolation and refer the
reader to [11] instead.

In practice one can note that the construction of disciplinary GP assumed that it is
possible to sample the disciplinary solver fi over the space Z ×C(i). If it is easy to define
the range of variation for Z it could be much more challenging for C(i). In this section
it is assumed that an expert judgement defines the range of variation of the coupling
variables.

Once each disciplinary GP has been constructed independently one can form the fol-
lowing stochastic non linear system of nd equations,

Ỹi(z, Ỹc(i)) = µfi(z, Ỹc(i)) + εi(z, Ỹc(i)), i = 1, · · · , nd ∀z ∈ Z (5)

where Ỹc(i) stands for the random vector of coupling variables affecting the discipline
i. We define the solution of this random non linear system of equations as the joined
probability distribution of the random vector of the converged coupling variables Ỹ ?(z) ={
Ỹ ?
i (z), i = 1, · · · , nd

}
such that,

Ỹ ?
i (z, Ỹ ?

c(i)(z)) = µfi(z, Ỹ
?
c(i)(z)) + εi(z, Ỹ

?
c(i)(z)), i = 1, · · · , nd ∀z ∈ Z (6)

Let us underline here that the joined probability density function of Ỹ ?(z) is not Gaussian
as the MDA is a non linear system. However samples of Ỹ ?(z) can be obtained by drawing
various realizations of the GP surrogate models and solving the MDA for each draw.

Random MDA has been previously studied and several approaches have been proposed
to approximate solution of such a system (see for example [12], [13], [14], and [15]). The
next section details the proposed method in our context.

2.2 Coupling of disciplinary GPs and uncertainty propagation

Objective of this part is to solve the stochastic non linear system of equations given by
Eq. (5) in order to get the probability distribution of the objective function defined by,

Yobj(z, Ỹ
?
c(obj)(z)) = fobj(z, Ỹ

?
c(obj)(z)), ∀z ∈ Z (7)

In order to simplify this resolution we proposed in [15] to use a specific GP model for
each disciplinary solver. Indeed, the GP model given by Eq. (3) involved a zero mean GP
εi with a complex correlation structure. Dealing with the simulation of such a stochastic
process is not straightforward as it needs to be represented by a finite number of random
variables to be exploitable (by Karhunen-Loève decomposition for example). Instead, we
propose to simplify the disciplinary GP model by a perfectly dependent stochastic process
that shares the same pointwise variance as the initial one and that reads,

Ỹ ′i (z) = µfi(z, yc(i)) + σi(z, yc(i))ξi

where the variance is computed regarding Eq. (5) by ∀ z, yc(i) ∈ Z×R#c(i) , σi(z, yc(i))ξi =
εi(z, yc(i)), with ξi a standard Gaussian random variable.



The huge advantage of this approach is that each disciplinary GP is now described by
a single Gaussian random variable ξi. As a consequence it is proposed to solve the system,

Ỹ ′?i (z, Ỹ ′?c(i)) = µfi(z, Ỹ
′?
c(i)) + σi(z, Ỹ

′?
c(i))ξi, i = 1, · · · , nd (8)

whose solution is denoted by the random vector Ỹ ′?(z) =
{
Ỹ ′?1 (z), · · · , Ỹ ′?nd

(z)
}

. As

the variances of the simplified disciplinary GP involved in Eq. (8) and the ones of the
disciplinary GP involved in Eq. (5) are equal, we assume that the probability distribution
of Ỹ ′?(z) is a correct approximation of the one of Ỹ ?(z). It should be noted that the
accuracy of this approximation has been numerically checked in [15]. Moreover, from a
numerical point of view, Eq. (8) is much more simple to solve than Eq. (5) as it only
involves nd independent standard Gaussian random variables denoted by the vector Ξ =
{ξi, i = 1, · · · , nd} in the following.

Once the problem is described by nd independent Gaussian random variables, it is easy
to simulate a sample of the random vector Ỹ ′?(z) by solving Eq. (8) for various draws of
the simplified disciplinary GP. It should be noted that any non linear solver can be used
for this task and that the numerical cost of this operation is negligible as it only involves
analytical simplified GP.

Using this sample, it is straightforward to obtain a sample of Yobj(z, Ỹ
?
c(obj)(z)) by eval-

uations of Eq. (8) and Eq. (7). At this step it is proposed to construct a representation
of this random variable by a Polynomial Chaos Expansion (PCE). This choice can seem
arbitrary but offers many advantages for setting up the Bayesian optimization framework
presented in the next section. Hence, the objective function is approximated by

Ŷobj(z,Ξ) =
P∑
j=1

a
(obj)
j (z)Hj(Ξ) ∀z ∈ Z (9)

where Hj, j = 1, · · · , P are the nd-variate Hermite polynomials, P is the number of

selected polynomial terms and a
(obj)
j (z), j = 1, · · · , P are the coefficients of the expansion

to be determined. The retained truncation strategy consists in keeping all the polynomials
with a degree less or equal to d, thus P = (nd+d)!

