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Abstract

This paper proposes a new proof of the existence of constant threshold repre-
sentations of semiorders on countably infinite sets. The construction treats each
indifference-connected component of the semiorder separately. It uses a parti-
tion of such an indifference-connected component into indifference classes. Each
element in the indifference-connected component is mirrored, using a “ghost” el-
ement, into a reference indifference class that is weakly ordered. A numerical
representation of this weak order is used as the basis for the construction of the
unit representation after an appropriate lifting operation. We apply the procedure
to each indifference-connected component and assemble them adequately to obtain
an overall unit representation.

Our proof technique has several original features. It uses elementary tools and
can be seen as the extension of a technique designed for the finite case, using a
denumerable set of inductions. Moreover, it gives us much control on the repre-
sentation that is built, so that it is, for example, easy to investigate its uniqueness.
Finally, we show in a companion paper that our technique can be extended to
the general (uncountable) case, almost without changes, through the addition of
adequate order-denseness conditions.
Keywords: Semiorder, Numerical Representation, Constant Threshold, Count-
able sets.



1 Introduction

Treating two “similar” things as if they were exactly identical has long been recog-
nized as being a source of paradoxes. One of them is the famous sorites paradox:
a heap of sand cannot cease to be one if one grain of sand is taken out. Repeating
the argument leads to the paradoxical conclusion that one grain of sand is already
a heap. Similar examples are well-known, for instance concerning the level of bald-
ness of a man, which is surely not affected by the removal of a single hair. Luce
(1956, p. 179) has added to this list of paradoxes with his famous example of cups
of coffee slightly differently sugared1.

Therefore, it is not surprising that the idea of introducing a threshold into
preference or perception models has distant origins (see Pirlot and Vincke, 1997
and Fishburn and Monjardet, 1992, for historical accounts of the idea). The formal
definition of semiorders is due to Luce (1956). Shortly after, Scott and Suppes
(1958) showed that a semiorder defined on a finite set always has a numerical
representation with positive threshold. This paper is about the existence of such
numerical representations of semiorders. Because, it is clear that, if a numerical
representation with positive threshold exits, a numerical representation that uses
a unit threshold also exists, we will call such representations unit representations.

The pioneering work of Scott and Suppes (1958) on finite sets was soon followed
by many other alternative proofs using various kinds of arguments. Without aim-
ing at exhaustivity, one can cite Suppes and Zinnes (1963), Scott (1964), Roberts
(1971), Rabinovitch (1977), Roberts (1979), Roubens and Vincke (1985), Avery
(1992), Roy (1996, Ch. 7), Bogart and West (1999), Balof and Bogart (2003),
Troxell (2003), and Isaak (2009).

It is well-known that these results do not extend to the infinite case, not even to
the countable case (see Fishburn, 1985, p. 30). Indeed, the fact that the threshold
is constant and positive is not compatible with the existence of infinite (ascending
or descending) chains of strict preference that are bounded. This makes semiorders
at variance with what happens with many other preference structures (e.g., weak
orders, biorders, interval orders, suborders, see Aleskerov et al., 2007, Bridges and
Mehta, 1995 and Doignon et al., 1984) for which the finite and the countably
infinite cases are identical.

Contrasting with the abundance of results in the finite case, we are only aware
of two results in the countably infinite case. In both, an additional condition must
be added that forbids the existence of infinite bounded chains of strict preference.
The first of these results was given by Manders (1981, Prop. 9, p. 239) in a path-
breaking paper. His proof of this result is not easy however. It makes use of the

1Armstrong (1939, p. 457) had given a similar example formulated in terms of bread and
cheese. For further historical aspects, see e.g., Pirlot and Vincke (1992, Chapter 1)
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Löwenheim-Skolem theorem (see Narens, 1985, Ch. 6, for an introduction and a
discussion of its use in measurement theory) to extend the results dealing with
the finite case to the countably infinite one. The result in Beja and Gilboa (1992,
Th. 3.8, p. 436) uses more elementary tools. It also leads to possible extensions
to the general case (see Bouyssou and Pirlot, 2020a, Candeal and Induráin, 2010,
for a discussion of this extension). However the proof offers little control on the
representation that is built. Moreover, it uses at some point expectations w.r.t.
some measure (Beja and Gilboa, 1992, p. 444–445).

The aim of this paper is to offer a third proof of the existence of unit repre-
sentations of semiorders on countably infinite sets. Our aim was at the same time
(i) to use only elementary arguments, (ii) to use arguments that would as much as
possible be common to the finite and the countably infinite case, (iii) to have good
control on the representation that is built and, in particular on its uniqueness.

More precisely, we show that:

• any indifference-connected semiorder (i.e., any semiorder which cannot be
decomposed in a series-sum of at least two posets, Schröder, 2003) on a
countably infinite set admits a unit representation. We show how to con-
struct such a representation and establish its uniqueness properties,

• under an additional axiom forbidding the existence of infinite bounded chains
of strict preference, it is possible to combine the unit representations on all
indifference-connected components of the semiorder to build a unit represen-
tation of the whole semiorder.

Our construction treats each indifference-connected component separately. Each
of these components is partitioned into “indifference classes”. Each element in the
indifference-connected component is mirrored, using a “ghost” element, into a ref-
erence indifference class that is weakly ordered. A numerical representation of this
weak order is used as the basis for the construction of the unit representation after
an appropriate lifting operation. We apply the procedure to each indifference-
connected component and assemble them adequately to lead to the result.

In a companion paper (Bouyssou and Pirlot, 2020b), we show that this proof
technique can be extended rather directly, after the addition of order-denseness
conditions, to cover the general case. The first complete solution to the problem
of the existence of unit representations in the general case was given in Candeal
and Induráin (2010) (for earlier partial results see Abŕısqueta et al., 2009, Campión
et al., 2008, Candeal et al., 2002, Fishburn, 1985, Gensemer, 1987, 1988, Narens,
1994). Candeal and Induráin use the results of Manders (1981) and Beja and
Gilboa (1992) for the countably infinite case as a lemma, which gives us a sup-
plementary motivation for presenting the results in the present paper (for more
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recent results on representations in the general case, we refer to Candeal et al.,
2012, Estevan et al., 2013).

The paper is organized as follows. Section 2 introduces our notation and
framework. Section 3 details our construction of the partition of an indifference-
connected component into maximum indifference components. Section 4 explains
how to build a representation on a single indifference-connected component. Sec-
tion 5 shows how to assemble the representation built on each indifference-connected
component into a single representation. A final section discusses our results and
directions for future research.

2 Notation, definitions and preliminary results

2.1 Binary relations

A binary relation R on a set Y is a subset of Y × Y . We often write yRz instead
of (y, z) ∈ R. When R is a binary relation on a set Y , we define, for all x ∈ Y ,
xR = {y ∈ Y : xRy} and Rx = {y ∈ Y : yRx}. The asymmetric (resp.,
symmetric) part of R is the binary relation Ra (resp., Rs) such that yRaz iff
[yRz and Not [zRy]] (resp., yRsz iff [yRz and zRy]).

We consider below a binary relation S on a set X. Such a relation can be
interpreted as a model for “at least as good” preferences between the objects of
X.

From Section 4 on, we assume that X is a denumerable set (finite or count-
ably infinite set). Part of the results, in particular the important construction in
Section 3, is valid without restriction on the cardinality of X.

The relation S is a semiorder if it is complete (xSy or ySx, for all x, y ∈ X),
Ferrers (xSy and zSw imply xSw or zSy, for all x, y, z, w ∈ X) and semi-transitive
(xSy and ySz imply xSw or wSz, for all x, y, z, w ∈ X)2.

In the sequel, we shall often write the semiorder S as a pair (P, I) of relations,
where P (resp., I) denotes the asymmetric (resp., symmetric) part of S. The
asymmetric part of S is the relation P , interpreted here as a “strict preference”
relation. It is a partial order on X, i.e., an asymmetric and transitive relation,
which is also Ferrers and semitransitive. The symmetric part of S is the relation
I, interpreted as the “indifference” relation. It is reflexive and symmetric but not
necessarily transitive. Because S is complete, notice that we could have alterna-
tively defined a semiorder, giving its asymmetric part P , while letting I be the
symmetric complement of P (i.e., xIy iff [Not [xPy] and Not [yPx]]) and S = P ∪I.
We refer to Aleskerov et al. (2007), Fishburn (1985), Giarlotta and Watson (2016),

2Note that it is sufficient to impose that S is reflexive instead of complete, since reflexive and
Ferrers entail complete.
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Monjardet (1978), Pirlot and Vincke (1997), Roubens and Vincke (1985), Suppes
et al. (1989) for detailed studies of various properties of semiorders.