nd!d!
. Computation of these coefficients can

be obtained by various approaches. In the following the regression approach introduced
in [16] is retained. It should be noted that this method is easy to set up in the context of
the study as a large number of samples of Yobj(z, Ỹ

?
c(obj)(z)) can be obtained at a very low

numerical cost as explained previously.
A PCE representation of Yobj(z,Ξ) can thus be obtained for any point z ∈ Z by

Eq. (9). The variation of Yobj(z,Ξ) is representative of the uncertainty introduced by the
use of the disciplinary GPs, hence if the disciplinary GPs are not accurate for a given z(0)

the variation of Yobj(z
(0),Ξ) is expected to be important and if the disciplinary GPs are

accurate for a given z(1) the variation of Yobj(z
(1),Ξ) is expected to be low. As one is able

to evaluate the variation of Yobj(z,Ξ), thanks to the PCE representation, for any point
z ∈ Z, the next step is to enrich the disciplinary GP until the variation of Yobj(z,Ξ) is
null at the minimum value. The difficulties are then to propose an enrichment criterion
that focuses on the interesting areas and to deal with a non Gaussian representation of
Yobj(z,Ξ).



2.3 A non Gaussian model for Yobj(z,Ξ) and its enrichment

The previous section introduces a discrete representation of the stochastic process
Yobj(z,Ξ) thanks to the PCE representation given by Eq. (9). This representation allows
to compute approximations of Yobj(z,Ξ) for different values of z by an uncertainty quan-
tification step. In the following it is assumed that the uncertainty quantification by PCE
has been performed on a DoE denoted by DoEUQ =

{
z(i), i = 1, · · · , nUQ

}
. The obtained

PCE formed the following random vector

Ŷobj(Ξ) =
{
Ŷobj(z

(i),Ξ), i = 1, · · · , nUQ
}

The random vector Ŷobj is a discretization of the random field Ŷobj(z,Ξ). As shown in
[12] the Karhunen Loève expansion of this random vector can be easily obtained thanks
to the coefficients of the polynomial chaos expansion and reads,

Ŷobj(Ξ) = µŶobj
+

nUQ∑
k=1

(
P∑
j=2

atjϕ̂kφj(Ξ)

)
ϕ̂k (10)

where aj =
{
a

(obj)
j (z(1)), · · · , a(obj)

j (z(nUQ))
}
, j = 2, · · · , P , µŶobj

= a1 and ϕ̂k are the nUQ

eigenvectors of the covariance matrix KŶ =
∑P

i=2 aia
t
i.

In order to set up a Bayesian optimization framework it is now necessary to introduce
a continuous representation of the random field Ŷobj(z,Ξ), with respect to z. For that

purpose we propose in [17] to approximate the random field Ŷobj(z,Ξ) by Gaussian process
interpolation of the mean value and of the eigenvectors based on the vectors µŶobj

and ϕ̂k
respectively. This leads to the following representation of the random field,

Ŷobj(z,Ξ) ≈ Ỹobj(z,Ξ, η) = µ̃Ŷobj
(z, η0) +

nUQ∑
k=1

(
P∑
j=2

atiϕ̂kφj(Ξ)

)
ϕ̃k(z, ηk), ∀z ∈ Z (11)

where µ̃Ŷobj
(z, η0) and ϕ̃k(z, ηk) are respectively the GP interpolation of the mean vector

µŶobj
and of the eigenvectors ϕ̂k. The term η = [η0, · · · , ηk, · · · , ηnUQ

]t is a random vector
of nUQ + 1 independent normal random variables modeling the uncertainty associated
with these GP interpolations.

Even if the representation given by Eq. (10) can look complex it is actually quiet easy
to implement and, more importantly, it is a very efficient tool to set up our Bayesian opti-
mization framework. Indeed, one can note that it contains all the uncertainties due to the
proposed approximations. More precisely, the vector Ξ models the uncertainty stemming
from the use of disciplinary GPs to approximate the costly disciplinary solvers and the
vector η models the uncertainty due to the interpolation of the mean and eigenvectors of
the KL decomposition used to obtain a continuous representation of the objective function
random field.

Using this continuous representation it is now possible to define an enrichment criterion.
The one use in this work is the classical Expected Improvement (EI) defined by, ∀z ∈ Z

EI(z) = E
[(
Ŷ

(obj)
min (Ξ)|z ∈ DoEUQ − Ỹobj(z,Ξ, η)

)
1
Ỹobj(z,Ξ,η)6Ŷ (obj)

min (Ξ)|z∈DoEUQ

]
(12)



where
1
Ỹobj(z,Ξ,η)6Ŷ (obj)

min (Ξ)|z∈DoEUQ
= 0 if Ỹobj(z,Ξ, η) > Ŷ

(obj)
min (Ξ)|z ∈ DoEUQ and

1
Ỹobj(z,Ξ,η)6Ŷ (obj)

min (Ξ)|z∈DoEUQ
= 1 if Ỹobj(z,Ξ, η) 6 Ŷ

(obj)
min (Ξ)|z ∈ DoEUQ.

One can note that EI(z) is positive for z /∈ DoEUQ and that EI(z) = 0 if z ∈ DoEUQ. The
point z(new) where the uncertainty quantification by PCE should be performed is thus
solution of the optimization problem,

z(new) = arg max
z∈Z

(EI(z)) (13)

It should be noted that the EI defined by Eq. (12) is different from the one proposed
in [3] in the context of optimization of black-box functions. In particular, as the ap-
proximation Eq. (11) is not a Gaussian process, the EI defined by Eq. (12) can not be
computed analytically and will be estimated by MC sampling (see [17] for details about
estimation and optimization of the EI).

The point z(new) ∈ Z that solves Eq. (13) is the one where the uncertainty should
be reduced to improve our knowledge on the minimum of the deterministic objective
function. There are two ways to reduce this uncertainty, first one is to compute the
PCE representation Ŷobj(z

(new),Ξ) which cancels the uncertainty due to the continuous
representation of the random field and modelled by the random vector η. Second one is
then to enrich the disciplinary GP in order to reduce the uncertainty modelled by the
vector Ξ. As this second step is not always necessary to discriminate a candidate z(new)

it is proposed in [18] a two step enrichment, one at the continuous level (with respect to
η) and one at the discrete level (with respect to Ξ) to further reduce the number of calls
to the disciplinary solvers. The details of this enrichment strategy can be found in [18]
and will not be detailed here as these technical details are not necessary for the global
understanding of the proposed method. It should also be noted that two slightly different
versions of the enrichment procedure are available in [19] and [18].

2.4 Application example

The EGMDO strategy described in the previous section has been applied to different
test cases in [19] and in [18] including overall aircraft design problem.

In the following it is proposed to detail and comment an analytical example studied
in [18] as this one offers a robustness study and several comparisons with other MDO
algorithms. This test case is derived from the one proposed by Sellar et al. [20]. The
proposed test case is unconstrained and counts one local and one global minima. It it
defined by the following set of equations,

fobj(z, y
?
c(obj)) = z1 + z2

3 + y?1 + exp(−y?2) + 10 cos(z2)

where z = {z1, z2, z3}, c(obj) = {1, 2} and y? = {y?1, y?2} is solution of the following MDA,
∀z ∈ Z,

y1 = f1(z, y2) = z1 + z2
2 + z3 − 0.2y2

y2 = f2(z, y1) =
√
y1 + z1 + z2

Design space is defined by Z = [0, 10]×[−10, 10]×[0, 10]. Reference solution is obtained by
using MDF approach with SLSQP optimization algorithm and leads to z? ≈ {0, 2.634, 0},
fobj(z

?) ≈ −2.808. Figure 2 presents the variation of fobj in the plane (z2, z3) with z1 = 0.



It should be noted that the local minimum is located at zlm ≈ {0,−2.595, 0} and leads
to fobj(z

lm) ≈ −0.809.
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Figure 2: Application problem. Variation of fobj in the plan (z2, z3) with z1 = 0 and
location of the global minimum z?.

In order to set up the proposed approach, the initial guesses for the coupling variables
spaces are the following, C(1) = [−5, 24] and C(2) = [1, 50]. It should be noted that
choosing the initial guesses for the coupling variables spaces is one of the drawback of the
proposed approach. However, in a realistic case one can rely on expert judgment to get a
first approximation and, more importantly, the proposed enrichment strategy is designed
to enrich these coupling spaces in promising areas without any limitation. As a conse-
quence the boundaries of the coupling variables spaces might evolve during the iterations
of the EGMDO algorithm and thus a poor initial choice for these boundaries might lead
to some extra iterations but should not be detrimental to the global convergence.

The initial disciplinary DoEs, DoEf1 and DoEf2 , count 5 points, respectively sampled
by Latin Hypercube Sampling (LHS) over Z × C(1) and Z × C(2). Initial disciplinary
GPs are then constructed using these DoEs and constant mean function and Gaussian
covariance function are used. According to the proposed method the objective function
is represented by a random field over Z. The initial DoEUQ, used to discretized this
random field, counts 20 points sampled by LHS over Z. Hence, uncertainty propagation
by PCE is carried out at 20 points, PCE of degree 3 is retained and computation of the
PCE coefficients is obtained by regression over 100 points. It should be noted that the
regression sample of size 100 is obtained by solving non linear systems given by Eq. (8)
only involving disciplinary GPs and thus having a negligible numerical cost.

At this initial stage, the approximation given by Eq. (11) is used to compute the
approximation of the random variable modeling the position of the minimum (denoted

by Ẑ? ) and the random variable modeling the value of the minimum (denoted by Ŷ
(obj)
min ).