Our vocabulary for binary relations is standard. A complete preorder on X
is a complete and transitive relation. A linear order (or total order) on X is a
complete, antisymmetric (i.e., for all x, y ∈ X, xSy and ySx imply x = y) and
transitive relation. A strict linear order is the asymmetric part of a linear order,
i.e., a weakly complete, (i.e., for all x, y ∈ X, such that x 6= y, xSy or ySx),
asymmetric (i.e., for all x, y ∈ X, xSy implies Not [ySx]), and transitive relation.

The trace %S of a semiorder S on X is the relation defined as follows: for all
x, y ∈ X, x %S y if for all z ∈ X, [ySz implies xSz and zSx implies zSy]. In
other words, x %S y if [yS ⊆ xS and Sx ⊆ Sy]. The trace %S is transitive by
construction and complete because S is a semiorder. We omit the subscript when
there is no ambiguity on the underlying semiorder. It is easy to check that the
trace %S can be equivalently defined using P , i.e., x %S y if for all z ∈ X, [yPz
implies xPz and zPx implies zPy].

We define �, ∼, - and ≺ as is usual. We assume w.l.o.g.3 that X does not
contain equivalent pairs of elements, i.e., for all x, y ∈ X, x ∼ y entails x = y.
Hence % is a linear order (i.e., a complete, antisymmetric and transitive relation).
This is not restrictive (see Candeal and Induráin, 2010, Lemma 3.2) for the purpose
of studying the existence of unit representations.

For all x, y ∈ X with x % y, we define the closed interval [x, y] = {z ∈ X : x %
z % y}. A convex subset of the set X endowed with the complete preorder %, is
a subset Y containing all the closed intervals determined by pairs of elements in
Y . The semi-open ]a, b], [b, a[ and open ]a, b[ intervals are defined in the obvious
manner.

Finally, we will make use of the following notation: xI− = {y - x : xIy},
xI+ = {y % x : xIy}.

2.2 Unit representations

The following definition makes precise the type of numerical representations that
are sought.

Definition 1 (Unit representation of a semiorder)
A unit representation of the semiorder S = (P, I) on the set X is a function u

3In case X contains equivalent pairs of elements, we consider the quotient of X by the equiv-
alence relation ∼, which amounts to identify all the elements in a class of equivalence of ∼ to
a single representative element. Alternatively, we could work with equivalent elements and con-
sider only numerical representations that assign the same value to all elements in each equivalence
class of ∼.
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from X to R such that, for all x, y ∈ X,

xPy ⇔ u(x) > u(y) + 1,

xIy ⇔ −1 ≤ u(x)− u(y) ≤ 1.
(1)

y

The above definition has taken the threshold to be 1. Clearly, if a representation
(1) exists, a representation of the same type exists with any threshold τ > 0. We
stick to unit thresholds throughout.

A variant of the above definition consists in switching the strict and nonstrict
inequalities, i.e., require that

xPy ⇔ u(x) ≥ u(y) + 1,

xIy ⇔ −1 < u(x)− u(y) < 1.
(2)

In the paper, we mostly deal with representations of type (1) that we call strict
representations. Representations of type (2) are called nonstrict.

When X is finite, it is well-known that it is always possible to build a repre-
sentation for which u(x) − u(y) 6= 1, for all x, y ∈ X, representations that are at
the same time strict and nonstrict exist. Beja and Gilboa (1992, Th. 3.8, p. 436)
show that the same is true when X is countably infinite. Our results below will
also note this equivalence, which does not carry over to the general case (Bouyssou
and Pirlot, 2020a,b).

2.3 Chains

Let R be a relation on the set X. We call an R-chain, a sequence xi of ele-
ments of X indexed by a subset of consecutive integers J ⊆ Z and such that
any two consecutive elements of the sequence belong to the relation R (we adopt
here the terminology used in the field of ordered sets, see Caspard et al., 2012
or Schröder, 2003. Graph theorists may prefer the term “path”). Formally, the
sequence (xi, xi ∈ X, i ∈ J), where J ⊆ Z is a subset of consecutive integers and
(xi, xi+1) ∈ R, for all i, i + 1 ∈ J is an R-chain4. We shall consider the cases in
which R = P and R = I in the sequel, i.e., P -chains and I-chains. Note that an
R-chain needs neither have a first nor a last element. In other terms, it can have
an infinite number of elements before or after a given element, but not between
two given elements.

An R-chain is said to start at x ∈ X, if the set J has a minimum element
and x is the element of X indexed by the minimal number in J . In this case,

4Actually, one could consider chains indexed by more general sets of indices. To be precise,
one should call the chains defined above “integer-indexed R-chains”, but we simply call them
R-chains for the sake of conciseness.
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the chain is said to have a first element, which is this x. An R-chain is said to
terminate at y ∈ X, if the set J has a maximum element and y is the element of
X indexed by the maximal number in J . In this case, the chain is said to have a
last element, which is this y. An R-chain5 starting at x and terminating at y is
finite by definition (i.e. |J | <∞).

A P -chain (xi, i ∈ J) has an upper (resp., lower) bound if there exists a ∈ X
(resp., b ∈ X) such that aPxi (resp., xiPb) for all i ∈ J . If the chain has both an
upper and a lower bound, we say it is bounded. Note that the set {xi : i ∈ J}∪{a, b}
is totally ordered by P , but cannot always be indexed by the elements of a subset
J ′ of Z. It cannot be in the case the P chain (xi, i ∈ J) has no first or no last
element. The elements of a finite subset of X which is totally ordered by P can be
indexed by a set J of consecutive integers in order to form a P -chain. If a P -chain
(xi, i ∈ J) has no last (resp., first) element, then for all i ∈ J , xi+k (resp., xi−k)
belongs to the chain, for all k ∈ N.

2.4 Convex subsets in ordered sets

We start by defining ordered bipartitions and establishing simple properties linking
ordered bipartitions and convex subsets in an ordered set.

Definition 2
An ordered bipartition of a totally ordered set (X,%) is a partition (A,B) of X,
with x � y, for all x ∈ A, y ∈ B. y

In the sequel, in the absence of ambiguity, we simply write “bipartition” for “or-
dered bipartition”6. The proof of the following proposition is left to the reader.

Proposition 3
The total order % on X can be extended to a total order on the ordered bipartitions
of X, by defining (A1, B1) % (A2, B2) if A1 ⊆ A2. Elements of X and ordered
bipartitions can also be compared using %. Let, for all x ∈ X and all ordered
bipartition (A,B):

x % (A,B) if x % y, for all y ∈ B
(A,B) % x if y % x, for all y ∈ A.

The extension of % to the union of X and the set of ordered bipartitions of X is
a complete preorder, satisfying, for all x ∈ X and all bipartion (A,B), x ∼ (A,B)
iff x is the least element in A or the greatest element in B.

5We also say, equivalently, “an R-chain from x to y”.
6Note that the notion of ordered bipartition corresponds to that of “decomposition” in the

terminology of Bridges and Mehta (1995, p. 17). We chose not to adopt the term “decomposition”
because we use it below with another meaning.
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Definition 4
A convex subset Y of (X,%) is non-terminal if ∃a, b ∈ X such that a � y � b for
all y ∈ Y . Otherwise, Y is terminal. y

Proposition 5
A non-terminal non-empty convex subset Y is determined by two bipartitions of
(X,%): (A1, B1) � (A2, B2), with A1 = {z ∈ X : z � y,∀y ∈ Y }, B1 = X \ A1,
B2 = {w ∈ X : y � w,∀y ∈ Y } and A2 = X \ B2. We have Y = A2 ∩ B1.
Conversely, any two such bipartitions determine a non-terminal convex subset Y =
A2 ∩B1.

Proof
Let Y be a non-terminal non-empty convex subset of X. Hence ∃a, b ∈ X such
that a � y � b for all y ∈ Y . The sets A1, B1, A2, B2 are not empty since Y is
non-terminal. They are convex. We have B1 = Y ∪B2 and A2 = Y ∪ A1.

(A1, B1) and (A2, B2) are bipartitions such that (A1, B1) � (A2, B2). They
determine Y in the sense that Y = A2 ∩B1 and

Y = {y ∈ X : z � y � w,∀z ∈ A1, w ∈ B2}. (3)

In this sense Y can be viewed as the set comprised between (A1, B1) and (A2, B2),
a sort of interval determined by bipartitions instead of points7.