Figure 3 presents the results where histograms are obtained by 100 MC simulations using
the model defined by Eq. (11).

Figure 3 shows that at initialization, the position of the global minimum (Fig. 3 i)) as
well as its value (Fig. 3 ii)) are poorly predicted by the model given by Eq. (11). Indeed the
mean value of the random position of the minimum Ẑ? is far from the reference one and
its variance is quite large and consequently the random minimum value of the objective
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Ŷ
(obj)
min

fobj(z
?)
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Figure 3: Application example. i) Histograms of the minimum value position Ẑ? ii)

Histogram of the minimum value Ŷ
(obj)
min at initialization of the EGMDO algorithm.

function Ŷ
(obj)
min presents a large variation. The objective of the proposed approach is to

increase the accuracy of the model given by Eq. (11) by improving the disciplinary GPs
only where the minimum is likely to be.

On this example the number of enrichment steps is set to nmax = 10. During these
10 iterations, 6 points are added to the disciplinary GPs which leads to a number of
disciplinary solver evaluations equal to 5 + 6 = 11.

Figure 4 presents the evolution of the maximum value of the EI defined by Eq. (12)
with respect to the enrichment steps. As expected the maximum value of the EI is
globally decreasing during iterations. Hence the uncertainty about the minimum value
and position of the minimum of fobj is reduced by the enrichment strategy.
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Figure 4: Application example. Evolution of the maximum value of the EI defined by
Eq. (12) with respect to the number of iterations of the proposed EGMDO algorithm.

Figure 5 illustrates this uncertainty reduction and presents the histograms of Ẑ? and
Ŷ

(obj)
min obtained after the 10 enrichment steps. Histograms are still obtained by 100 MC

simulations using the model defined by Eq. (11).
Compared to Fig. 3 one can note in Fig. 5 that the proposed algorithm reaches its
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Ẑ?
2

Ẑ?
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Histogram of the minimum value Ŷ
(obj)
min after 10 enrichment steps.

objective after 10 iterations as the random minimum position Ẑ? is almost multi-Dirac
distributed and the three modes are in perfect agreement with the reference values. Con-
cerning the random minimum value Ŷ

(obj)
min the obtained probability distribution is also

very close to a Dirac in perfect agreement with the reference value.
Some comparisons with classical MDO formulations are now provided. More precisely

the MDF and IDF formulations are used in conjunction with the following optimization
algorithm:

• A gradient based algorithm namely SLSQP Sequential Least SQuares Program-
ming [21] where gradient is estimated by finite differences,

• A gradient free algorithm namely COBYLA Constrained Optimization BY Linear
Approximation [22],

• A surrogate based algorithm namely EGO Efficient Global Optimization [3] using
either the Expected Improvement criterion (EI) or an alternative criterion denoted
by WB2s (see [6] for the definition of WB2s criterion).

Resolution with SLSQP and COBYLA has been implemented using the python package
scipy [23], resolution with EGO used an in house python implementation [6]. For each of
these formulations 100 runs are performed with different starting points for SLSQP and
COBYLA and different initial DoE for EGO (initial DoE of size 12 for the MDF-EGO and
of size 20 for the IDF-EGO) and different DoEf1 , DoEf2 , DoEUQ for EGMDO. Table 1
presents the number of runs that converged towards the global optimum (line ncon) and
the mean number of disciplinary solver evaluations over the ncon runs that converged (line
neval).

Results provided by Table 1 allow to draw several conclusions:

• As expected, the number of evaluations of the disciplinary solvers is lower using the
IDF approach than the MDF approach.

• Classical local optimization algorithms (gradient based SLSQP or gradient free
COBYLA) have a poor convergence rate (between 56% and 70%) using either the
MDF or the IDF formulation.



MDF-SLSQP MDF-COBYLA MDF-EGO-EI MDF-EGO-WB2s EGMDO
ncon(%) 57 66 96 100 88
neval 197 638 296 212 13

IDF-SLSQP IDF-COBYLA IDF-EGO-EI IDF-EGO-WB2s
ncon(%) 56 70 99 100
neval 68 206 63 44

Table 1: Application example, comparative study. Results obtained with MDF and IDF
formulations with 3 different optimizers (SLSQP, COBYLA, EGO with two criteria EI and
WB2s). Number of converged runs and mean number of disciplinary solver evaluations are
reported for each formulation over 100 runs. Results obtained by the proposed EGMDO
approach are provided in the last column.

• Global surrogate based optimizer EGO reaches the best results in terms of con-
vergence rate (between 96% and 100%). It is notable that both MDF and IDF
formulations in conjunction with the WB2s criterion converge to the global opti-
mum for every run.

• The best result is obtained using IDF formulation with EGO-WB2s as optimizer.
This approach converges to the global optimum for every case with a mean number
of disciplinary solver evaluations equals to 44 which is the lowest value on this
comparison.

• Concerning the result obtained with the proposed EGMDO approach, one can note
that the convergence rate of 88% is better than the one obtained using local op-
timizers but lower than the one obtained by EGO. However the mean number of
disciplinary solver evaluations is only 13 for the EGMDO approach, compared to 44
for the IDF-EGO-WB2s. As a conclusion these results should be seen as promising
for the new EGMDO approach as, even if it does not reach a 100% convergence
rate, the benefit in terms of disciplinary solver evaluations is important.

2.5 Conclusions

This first section has briefly presented the EGMDO method that has been developed
by the authors over the last five years. This approach can be summarized by the following
few points:

• Construct disciplinary surrogate models by GP for each disciplinary solver involved
in the MDA.

• Propagate the uncertainty stemming from the disciplinary GP. This step has been
studied by the authors in [15] in which a PCE representation of the objective function
was proposed.

• Construct a continuous representation of the non Gaussian random field modelling
the objective function. Such a continuous model has been introduced by the authors
in [17].

• Exploit this model to enrich the disciplinary GP until the global minimum of the
objective function is reached with a given accuracy. This enrichment strategy has
been proposed in [19] and in [18].



The first results obtained by this approach are promising and it is clear for the authors
that many improvements can be achieved in the different steps of the proposed algorithm.
However the proposed approach is dedicated to low dimensional coupling variables as each
one is modelled by a disciplinary GP. In the following we proposed an extension dedicated
to the large vector valued coupling variables, which opens the gate to the resolution of
high fidelity MDA by a Bayesian approach as it will be presented in the last part of the
next section.

3 HANDLING LARGE VECTOR VALUED COUPLING VARIABLES: THE
EXAMPLE OF AEROELASTICITY

In the following we are interested in the partitioned resolution of non linear system of
equations involving the resolution of partial differential equation by numerical methods
such as the finite element method and/or the finite volume method. Compared to the
previous section the new difficulty here comes from the dimension of the coupling variables.
Indeed, in the strong coupling case, the disciplinary solvers exchange high dimensional
information such as pressure or displacement fields expressed on different meshes. Sharing
this high dimensional information creates some difficulties in terms of sharing information
between meshes and different approaches [24] are available to set up the partitioned
approach. This difficulty will not be discussed any further in the present paper and
coupling will be set up using interpolation by radial basis function as presented in [25].

Even if the approach detailed in the following can be set up for any MDA involving
vector valued coupling variables it is proposed to focus on static aeroelasticity of a wing.
More precisely it is assumed that the structural model is linear elastic and solved by a
finite element method and that the aerodynamic model is a potential fluid model solved
by the vortex lattice (VLM) method. Hence this illustrative MDA problem reads:

Find the displacement field U(z,Γ) and the circulation vector Γ(z, U) over a wing that
solve, {

U(z,Γ) = f1(z,Γ)
Γ(z, U) = f2(z, U)

(14)

where f1 and f2 are respectively the finite element and the VLM solvers. In Eq. (14) it
is assumed that the interpolation operators discussed previously are hidden in f1 and f2,
thus the coupling variables of the problem are U ∈ Rns , ns being the dimension of the
finite element discretization (number of degrees of freedom), and Γ ∈ Rna , na being the
size of the VLM mesh (number of panels).

As an illustration, Fig. 6 presents the type of numerical models that are used for our
numerical experiments. These models, while not state of the art, are representative of the
complexity of the models used in overall aircraft design MDO problems and allow to set
up and assess the performance of the proposed approach efficiently. Note that we plan to
increase the complexity of these models in the future.

In order to apply the EGMDO strategy developed in the previous section it is proposed
to use model order reduction and interpolation by GP in different ways introduced in the
following.

3.1 Model order reduction of converged multidisciplinary analysis

The first idea to introduce high fidelity coupling in the EGMDO algorithm is to use
reduced order model of the disciplinary solution of the MDA. Hence it is proposed to use



i) ii)

Figure 6: i) Finite element model of the structural part of the wing (skin, spars, ribs). ii)
VLM mesh of the wing.

disciplinary surrogate models of the form,

Û(z) =

NU∑
i=1

ûi(z)Ui (15)

and

Γ̂(z) =

NΓ∑
i=1

γ̂i(z)Γi (16)

where the bases Ui, i = 1, · · · , NU and Γi, i = 1, · · · , NΓ are constructed by snapshot
Proper Orthogonal Decomposition (POD) and ûi, i = 1, · · · , NU and γ̂i, i = 1, · · · , NΓ

are GP interpolations of the POD coefficients. These surrogates models are known as
POD+I (POD+Interpolation) in the literature ([26] or [27] among others). The use of
GP interpolation for the coefficients of the reduced order model, as in [28] for example,
allows to quantify the uncertainty associated to the interpolation and thus to set up the
EGMDO algorithm. However it should be noted that the error associated to the POD
approximation is neglected. Hence, it is important to control this error, in a so called
offline phase, before the use and the enrichment of the disciplinary surrogate models. In
the following we present an application of this first strategy.