Conversely, two bipartitions (A1, B1) � (A2, B2) determine a convex subset Y
defined by (3). This set is a convex non empty non-terminal subset. 2

Definition 6
We call (A1, B1) (resp., (A2, B2)) as defined in Proposition 5, the upper (resp.,
lower) bound of Y . y

Remark 7 (Terminal convex subsets)
If Y is terminal and Y 6= X, it is either upper-terminal and has a lower bound
(A2, B2) or it is lower-terminal and has an upper bound (A1, B1). Each of these
bipartitions is defined as in Proposition 5.

There are 4 different cases for a bipartition (A,B) in (X,%):

1. A has a least element a and B has a greatest element b (consider, for instance,
X = Z, endowed with its usual order ≥ and the bipartition (A,B) with
A = {x ∈ Z : x ≥ 0} and B = {x ∈ Z : x < 0}).

7A convex subset in an ordered set is the “natural generalization of an interval” (Schröder,
2003, p.225).
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2. A has a least element a and B has no greatest element (consider, for instance,
X = Q, the set of rational numbers, endowed with its usual order ≥ and the
bipartition (A,B) with A = {x ∈ Q : x ≥ 0} and B = {x ∈ Q : x < 0}).

3. A has no least element and B has a greatest element b (consider again X =
Q,≥ and, for instance, the bipartition (A,B) with A = {x ∈ Q : x > 0} and
B = {x ∈ Q : x ≤ 0}).

4. A has no least element and B has no greatest element (consider again X =
Q,≥ and, for instance, the bipartition (A,B) with A = {x ∈ Q : x2 > 2}
and B = {x ∈ Q : x2 ≤ 2}).

In the first case, the bipartition (A,B) is usually called a jump. In the second and
third cases, it is called a cut and in the fourth case, a gap (see, e.g., Bridges and
Mehta, 1995, p. 17).

We apply this categorization to any non-terminal non-empty convex set Y ,
with bounds (A1, B1) � (A2, B2). If both bounds bipartitions (A1, B1), (A2, B2)
belong to Case 1, let ai (resp., bi) denote the least (resp., greatest) element in Ai

(resp., Bi), for i = 1, 2. Y can be described in 4 manners in terms of intervals:
Y =]a1, b2[=]a1, a2] = [b1, b2[= [b1, a2]. We have, e.g., Y = [b1, b2[= {y ∈ X : b1 %
y � b2} = {y ∈ X : z � y � w,∀z ∈ A1, w ∈ B2}. The variety of representations
is more limited in cases 2 and 3. There is no such representation in Case 4.

Proposition 8 (Case 4)
The bipartition (A,B) is in case 4 iff there is a decreasing sequence (xi, i ∈ N) in
A, xi � xi+1,∀i, and an increasing sequence (yj, j ∈ N) in B, yj+1 � yj,∀j, such
that

• xi � yj,∀i, j

• and @z ∈ X such that xi � z � yj for all i, j.

The proof is left to the reader. The latter formulation, involving z, can be rewritten
as follows: for all z ∈ X, ∃xi : z % xi or ∃yj : yj % z. In the case of the bipartition
(A,B) of Q, with A = {x ∈ Q : x2 > 2} and B = {x ∈ Q : x2 ≤ 2}), a
sequence xi (resp., yi) could be the sequence of rounded up (resp., down) decimal
approximations of

√
2.

2.5 Connected components of the indifference relation

We consider the graph of relation I on X, where I is the indifference relation of a
semiorder on X.
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Definition 9
The set D ⊆ X is connected w.r.t. relation I if for all x, y ∈ D, there is an I-chain
joining x and y. y

Abusing notation, we denote by % the restriction to D ⊆ X of the trace % on X.
This abuse of notation is justified by the fact that all elements in an I-connected
component compare in the same way to all elements outside this component (see
Lemma 13 below). We also call a bipartition of (D,%) and denote by (A,B) an
ordered partition of D into two subsets A,B such that, for all x ∈ A, y ∈ B, we
have x � y. Such a bipartition is the restriction to D of a bipartition of (X,%).

Proposition 10
Let D be a subset of X and (P, I) a semiorder on X. The following properties are
equivalent:

1. D is connected w.r.t. I,

2. for all x, y ∈ D with x � y, there is a decreasing (w.r.t. �) I-chain joining
x and y,

3. for all bipartition (A,B) of (D,%) there is x ∈ A, y ∈ B such that (x, y) ∈ I,

4. there is no bipartition (A,B) of (D,%) such that, for all x ∈ A, y ∈ B, we
have (x, y) ∈ P .

Proof
1 ⇔ 2. It suffices to prove that (1 ⇒ 2). Let x, x1, . . . xi, xi+1, . . . xn, y be an
I-chain from x to y. If some of the vertices in the chain are below y w.r.t. �,
let xi be the first such vertex. We have xi−1 � y � xi. This implies that xi−1Iy.
Hence x, x1, . . . xi−1, y is also an I-chain from x to y.

Assume now w.l.o.g. that x, x1, . . . , xi, xi+1, . . . , xn, y is an I-chain of distinct
elements from x to y with xk � y for k = 1, . . . , n. Assume that, for some i, we
have xi+1 � xi. If xiIy, we can shorten the I-chain by removing all the xk’s with
k > i. Else xiPy. For some k > i + 1 we must have xi � xk. Let k be the least
such index. We have xk−1 � xi � xk with xk−1Ixk, hence xiIxk. We may thus
drop the sub-chain xi+1, . . . , xk−1. The remaining path is another I-chain from x
to y. Repeating this eventually leads to a decreasing (w.r.t. �) I-chain from x to
y.

3 ⇔ 4. This equivalence results immediately from the fact that P and I are
exclusive and P ∪ I is complete.

1 ⇒ 3. Let (A,B) be a bipartition of D. Under the hypothesis that all pairs
of elements in D can be joined by an I-chain, we claim that we must have xIy for
some x ∈ A and y ∈ B. Let z ∈ A,w ∈ B. An I-chain joining z to w cannot be
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entirely contained in A. Therefore, there is a first arc (x, y), with x ∈ A, y ∈ B
and xIy, that crosses the cut. This proves the claim.

4⇒ 1. Assume that there is no I-chain between x, y ∈ D. We suppose, w.l.o.g.
that x � y. Let A = {z ∈ D : z % x} ∪ {z ∈ D : x � z and there is an I-chain
joining x to z}. Let B = D\A. We have y 6∈ A and y ∈ B. (A,B) is a bipartition
of D (since {z ∈ D : z and x can be joined by an I-chain } is convex in D). For
all z ∈ A,w ∈ B, we may not have (z, w) ∈ I, otherwise w ∈ A. Hence we have
(z, w) ∈ P , contrary to 4. 2

We turn to the study of the connected components of (X, I).

Definition 11
An I-connected component of (X, I) is a maximal connected subset of (X, I). y

Proposition 12
An I-connected component D of (X, I) is a convex set of (X,%).

Proof
Assume D is not convex and let D denote the smallest convex set containing D.

Since the intersection of convex sets is convex, D is the intersection of all convex
subsets containing D. Assume that D is not I-connected, i.e., there is a bipartition
(A,B) of D such that, for all x ∈ A, y ∈ B, we have xPy. (A ∩ D, B ∩ D) is a
bipartition of D since neither A∩D nor B ∩D is empty (else it would imply that
D is included either in A or in B, which are convex sets, hence D cannot be the
smallest convex set containing D). The bipartition (A ∩D, B ∩D) of D would be
such that for all x ∈ A ∩ D, y ∈ B ∩ D, we have xPy, a contradiction. 2

The following lemma justifies our earlier abuse of notation concerning the trace
of S restricted to an I-connected component.

Lemma 13
For all pairs of distinct connected components D, E of (X, I), either we have aPb,
for all a ∈ D and b ∈ E, or conversely.

Proof
Two elements x, y belonging to different connected components D, E of (X, I)
cannot be indifferent, by definition. Hence we assume w.l.o.g. that x ∈ D and
y ∈ E satisfy xPy. For any a ∈ D, we have a � y (otherwise y would be between
a and x, which is impossible by Proposition 12) and a cannot be indifferent to y
(since they belong to different connected components of (X, I)). Hence aPy. For
any b ∈ E , we have a � b (since, otherwise, a would be between y and b, which
is excluded by Proposition 12 and b cannot be indifferent to a). Consequently, we
have aPb. 2
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Let F denote the set of connected components of (X, I). Abusing notation, we
denote by P the following relation on F: for all D, E ∈ F,

DPE if aPb, for all a ∈ D, b ∈ E . (4)

Lemma 14
The relation P on F is a strict linear order.