In this application the design space Z is of dimension 6 and made by 4 thicknesses of
different wingbox parts, the span and the chord. These 6 variables define the vector z.
Then a DoE is created by sampling over Z. In order to ensure a prescribed level of accu-
racy of the reduced order model built from this DoE, a greedy procedure presented in [29]
is used. This construction needs the evaluation of 15 MDA using the actual disciplinary
solvers. Solving this MDA using Gauss Seidel algorithm needs around 10 evaluations of
each disciplinary solver to achieve convergence. Thus the number of disciplinary solver
evaluations to construct the initial disciplinary surrogate models given by Eq. (15) and
Eq. (16) is around 10× 15 = 150.

Once these disciplinary surrogate models are constructed it is straightforward to set up
the proposed EGMDO algorithm. Indeed, given Eq. (15) and Eq. (16), let us denote µûi(z),



µγ̂i(z) and σûi(z), σγ̂i(z) the mean and standard deviation of the GP used to interpolate
the coefficients of the reduced order model, then the disciplinary surrogate models are
Gaussian random variables (by linear combination of independent Gaussian variables)
whose mean and standard deviation are given by,{

µÛ =
∑NU

i=1 µûi(z)Ui
σ2
Û

=
∑NU

i=1 σ
2
ûi(z)

U2
i

(17)

and {
µΓ̂ =

∑NΓ

i=1 µγ̂i(z)Γi
σ2

Γ̂
=
∑NΓ

i=1 σ
2
γ̂i(z)

Γ2
i

(18)

where (U2
i )j = ((Ui)j)

2, j = 1, · · · , ns and (Γ2
i )j = ((Γi)j)

2, j = 1, · · · , na. These disci-
plinary surrogate models allow to quantify the uncertainty introduced by the interpolation
on the whole solution vectors. As an example, Fig. 7 i) presents the exact displacement
field for a given z as well as the mean µÛ , one can see that the approximation slightly
underestimates the exact value. Figure 7 ii) presents the exact value of the displacement
field and a 99% confidence interval constructed from σ2

Û
, it is interesting to note that the

exact value bounded by this confidence interval meaning that the uncertainty propagation
is, in that case, relevant.

i) ii)

Figure 7: i) Mean value and exact value of the displacement field (the approximation
slightly underestimates the exact value). ii) Exact value of the displacement field and
99% confidence interval.

It should be noted that the computation of the PCE of an objective function that
depends on Û and Γ̂ is parametrized by NU +NΓ independent standard Gaussian variables
denoted by the random vector Ξ in the previous section.

This first solution to deal with large vector valued coupling variables has the following
characteristics:

• The disciplinary surrogate models only depend on the design variables z contrarily
to the one introduced in the first section which depends on both the design variables
and the coupling variables. This offers the advantage to be easy to implement but
requires a higher computational budget as the training of these POD+I surrogate
models is done on a DoE of converged MDA.

• In this approach the MDA is seen as a black box and the approximation is done on
the output of this black box (the displacement field and the circulation vector that



solve Eq. (14) in that particular case). This allows to easily set up the proposed
EGMDO algorithm but does not take advantage of the partitioned MDA which was
our primary objective.

Hence, in order to further increase the coupling between MDO and the Bayesian frame-
work it is proposed in the next section to extend the concept of disciplinary surrogate
models that depends on both the design and the coupling variables to the case of vector
valued coupling variables.

3.2 Coupling of disciplinary reduced order model

3.2.1 Proposed formulation

In order to take advantage of the partitioned MDA (i.e. the possibility to run simula-
tions of the disciplinary solvers independently) it is proposed in this section to study the
construction of POD+I disciplinary surrogate models of the form,

Û(z, γ̂j, j = 1, · · · , NΓ) =
∑NU

i=1 ûi(z, γ̂j, j = 1, · · · , NΓ)Ui
Γ̂(z, ûi, i = 1, · · · , NU) =

∑NΓ

j=1 γ̂j(z, ûi, i = 1, · · · , NU)Γj
(19)

Compared to the disciplinary surrogate models given by Eq. (15) and Eq. (16) it
should be noted that the ones in Eq. (19) not only depend on the design variables z
but also on the coupling variables γ̂j, j = 1, · · · , NΓ and ûi, i = 1, · · · , NU respectively.
Hence, Eq. (19) is the high dimensional equivalent of the stochastic non linear system of
equations given in the first section by Eq. (5). As in the first section it is proposed to
model the GPs ûi(z, γ̂j, j = 1, · · · , NΓ) and γ̂j(z, ûi, i = 1, · · · , NU) by perfectly dependent
GPs leading to a stochastic system of equations of dimension NU + NΓ. Following the
notation introduced in the first section the random vector used to sample these GPs is
denoted by Ξ = {ΞU ,ΞΓ}, where ΞU = {ξi, i = 1, · · · , NU} and ΞΓ = {ξi, i = 1, · · · , NΓ}
where ξi are NU +NΓ independent standard Gaussian variables.

This formulation relies on the capability to construct the disciplinary surrogate models.
In that case, this means the construction of POD+I surrogate models over the space of
the design variables and the coupling variables. Contrarily to the scalar coupling variables
case, the sampling over the coupling variables space is more challenging in the large vector
valued coupling variables context.

3.2.2 Construction of the disciplinary surrogate models and exploitation

The simplest strategy to sample over the coupling variables space and manage to
construct a disciplinary surrogate model is to use the deterministic non linear solver
as sampler. First, a sample of p design variables zi, i = 1, . . . , p over the space Z
is generated using an appropriate DoE method, Latin Hypercube Sampling (LHS) for
example. Then, the exact MDA associated to each design sample is computed using the
MDA solver (or unconverged ones as proposed by [27]). For each design zi, a certain
number of iterations is needed. All those solver solutions are used as snapshots to build
disciplinary POD bases Ui, i = 1, · · · , NU and Γj, j = 1, · · · , NΓ. Using these bases it is
possible to obtain a sample of the POD coefficients by projection of the already computed
disciplinary solver solutions.



This first strategy is relatively simple to set up and has been applied by the authors
in [30] to the study of the static aeroelasticity of a wing. In this first test case the design
variable is one dimensional (the angle of attack has been retained for the illustration)
and the quantity of interest is the lift-to-drag ratio of the wing. Following the proposed
strategy this quantity of interest is approximated by a PCE with respect to the vector
Ξ (as in Eq. (9)). For this illustration the initial DoE is created by the resolution of 5
MDA (for z in [1, 10]) leading to 50 evaluations of each disciplinary solver (Gauss Seidel
algorithm is used and around 10 iterations are necessary to reach the convergence). The
disciplinary surrogate models are constructed from these 50 solutions leading to NU = 4
and NΓ = 3 (see [30] for the numerical details of the POD implementation). Hence the
stochastic dimension of the problem is 7. Figure 8 presents a sample of the lift-to-drag
ratio (denoted by YQoI) as well as its PCE approximation (denoted by ŶQoI). One can note
that the PCE approximation is accurate enough to represent the uncertainty introduced
by the disciplinary surrogate models. It is also notable that due the non linearity of the
MDA the quantity of interest is not Gaussian.

Figure 8: Illustration of the lift-to-drag ratio variation and its PCE approximation.

It is also proposed to perform a sensitivity analysis of the quantity of interest in order
to decide which disciplinary solver to enrich. This PCE based sensitivity analysis approx-
imates the Sobol indices which quantify the respective contribution of each disciplinary
surrogate models to the variance of the quantity of interest. In the case study in [30] the
conclusion of the sensitivity analysis was that the surrogate model Γ̂ should be enriched.
It should be noted that this enrichment only involves a single resolution of the VLM
solver (to be compared to the first strategy in which a whole MDA is performed at each
enrichment). Figure 9 presents the results after this enrichment as well as the reference
obtained by solving the MDA with the disciplinary solvers.

This figure illustrates how the uncertainty of the quantity of interest can be reduced by
the enrichment of the relevant disciplinary surrogate model. One can also note that the
variation of the quantity of interest is centered on the reference value. Hence it should
be possible to further reduce the uncertainty of the quantity of interest by successive
disciplinary enrichment. This strategy of uncertainty reduction can be seen as a Bayesian
way of solving the MDA.

Even if this approach offers some interesting results it appears that it suffers from sev-



Figure 9: Illustration of the lift-to-drag ratio variation after the enrichment of the disci-
plinary surrogate model Γ̂.

eral numerical issues during the creation of the initial DoE and during the enrichment step.
We recall that the initial DoE is obtained by the resolution of MDA at various points of
the design space, which is not efficient for the exploration of the coupling variables spaces
and creates some numerical instabilities in the construction of the GPs. Indeed, during
one MDA resolution, the design variables are constant (equal to zi) and the coupling
variables follow a convergence path to the exact MDA. Hence the samples are clustered
around the MDA solutions and it is well known that a cluster of points leads to numerical
issues in the determination of the GP.

As a consequence we recently investigated the possibility to sample a DoE without
resolving MDA. This new sampling strategy is presented in [31] and it is based on an
iterative process in which some random variations in the design variables are introduced.
It should be noted that this sampling problematic has been also study recently by [32]
in which a sample scheme based on physical considerations is proposed. Contrarily the
method we proposed assumed very little knowledge regarding the physics of the coupling
variables.