Proof
By Lemma 13, we know that P is a weakly complete binary relation on F. It
inherits its asymmetric and transitive properties from the relation P on X. 2

Remark 15 (Linear lexicographic sum decomposition of P )
The latter property of the I-connected components of a semiorder has already
been noticed by Manders (1981, p.238). In the language of partially ordered sets,
F is a linear lexicographic sum decomposition of the poset (X,P ) (Schröder, 2003,
p. 203). In case X is not I-connected, P is said to be series decomposable or a
series-sum poset. On the contrary, if X is I-connected, P is said to be (linearly)
indecomposable.

3 Partitioning a connected component into sets

of indifferent elements

In this section we consider an I-connected component D of X. We describe pro-
cedures for partitioning D into sets of indifferent elements. Their construction is
recursive. Each set is maximal given the previous ones. These sets are also convex
subsets w.r.t to % (we shall use the extension of % to the ordered bipartitions
of D without further notice, see Proposition 3). This construction will play an
essential role in the rest of the paper. It is our basic tool to build unit representa-
tions. Later, we shall deal separately with each connected component D of (X, I),
build a unit representation of the restriction of the semiorder to each component
(Section 4) and then assemble these representations (Section 5).

All results in this section are valid for all semiorders S = (P, I) on a set X and
all I-connected components D of this semiorder. We do not require X (or D) to
be denumerable.

We start with introducing the notion of maximal indifference class and de-
scribe two procedures for building such a class. Each of these procedures allows
to generate any maximal indifference class, as we shall see.

Definition 16
A maximal indifference class of an I-connected component D of the semiorder
S = (P, I) is a subset Y of pairwise indifferent elements such that no element
outside Y is indifferent to all elements in Y . y

11



Proposition 17
A maximal indifference class Y of D is a convex set in (D,%).

Proof
Let a, b be two elements in Y , with a � b. Assume that c ∈ X is such that
a � c � b. Then, aIb implies aIc and cIb. Moreover, c is indifferent to all
elements in the set {y ∈ Y : a � y} and to all elements in the set {y ∈ Y : y � b}.
The union of these two sets is Y . Consequently, c is indifferent to all elements in
Y and therefore, it must belong to Y , by Definition 16. 2

As a consequence of Proposition 5, if Y is a non-terminal indifference class of
D, it is bounded by two bipartitions, (A1, B1), its upper bound, and (A2, B2), its
lower bound. If Y is terminal but Y 6= D, Y has either an upper or a lower bound
bipartition.

3.1 Two procedures for building a maximal indifference
class

Consider a bipartition (A,B) in D, a connected component of (X, I). Since D is
I-connected, there are x ∈ A and y ∈ B such that xIy (Proposition 10.3). The
two procedures are as follows.

Down First Procedure Given: a bipartition (A,B) in D. Do the following:

• select an element y0 in B, which is indifferent to some element x0 in A,

• define I+0 (y0) = {y ∈ B : y % y0},

• define J−0 (y0) = {w ∈ B : y0 � w and wIy, ∀y ∈ I+0 (y0)},

• define J+
0 (y0) = {z ∈ A : zIw,∀w ∈ J−0 (y0)},

• let I−(A,B) = I+0 (y0) ∪ J−0 (y0) ∪ J+
0 (y0).

The procedure DFP is illustrated on Figure 1.(a). Note that the resulting set
I−(A,B) does not depend on the particular choice of y0 and x0. For all pairs
x0 ∈ A, y0 ∈ B, with x0Iy0, we obtain the same set I−(A,B)).

Proposition 18
I−(A,B) is a maximal indifference class.
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B A

y0 x0

J−
0 (y0) I+0 (y0) J

+
0 (y0)

(a) DFP

B A

y0 x0

J−
0 (x0) I−0 (x0) J+

0 (x0)

(b) UFP

Figure 1: Illustration of procedures Down First (a) and Up First (b). The dotted
horizontal axis represents the elements of D in increasing order w.r.t. � (from left
to right).

Proof
I−(A,B) is an indifference class by construction. It is convex. Indeed, if x, y
are two elements of I−(A,B) and z is such that x � z � y, it is clear that z
is indifferent to all elements of I−(A,B). It remains to prove that I−(A,B) is
maximal.

Assume, to the contrary, that ∃v 6∈ I−(A,B) such that vIy, ∀y ∈ I−(A,B).
Then, either v ≺ y,∀y ∈ I−(A,B) or v � y,∀y ∈ I−(A,B). In the former case,
v ≺ y0 and vIy, ∀y ∈ I+0 (y0), hence v ∈ J−0 (y0), a contradiction. In the latter case,
v ∈ A and vIw, ∀w ∈ J−0 (y0), hence v ∈ J+

0 (y0), a contradiction. 2

Proposition 19
If (A1, B1) is the upper bound of a maximal indifference class Y , then applying the
Down First Procedure starting from (A,B) = (A1, B1) yields I−(A1, B1) = Y . In
such a case, for all y0 ∈ B1, J+

0 (y0) = ∅, i.e. Y = I+0 (y0) ∪ J−0 (y0).
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Proof
Y certainly contains I+0 (y0) since y0 and all elements above it in B1 are indifferent.
We first prove that Y ⊆ I+0 (y0)∪J−0 (y0). Suppose ∃y ∈ Y and y 6∈ I+0 (y0)∪J−0 (y0).
Since the latter subset is convex, either y � w,∀w ∈ I+0 (y0) ∪ J−0 (y0) or y ≺
w,∀w ∈ I+0 (y0) ∪ J−0 (y0). In the former case, we would have y ∈ A1, which
is excluded. In the latter case, we would have y ≺ y0 and yIw, ∀w ∈ I+0 (y0),
which implies y ∈ J−0 (y0), a contradiction. Since Y is included in the indifference
class I+0 (y0) ∪ J−0 (y0) and Y is maximal, we must have Y = I+0 (y0) ∪ J−0 (y0).
Consequently, J+

0 (y0) = ∅. 2

Note that this result applies to both non-terminal and lower-terminal maximal
indifference classes Y (provided Y 6= D) since the latter all have an upper bound.

Up First Procedure Given: a bipartition (A,B) in D. Do the following:

• select an element x0 in A, which is indifferent to some element y0 in B,

• define I−0 (x0) = {x ∈ A : x0 % x},
• define J+

0 (x0) = {z ∈ A : z � x0; zIx, ∀x ∈ I−0 (x0)},
• define J−0 (x0) = {w ∈ B : zIw,∀z ∈ J+

0 (x0)},
• let I+(A,B) = I−0 (x0) ∪ J+

0 (x0) ∪ J−0 (x0).

The procedure UFP is illustrated on Figure 1.(b). Note that the same set I+(A,B)
is obtained independently of the particular choice of a pair x0 ∈ A, y0 ∈ B with
x0Iy0.

We have the following two results, whose proofs are similar to those of Propo-
sitions 18 and 19 and are therefore omitted.
Proposition 20
I+(A,B) is a maximal indifference class.

Proposition 21
If (A2, B2) is the lower bound of a maximal indifference class Y , then applying the
Up First Procedure starting from (A,B) = (A2, B2) yields I+(A2, B2) = Y . In
such a case, for all x0 ∈ A2, J

−
0 (x0) = ∅, i.e. Y = I−0 (x0) ∪ J+

0 (x0).

Note that this last result applies to both non-terminal and upper-terminal
maximal indifference classes Y (provided Y 6= D) since the latter have a lower
bound.

Propositions 19 and 21 imply that by applying the Down First (or the Up First)
Procedure to all bipartitions of D yields all non-terminal maximal indifference
classes. If D has a lower-terminal (resp., an upper-terminal) maximal indifference
class, it is also obtained by applying the Down First (resp., Up First) Procedure
to all bipartitions of D.
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3.2 Coverings by maximal indifference classes and parti-
tions into indifference classes

We construct coverings of a connected component D by maximal indifference
classes. We call UFP (resp., DFP) the Up First (resp., Down First) Procedure
described in the previous section.

Procedure for constructing a covering

1. Select a bipartition (A,B) of D

2. Construct an initial maximal indifference class C0 = I0 by applying DFP
or UFP while starting from the bipartition (A,B). Call (A1, B1) (resp.,
(A0, B0)) the upper (resp., lower) bound of I0 (in case these exist).