Using this new sampling strategy it is possible to enrich the disciplinary surrogate
models on problems of higher complexity. As an example, we present in [31] a test case
based on the aerolasticity study of the previous wing (Fig. 6) that counts 8 design vari-
ables, namely the angle of attack, the speed, and 6 thicknesses of the different structural
components of the wing. The initial DoE used to create the disciplinary surrogate models
counts 50 solutions of the structural solver and 60 solutions of the disciplinary solvers.
The POD construction leads to NU = 11 and NΓ = 5.

In order to evaluate the accuracy of the proposed enrichment strategy at a point z that
does not belong to the DoE it is proposed to study the dispersion of the relative error
between the solution of the MDA using the mean values of the disciplinary surrogate
models and the one using a sample of realisations of the disciplinary surrogate models.
Figure 10 presents the evolution of this relative error (denoted by q̂) after 2 enrichment
steps. According to the result of the sensitivity analysis the first model to be enriched is
the structural one, followed by an enrichment of the aerodynamic surrogate model.

One can see on this figure that the proposed strategy leads to an important reduction
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Figure 10: Evolution of the relative error of the MDA solution at a new design point after
2 enrichment steps, the 90% quantiles of the relative error distribution are also given.

of the relative error q̂ meaning that the dispersion of the MDA solution tends towards
0. Moreover Fig. 10 also presents the 90% quantile of the relative error distribution. It
is interesting to note that this quantile is lower than 1% after the second enrichment,
in practice this can be used as a criterion to stop the enrichment procedure. Details of
the enrichment procedure as well as others examples and robustness study can be found
in [31].

Finally it is interesting to compare the strategy based on the coupling of disciplinary
GPs and successive enrichment presented in Section 3.2 with the direct approximations of
converged solution presented in Section 3.1. For this comparison the previous 8 parameter
test case is used and the accuracy of both approaches are evaluated. This comparison
is made on a test set of 100 points randomly sampled in the design space. For both
approaches the numerical cost i.e. the number of disciplinary solver calls, is almost equal.
The direct approximations are constructed from a DoE of 30 converged MDA leading to
121 calls to the disciplinary solvers whereas the coupling of disciplinary GPs needs 128
calls to the disciplinary solvers. Figure 11 presents the relative errors on the norm of U
and Γ between the reference results and the results obtained by the two approximations
approaches.

This figure clearly illustrates that the adaptive construction of disciplinary surrogate
models leads to better results than the direct approximations of converged MDA solution.
It should be noted that a comparison at iso relative error level is also performed in [31]
showing that the same accuracy level can be reached by the direct approximation method
but a higher numerical cost. These results illustrate that by taking into account the
interaction between disciplines in the disciplinary surrogate models construction it is
possible to significantly reduced the numerical cost of the approximation constructions.
However it should also be noted that this coupling strategy involves a higher dimension of
the input spaces of the approximations which remains a problematic in surrogate model
development.
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Figure 11: Comparison of the accuracy of direct approximations of converged solutions
(denoted by classic POD+I) with approximations from the coupling of disciplinary GPs
(denoted by DPOD+I). Relative error on a test set of 100 points.

4 CONCLUSION

The objective of this study was to highlight some recent developments in the field
of Multidisciplinary Design Analysis and Optimization within the Bayesian framework.
With respect to this objective Section 2 presents the contribution of the authors to an
Efficient Global Multidisciplinary Design and Optimization formulation. The originality
of this formulation lies in the approximation of the objective function by a non Gaussian
random field obtained from the uncertainty propagation of the disciplinary GPs to the
objective function. This random field model of the objective function allows to follow the
path of Bayesian optimization by enrichment of the disciplinary GPs based on an Expected
Improvement criterion. Some promising results have been reached with this formulation
with respect to the number of disciplinary solver evaluations to converge toward the global
minimum of MDO problems. However many improvements with respect to the robustness
of the approach and to the different approximation choices could be achieved in the future.

Section 3 focuses of the case of MDA with vector valued coupling variables and illus-
trates this context by the study of a high fidelity coupling for static aeroelasticity. As a
first attempt to extend the concept of Bayesian framework to that case, two formulations
based on model order reduction by POD and GP interpolation have been studied. Once
again it is shown that a careful uncertainty propagation steaming from the randomness
of the disciplinary surrogate models offers valuable information. This information can
further be used to perform a sensitivity analysis and to enrich the relevant disciplinary
surrogate model leading to a Bayesian way of solving the deterministic MDA. With re-
spect to this problematic it is also clear that improvements can be obtained by working
on the model order reduction method for example.

As a general conclusion on this work it appears that increasing the coupling between
MDO and the Bayesian framework can help to tackle some challenges of MDO. Never-
theless, as illustrated throughout the paper, the construction and coupling of disciplinary
GP brings there own new issues. Fortunately in the future we might be able to take ben-



efits of the numerous developments in both MDO and Bayesian optimization to further
improved the proposed method.
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