3. If there is z in D above I0, apply UFP, starting from (A1, B1). This yields
a maximal indifference class C1 = I+(A1, B1) the upper bound of which is
(A2, B2) (if it exists) and the lower bound is (C1, D1). We have (A1, B1) %
(C1, D1). We iterate this process, applying UFP starting from (Ak, Bk), for
k = 2, 3, . . ., as long as there is some z ∈ D above I+(Ak−1, Bk−1). The
resulting maximal indifference class Ck = I+(Ak, Bk) has a lower bound
(Ck, Dk) and, possibly, an upper bound denoted by (Ak+1, Bk+1). We have
(Ak, Bk) % (Ck, Dk).

4. If there is w in D below C0 = I0, apply DFP, starting from (A0, B0).
This yields a maximal indifference class C−1 = I−(A0, B0). We call its
upper bound (C0, D0) and its lower bound (A−1, B−1) (if the latter ex-
ists). We have (C0, D0) % (A0, B0). We iterate this process, applying
DFP starting from (A−l, B−l), for l = 1, 2, . . ., as long as there is some
w ∈ D below I−(A−l+1, B−l+1). The resulting maximal indifference class
C−l−1 = I−(A−l, B−l) has an upper bound (Ck, Dk) and, possibly, a lower
bound denoted by (A−l−1, B−l−1). We have (Ak, Bk) % (Ck, Dk).

We shall prove below (see Proposition 24.7) that this procedure ends up, af-
ter a finite or, possibly, a countably infinite number of iterations of UFP and
DFP, with a covering of the whole connected component D. Before, we associate
a family of disjoint indifference classes (. . . , I−l, . . . , I0, . . . , Ik, . . .) to the family
(. . . , C−l, . . . , C0, . . . , Ck, . . .) of maximal indifference classes produced by the above
procedure. Note that C0 = I0.

Definition 22
For all k > 0, we define Ik = Ck \Ck−1. For all l > 0, we define I−l = C−l \C−l+1. y
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In the sequel, the index m will take all the values taken by k ≥ 0 and −l, for l >
0. This set will be denoted by M . It is a subset of consecutive integers containing
0. The following result is a direct consequence of the procedure for constructing a
covering described above. The first case in Proposition 23 is illustrated in Figure 2

Proposition 23
For all m ∈M for which there is w, z ∈ D such that z � y � w for all y ∈ Im, we
have:

Im = {y ∈ D : (Am+1, Bm+1) % y % (Am, Bm)}
= Am \ Am+1

= Bm+1 \Bm

= Bm+1 ∩ Am

In case such a w exists but no such z, then

Im = {y ∈ D : y % (Am, Bm)}
= Am ∩ D
= D \Bm

In case such a z exists but no such w, then

Im = {y ∈ D : (Am+1, Bm+1) % y}
= D \ Am+1

= Bm+1 ∩ D

If there is neither such a w nor such a z, then m = 0 and I0 = D.

Bm+1 Am+1

AmBm

Im

Figure 2: Illustration of the first case in Proposition 23. The dotted horizontal
axis represents the elements of D in increasing order w.r.t. � (from left to right).

We collect a number of properties of the sets Im in the next proposition.
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Proposition 24
The sets Im,m ∈M have the following properties:

1. They are disjoint nonempty convex subsets of D.

2. Their elements are pairwise indifferent, i.e., for all x, y ∈ Im, we have xIy.

3. They form an ordered partition w.r.t. �, i.e. for all x ∈ Im−1 and z ∈ Im,
we have z � x.

4. For all m ≥ 0 for which Im and Im+1 exist, for all w ∈ Im+1, there is z ∈ Im
such that we have wPz.

5. For all m < 0 for which Im and Im+1 exist, for all v ∈ Im, there is z ∈ Im+1

such that we have zPv.

6. For all m ∈M for which Im and Im+2 exist, for all w ∈ Im+2, for all v ∈ Im,
we have wPv.

7. D = ∪m∈MCm = ∪m∈MIm.

Proof
1. By construction, these subsets are disjoint and nonempty. I0 is convex since

it is a maximal indifference class (Proposition 17). For m > 0, if there
is z above Im in D, Im is determined by the bipartitions (Am, Bm) and
(Am+1, Bm+1), i.e., Im = Am ∩ Bm+1. By Proposition 5, it is a convex set.
If there is no z above Im, then Im = Am+1 ∩D hence it is convex. A similar
reasoning yields the result for m < 0.

2. By construction, Im is a subset of the maximal indifference class Cm.

3. For m > 0, (Am, Bm) � (Am−1, Bm−1), by construction. For all x ∈ Im−1, z ∈
Im, we have z % (Am, Bm) % x. Since x ∼ z implies x = z and since x 6= z,
we have z � x. The case m < 0 is dealt with similarly.

4. For m > 0, Cm was built using UFP. It thus includes all elements indifferent
to some element of Im, which are above this element. Hence there is no
z ∈ Im+1 which is indifferent to all y ∈ Im. This establishes the property.
The same argument holds for m = 0.

5. For m < 0, the sets Cm were built using DFP. The result is established
similarly as for 4.
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6. By 4, for all m ≥ −1, for all z ∈ Im+2, there is y ∈ Im+1 such that zPy.
Since for all v ∈ Im, we have y � v, hence zPv. By 5, for all m ≤ −2, for all
y ∈ Im+1, there is z ∈ Im+2 such that zPy. Since y � v for all v ∈ Im, we
conclude that zPv.

7. Let x0 ∈ I0 and y ∈ D, with y � x. Since D is a connected component of
I, there is an increasing I-chain joining x0 to y (by Proposition 10.2). Let
x0Ix1Ix2I . . . IxiI . . . Iy be such an I-chain, with x0 ≺ x1 ≺ x2 . . . ≺ xi ≺
. . . y. According to item 6, for all xi ∈ Im, we have that xi+1 ∈ Im ∪ Im+1

(because all x in Ik for k ≥ m+ 2 are such that xPxi). Hence y ∈ ⋃m≥0 Im.
The proof is similar if y is such that x � y. 2

3.3 Remarks about finite coverings

This section deals with the particular case in which an I-connected component of a
semiorder can be covered by a finite number of indifference classes. We investigate
such coverings that use a minimal number of indifference classes. The reader may
want to skip this section without inconvenience since it will not be used in the
rest of the paper. The results below indicate one way of building such minimal
coverings and relate the minimal number of indifference classes in a covering to
the maximal length of a chain of P .

Lemma 25
If X contains a P -chain of length K, it cannot be covered using less than K + 1
indifference classes.

The straightforward proof of this lemma is left to the reader.

Proposition 26
For a semiorder that can be covered by a finite number of indifference classes,
the procedure UFP (resp., DFP) started from an element that is indifferent to all
elements below (resp., above) it yields a minimal covering by maximal indifference
classes.

Proof
Consider the covering {Cm,m = 0, 1, . . . , K} generated by UFP started from an
element indifferent to all elements below it. Let I0 = C0 and Im = Cm \ Cm−1, for
m = 1, . . . , K}. Pick an element xK in IK . Using repeatedly Proposition 24.4,
we obtain successively xK−1 ∈ IK−1, . . . , x0 ∈ I0 such that xmPxm−1 for all
m = K, . . . , 1. These elements form a P -chain of length K. By lemma 25,
the minimal covering has at least K + 1 elements and therefore the covering
{Cm,m = 0, 1, . . . , K} is minimal. 2
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Using Lemma 25 and Proposition 26, it is easy to prove the following.

Corollary 27
Let S = (P, I) be a semiorder on X. The maximal length of a P -chain of X is
K iff the minimal number of classes in a covering of X by indifference classes is
K + 1.

3.4 Examples

We illustrate the decomposition in maximal indifference classes by two examples
in which X is countably infinite. In the first example X is “discrete” in the sense
that each element has an immediate predecessor and an immediate successor w.r.t.
the trace %. In the second example, X is “dense” in the sense that between two
elements of X there is always another element of X.

Example 28
Let X = {0, n + i

n+1
, n = 1, 2, . . . and i = 1, . . . , n} = {0, 1, 1 + 1/2, 2 + 1/3, 2 +

2/3, 3 + 1/4, 3 + 1/2, 3 + 3/4, 4 + 1/5, . . .} and let S = (P, I) be the semiorder on X
defined by xPy if x > y+ 1 and xIy if |x− y| ≤ 1. No pair of distinct elements in
X are equivalent, i.e., x ∼ y entails x = y. The linear order % is thus the same as
the natural order on the elements of X. The graph of I on X is connected, hence
we have to decompose a single connected component.

The set X has a least element (with respect to %), which is 0. Let B = {0}
and A = X \{0}. As initial bipartition, we select, for instance, (A,B). Let x0 = 1
and y0 = 0. Applying DFP, starting from y0 = 0, we get C0 = I0 = {0, 1}. Then,
applying UFP as described in section 3 yields:

C1 = I1 = {1 + 1/2, 2 + 1/3}
C2 = I2 = {2 + 2/3, 3 + 1/4, 3 + 1/2}
C3 = I3 = {3 + 3/4, 4 + 1/5, 4 + 2/5, 4 + 3/5}

. . .

i.e.,

Cn = In = {n+
n

n+ 1
, n+ 1 +

1

n+ 2
, . . . , n+ 1 +

n

n+ 2
}, for n ∈ N.

Alternatively, we could choose to apply UFP to the bipartition (A,B). Starting
from x0 = 1, this yields C ′0 = I ′0 = {1, 1+1/2}. Applying UFP, successively yields:

C ′1 = I ′1 = {2 + 1/3, 2 + 2/3, 3 + 1/4}
C ′2 = I ′2 = {3 + 1/2, 3 + 3/4, 4 + 1/5, 4 + 2/5}
C ′3 = I ′3 = {4 + 3/5, 4 + 4/5, 5 + 1/6, 5 + 2/6, 5 + 3/6}

. . .
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i.e.,

C ′n = I ′n = {n+1+
n

n+ 2
, n+1+

n+ 1

n+ 2
, n+2+

1

n+ 3
, . . . , n+2+

n+ 2

n+ 3
}, for n ∈ N\{0}.

Since there is an element below C ′0, the decomposition ends up, by using DFP,
with:

C ′−1 = I ′−1 = {0}.

Such decompositions depend on the choice of the initial bipartition and the
initial choice of the procedure UFP or DFP.

Starting with UFP from bipartition (A′′, B′′), with B′′ = {0, 1, 1 + 1/2, 2 +
1/3, 2 + 2/3} and A′′ = X \ B′′, yields another decomposition. Indeed, we get
C ′′0 = I ′′0 = {3 + 1/4, 3 + 2/4, 3 + 3/4, 4 + 1/5}. The rest of the indifference classes
fitting with I ′′0 is different from the ones already obtained. 3

Example 29
Let X = Q, the set of rational numbers endowed with the usual semiorder S =
(P, I) defined by xPy if x > y + 1 and xIy if |x − y| ≤ 1. There is no pair of
distinct equivalent elements in X. Therefore, the linear order % is the natural
order on X = Q. The graph of I on X is connected. We thus have to decompose
a single I-connected component.

Consider the initial bipartition (A,B) with A = {x ∈ Q : x ≥ 0} and B =
{x ∈ Q : x < 0}. Let x0 = 1/2 and y0 = −1/2. Starting UFP from x0, yields
C0 = I0 = {x ∈ Q : 0 ≤ x ≤ 1} = [0, 1]. Hence C1 = [1, 2] and I1 =]1, 2]. For
k > 0, we have Ck = [k, k+ 1] and Ik =]k, k+ 1]. On the other hand, C−1 = [−1, 0]
and I−1 = [−1, 0[. For l > 0, we have C−l = [−l,−l + 1] and I−l = [−l,−l + 1[.

With the same initial partition, starting DFP from y0 would yield C ′0 = I ′0 =
[−1, 0]. Hence C ′1 = [0, 1] and I ′1 =]0, 1]. For k > 0, we have C ′k = [k − 1, k] and
I ′k =]k − 1, k]. On the other hand, C ′−1 = [−2,−1] and I ′−1 = [−2,−1[. For l > 0,
we have C ′−l = [−l − 1,−l] and I ′−l = [−l − 1,−l[.

In Q, there are bipartitions (A′′, B′′) where A′′ has no least element and B′′ has
no greatest element (contrary to the bipartition (A,B) defined above). Indeed, let
A′′ = {x ∈ Q : x >

√
2} and B′′ = {x ∈ Q : x <

√
2}. Let x0 = 2 and y0 = 1.

Starting UFP from x0, yields C ′′0 = I ′′0 = {x ∈ Q :
√

2 < x < 1+
√

2} =]
√

2, 1+
√

2[.
Hence C ′′1 = I ′′1 =]1+

√
2, 2+

√
2[. For k > 0, we have C ′′k = I ′′k =]k+

√
2, k+1+

√
2[.

On the other hand, C ′′−1 = I ′′−1 =]
√

2 − 1,
√

2[. For l > 0, we have C ′′−l = I ′′−l =

[
√

2− l,
√

2− l + 1[. 3

Remark 30 (Well-ordered or finite connected components)
In Example 28, the set X is well-ordered by %, i.e., every subset of X has a least
element w.r.t. %. In particular, X itself has a least element, which is 0. In the
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case % is a well-ordering of a connected component D of (X, I), the procedure
producing partitions into sets of indifferent elements, described in Section 3.2, can
be simplified. We can indeed start with the least (w.r.t. %) element y0 ∈ D.
Let (A,B) be the bipartition which defines this element, i.e., B = {y0} and A =
D \ {y0}. Applying the DFP procedure, we see that I+0 (y0) = {y0}, J−0 (y0) = ∅,
and J+

0 (y0) = {z 6= y0 : zIy0}. Therefore, I0 is just the class of elements in D that
are indifferent to y0. Then we consider the least element y1 in D\I0 and we obtain
I1 = y1∪J+

0 (y1), the class of all elements above y1 (w.r.t. %) and indifferent to y1.
For all k ≥ 1, Ik is built iteratively by considering the least element yk which does
not belong to

⋃k−1
j=0 Ij. The set Ik = {yk}∪J+

0 (yk) is the class of all elements above
yk (w.r.t. %) and indifferent to yk. Since there are no elements in D below I0, the
procedure exhausts the elements of D only by using intervals Ik, with k ≥ 0. That
is exactly what was done in the case of Example 28.

Of course, in case, the reverse order - is a well-ordering, i.e., if every subset of
a connected component D has a greatest element w.r.t. %, the same construction
can be simplified by starting from the greatest (w.r.t. %) element in D and first
apply UFP. Only intervals I−l, with l ≥ 0 will then be used to cover D.

The case in which D is a finite set is special since every subset of D has a least
and a greatest element. We may thus choose to start from the least element and
work upwards or the opposite.

For illustration, consider the semiorder in Example 28 restricted to a finite
subset X ′ of X, say, the elements of X that are smaller than 4. We have X ′ =
{0, 1, 1 + 1/2, 2 + 1/3, 2 + 2/3, 3 + 1/4, 3 + 1/2, 3 + 3/4}. Starting from y0 = 0 and
first applying the DFP procedure, we generate successively the subsets I0, I1, I2 as
in Example 28, the last subset I3 is limited to the singleton {3+3/4}. In contrast,
starting from the greatest element 3 + 3/4 and applying UFP, would lead to the
partition:

I ′0 = {3 + 1/4, 3 + 1/2, 3 + 3/4}
I ′−1 = {2 + 1/3, 2 + 2/3}
I ′−2 = {1, 1 + 1/2}
I ′−3 = {0}.

4 Construction of a unit representation for a de-

numerable I-connected semiorder

We consider an I-connected component D of the semiorder S = (P, I) on the set
X. We assume that D is a denumerable set. In this case we show that one can
build a unit representation of the semiorder induced on D without making any
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additional assumption.
Let D be a denumerable connected component of (X, I). Choose a bipartition

(A0, B0) in D and perform the decomposition in subsets Ik, k ≥ 0 and I−l, l > 0,
starting either with DFP or UFP, as described in Section 3. Let M denote the set
of consecutive integers, containing 0, for which Im exists. We have:

D =
⋃

m∈M
Im = (

⋃
k≥0

Ik) ∪ (
⋃
l>0

I−l).

The main idea in order to build a unit representation is to create an image
of all elements of D in I0. These “images”, that we call ghosts, are sequentially
inserted at appropriate positions in the set I0 augmented with the previously in-
serted ghosts. In this way, the initial linear order % on I0 is extended to a complete
preorder %ϕ on I0 and the set of inserted ghosts at each stage of the process (this
set will be denoted by Ĩ0 in the sequel). Once this process has come to an end, i.e.,
when all elements of D have been associated a representative in the set I0, at ap-
propriate positions determining the extended preorder, a numerical representation
of this ordered set is selected and then “lifted” to yield a unit representation of the
semiorder on D. The whole procedure is illustrated by examples in Section 4.3.

4.1 Creating ghosts

We start with the pair of convex subsets I0, I1. We create and insert a dummy
element in I0 for each y ∈ I1. This dummy element is denoted ϕ1(y) and is referred
to as the ghost of y. The ghost of y is inserted between the elements of I0 to which
it is preferred and those to which it is indifferent. Since we proceed sequentially,
we also have to take the ghosts already inserted into account.

Let us be more precise. Since X is a denumerable set, so is I1. We order the
elements of I1 in a sequence {yt, t ∈ T1}, with T1 a set of consecutive integers start-
ing with 1. To create the ghost ϕ1(y1), we define an ordered bipartition (A0

1, B
0
1)

in I0, with

A0
1 = {x ∈ I0 : y1Ix},

B0
1 = {x ∈ I0 : y1Px}.

By Proposition 24.4, B0
1 is not empty, while it may happen that A0

1 be empty.
A ghost ϕ1(y1) is created and inserted in I0 between A0

1 and B0
1 (after all

elements of B0
1 if A0

1 is empty). We extend the linear order % on I0 into a complete
preorder8 %ϕ by setting a �ϕ ϕ1(y1) �ϕ b for all a ∈ A0

1 and b ∈ B0
1 . Since %ϕ

extends %, we also have a %ϕ b for all a, b ∈ I0 with a % b.

8In the sequel, we will have to consider that some pairs of elements can be indifferent w.r.t.
%ϕ and, therefore, we may not assume that the extension of � is a linear order.
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Assuming that the ghosts ϕ1(ys) of ys, for s = 1, . . . , t− 1, have been created,
we now insert the ghost ϕ1(yt) of yt in the set I0 ∪ {ϕ1(y1), . . . , ϕ1(yt−1)} ordered
by the relation %ϕ extending %. We define the bipartition (A0

t , B
0
t ) in this set,

letting A0
t = {x ∈ I0 : ytIx} and B0

t = {x ∈ I0 : ytPx}. By Lemma 32 (see
below), for all a ∈ C0

t = A0
t ∪ {ϕ1(ys) : ys � yt, s = 1, . . . , t− 1} and all b ∈ D0

t =
B0

t ∪ {ϕ1(ys) : ys ≺ yt, s = 1, . . . , t− 1}, we have a �ϕ b.
A ghost ϕ1(yt) is inserted between C0

t and D0
t (or above all elements in D0

t

in case C0
t is empty). The complete preorder %ϕ is extended by setting a �ϕ

ϕ1(yt) �ϕ b for all a ∈ C0
t and b ∈ D0

t .
Proceeding sequentially in this way, we finally obtain the set Ĩ10 = I0 ∪ ϕ1(I1)

which is ordered by the (extended) complete preorder %ϕ.

Remark 31
Note that a unit representation of the restriction of the semiorder (P, I) to I0 ∪ I1
can be obtained in the following way:

1. select any representation f of the order %ϕ on Ĩ10 = I0 ∪ ϕ1(I1) in the ]0, 1[
real interval,

2. set

u(x) =

{
f(x) if x ∈ I0,
f(ϕ1(x)) + 1 if x ∈ I1.

u is clearly a unit representation of the semiorder restricted to I0 ∪ I1.

Ghosts for Ik The generic step for k > 0 is as follows. Assume that Ik exists
and the ghosts ϕj(Ij) of the elements of Ij, for 1 ≤ j ≤ k − 1 have previously

been inserted. We denote by Ĩ0
k−1

the current extension of I0, which contains, in
particular, ϕk−1(Ik−1). We also assume that the relation %ϕ has been extended into

a complete preorder on Ĩ0
k−1

. We number the elements in Ik as {zt, t ∈ Tk}, with
Tk a set of consecutive integers starting with 1. Consider z1 ∈ Ik. It determines a
bipartition (Ak−1

1 , Bk−1
1 ) in Ik−1, with Ak−1

1 = {x ∈ Ik−1 : z1Ix}, a possibly empty
set, and Bk−1

1 = {x ∈ Ik−1 : z1Px}, a nonempty set (by Proposition 24.4). We
insert a ghost ϕk(z1) in Ĩk−10 between Ck−1

1 = ϕk−1(A
k−1
1 ) and Dk−1

1 = ϕk−1(B
k−1
1 )

(in case Ak−1
1 is empty, we insert ϕk(z1) above all the elements of Bk−1

1 ). There
may exist a certain degree of arbitrariness in the precise position of ϕk(z1) w.r.t.
the elements of Ĩk−10 (which was not the case in the initial step). We just choose
an insertion position that satisfies the constraint w.r.t. the ghosts of Ik−1 and
we extend the preorder %ϕ accordingly while respecting a �ϕ ϕk(z1) �ϕ b for all
a ∈ Ck−1

1 and b ∈ Dk−1
1 .

Proceeding sequentially, assume that ϕk(zs), for s = 1, . . . , t − 1, have been
created and inserted and the preorder %ϕ extended to Ĩk−10 ∪{ϕk(z1), . . . , ϕk(zt−1)}.
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Consider zt which determines a bipartition (Ak−1
t , Bk−1

t ) in Ik−1, with Ak−1
t = {x ∈

Ik−1 : ztIx}, a possibly empty set, and Bk−1
t = {x ∈ Ik−1 : ztPx}, a nonempty set.

By Lemma 32 (see below), for all a ∈ Ck−1
t = ϕk−1(A

k−1
t ) ∪ {ϕk(zs), zs � zt, s =

1, . . . , t − 1} and all b ∈ Dk−1
t = ϕk−1(B

k−1
t ) ∪ {ϕk(zs), zs ≺ zt, s = 1, . . . , t − 1},

we have a �ϕ b.
A ghost ϕk(zt) is inserted in Ĩk−10 ∪ {ϕk(z1), . . . , ϕk(zt−1)} between Ck−1

t and
Dk−1

t (in case Ak−1
t is empty, we insert ϕk(zt) above all the elements of Dk−1

t ).
The precise position of ϕk(zt) w.r.t. the other elements of Ĩk−10 that lie between
Ck−1

t and Dk−1
t is determined in an arbitrary manner. The complete preorder %ϕ

is extended to Ĩk−10 ∪ {ϕk(z1), . . . , ϕk(zt)} accordingly and satisfies in particular
a �ϕ ϕ1(zt) �ϕ b for all a ∈ Ck−1

t and b ∈ Dk−1
t .

Finally, we obtain the set Ĩk0 = Ĩk−10 ∪ϕk(Ik), which is ordered by the (extended)
complete preorder relation %ϕ.

The following lemma was used repeatedly to prove that it was always possible
to insert ϕk(zt) in between Ck−1

t and Dk−1
t , for k ≥ 1 and t ∈ Tk.

Lemma 32
Assume that for all j, with 0 < j < k, ϕj is an injective function from Ij into Ĩk−10

and assume further that the order �ϕ on the ghosts ϕk(zs), for s = 1, . . . , t − 1,
reproduces the order � on {zs, s = 1, . . . , t− 1} ⊆ Ik.
For k = 1, we have a �ϕ b for all a ∈ C0

t = A0
t ∪ {ϕ1(zs), zs � zt, s = 1, . . . , t− 1}

and all b ∈ D0
t = B0

t ∪ {ϕ1(zs), zs ≺ zt, s = 1, . . . , t− 1}.
For k ≥ 2, we have a �ϕ b for all a ∈ Ck−1

t = ϕk−1(A
k−1
t ) ∪ {ϕk(zs), zs � zt, s =

1, . . . , t− 1} and all b ∈ Dk−1
t = ϕk−1(B

k−1
t ) ∪ {ϕk(zs), zs ≺ zt, s = 1, . . . , t− 1}.

Proof
We prove the lemma for k ≥ 2. By hypothesis, we clearly have a �ϕ b for

all a ∈ ϕk−1(A
k−1
t ) and all b ∈ ϕk−1(B

k−1
t ), since x � y for all x ∈ Ak−1

t and
all y ∈ Bk−1

t . Consider now zs, with 1 ≤ s ≤ t − 1, such that zs � zt. We
have ϕk(zs) �ϕ ϕk−1(b) for all b ∈ Bk−1

s = {x ∈ Ik−1 : zsPx} ⊇ Bk−1
t , hence

ϕk(zs) �ϕ ϕk−1(b) for all b ∈ Bk−1
t . One proves, in a similar way, that for all

zs such that zs ≺ zt, we have ϕk(zs) ≺ϕ ϕk−1(a) for all a ∈ Ak−1
t . Finally, the

insertion procedure guarantees that, for all zs, zs′ , with 1 ≤ s, s′ ≤ t− 1, such that
zs � zt and zs′ ≺ zt, we have ϕk(zs) �ϕ ϕk(zs′). The proof of the lemma for k = 1
is similar. 2

Let us now turn to I−l for l > 0. We start with l = 1.

Ghosts for I−1 We denote by Ĩ0 the current extension of I0 ordered by the
complete preorder %ϕ. We number the elements of I−1 as {zt, t ∈ T−1}, with T−1
a set of consecutive integers starting with 1. Consider z1 ∈ I−1. It determines a
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bipartition (A−01 , B−01 ) in I0, with A−01 = {x ∈ I0 : xPz1}, a nonempty set (by
Proposition 24.5), and B−01 = {x ∈ I0 : xIz1}, a possibly empty set. We insert
a ghost ϕ−1(z1) in Ĩ0, between A−01 and B−01 (in case B−01 is empty, we insert
ϕ−1(z1) below all elements of A−01 ). There is generally some arbitrariness in the
positioning of ϕ−1(z1) w.r.t. to the elements of Ĩ0, namely, the ghosts previously
inserted between A−01 and B−01 . We just select any insertion for ϕ−1(z1) that
satisfies the constraint and we extend %ϕ accordingly. In particular this extension
satisfies a �ϕ ϕ−1(z1) �ϕ b for all a ∈ A−01 and b ∈ B−01 .

We then proceed sequentially, assuming that the ghosts ϕ−1(zs), for s =
1, . . . , t − 1, have been created and inserted and the complete preorder %ϕ ex-
tended to Ĩ0 ∪ {ϕ−1(z1), . . . , ϕ−1(zt−1)}. Consider zt, which determines a bipar-
tition (A−0t , B−0t ) in I0, with A−0t = {x ∈ I0 : xPzt}, a nonempty set, and
B−0t = {x ∈ I0 : xIzt}, a possibly empty set. By Lemma 33 (see below), for
all a ∈ C−0t = A−0t ∪ {ϕ−1(zs), zs � zt, s = 1, . . . , t − 1} and all b ∈ D−0t =
B−0t ∪ {ϕ−1(zs), zs ≺ zt, s = 1, . . . , t− 1}, we have a �ϕ b.

A ghost ϕ−1(zt) is inserted in Ĩ0 ∪ {ϕ−1(z1), . . . , ϕ−1(zt−1)} between C−0t and
D−0t (in case D−0t is empty, ϕ−1(zt) is inserted below all elements of C−0t ). The
precise position of ϕ−1(zt) w.r.t. the other elements of Ĩ0 that lie between C−0t

and D−0t is determined in an arbitrary manner and the complete preorder %ϕ is
extended accordingly while satisfying a �ϕ ϕ−1(zt) �ϕ b for all a ∈ C−0t and
b ∈ D−0t .

Finally, we obtain the set Ĩ−10 = Ĩ0 ∪ ϕ−1(I−1), which is ordered by the (ex-
tended) complete preorder relation %ϕ.

Ghosts for I−l The generic insertion step for subsets I−l, l = 1, . . . is as follows.
Let Ĩ−l+1

0 denote the current extension of I0. We assume that the ghosts ϕ−j(z) of
all z ∈ I−j for j = 1, . . . , l− 1 have been inserted in Ĩ0 and the complete preorder

%ϕ has been extended to all Ĩ0
−l+1

. Moreover, we assume that the �ϕ order of
the ghosts of the elements of I−j reproduces the � order in their original subset.

We number the elements in I−l as {zt, t ∈ T−l}, with T−l a set of consec-
utive integers starting with 1. Consider z1 ∈ I−l. It determines a bipartition
(A−l+1

1 , B−l+1
1 ) in I−l+1, with A−l+1

1 = {x ∈ I−l+1 : xPz1}, a nonempty set, and
B−l+1

1 = {x ∈ P−l+1 : xPz1}, a possibly empty set. We insert a ghost ϕ−l(z1) in
Ĩ−l+1
0 between C−l+1

1 = ϕ−l+1(A
−l+1
1 ) and D−l+1

1 = ϕ−l+1(B
−l+1
1 ) (in case B−l+1

1

is empty, we insert Ĩ−l+1
0 below all elements of C−l+1

1 ). The precise position of
ϕ−l+1(zt) w.r.t. the other elements of Ĩ−l+1

0 that lie between C−l+1
1 and D−l+1

1 is
chosen arbitrarily. The %ϕ preorder is extended accordingly while ensuring that
a �ϕ ϕ−l(z1) �ϕ b for all a ∈ C−l+1

1 and b ∈ D−l+1
1 .

Assuming that ϕ−l(zs), for s = 1, . . . , t−1, have been created and inserted and
the complete preorder %ϕ extended to Ĩ−l+1

0 ∪{ϕ−l(z1), . . . , ϕ−l(zt−1)}, we consider
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zt. This element determines a bipartition (A−l+1
t , B−l+1

t ) in I−l+1, with A−l+1
t =

{x ∈ I−l+1 : xPzt}, a nonempty set, and B−l+1
t = {x ∈ I−l+1 : xIzt}, a possibly

empty set. By Lemma 33, for all a ∈ C−l+1
t = ϕ−l+1(A

−l+1
t )∪{ϕ−l(zs), zs � zt, s =

1, . . . , t−1} and all b ∈ D−l+1
t = ϕ−l+1(B

−l+1
t )∪{ϕ−l(zs), zs ≺ zt, s = 1, . . . , t−1},

we have a �ϕ b.
A ghost ϕ−l(zt) is inserted in Ĩ−l+1

0 ∪ {ϕ−l(z1), . . . , ϕ−l(zt−1)} between C−l+1
t

and D−l+1
t (or below all elements of C−l+1

t in case B−l+1
t is empty. The precise

position of ϕ−l(zt) w.r.t. the other elements of Ĩ−l+1
0 ∪ {ϕ−l(zs), s = 1, . . . , t − 1}

that lie between C−l+1
t and D−l+1

t is determined in arbitrary manner. The complete
preorder %ϕ is extended accordingly while ensuring that a �ϕ ϕ−l(zt) �ϕ b for all
a ∈ C−l+1

t and b ∈ D−l+1
t .

Finally, we obtain the set Ĩ−l0 = Ĩ−l+1
0 ∪ ϕ−l(I−l), which is ordered by the

(extended) complete preorder relation %ϕ.
The following lemma proves that the insertion of ϕ−l(zt) is always possible.

Lemma 33
Assume that for all j, with 1 ≥ j < l, ϕ−j is an injective function from I−j into

Ĩ−j0 and assume further that the �ϕ order on the ghosts ϕ−l(zs), for s = 1, . . . , t−1
reproduces the �ϕ order on {zs, s = 1, . . . , t− 1} ⊆ I−l.
For l = 1, we have a �ϕ b for all a ∈ C−0t = A−0t ∪ {ϕ−1(zs), zs � zt, s =
1, . . . , t− 1} and all b ∈ D−0t = B−0t ∪ {ϕ−1(zs), zs ≺ zt, s = 1, . . . , t− 1}.
For l ≥ 2, we have a �ϕ b for all a ∈ C−l+1

t = ϕ−l+1(A
−l+1
t )∪{ϕ−l(zs), zs � zt, s =

1, . . . , t−1} and all b ∈ D−l+1
t = ϕ−l+1(B

−l+1
t )∪{ϕ−l(zs), zs ≺ zt, s = 1, . . . , t−1}.

The proof of this lemma is similar to that of Lemma 32. It is left to the reader.

At the end of this construction process, involving at most a countably infinite
number of steps (each of them involving at most a countably infinite number of
insertions), we obtain the set Ĩ0 = I0 ∪ (

⋃
k≥0 ϕk(Ik)) ∪ (

⋃
l>0 ϕ−l(I−l) = I0 ∪

(
⋃

m∈M ϕm(Im)), ordered by %ϕ, which is an extension of the complete preorder
% on I0. The restriction of %ϕ to ϕm(Im), for m ∈ M,m 6= 0, is an isomorphic
image of the % order on Ik.

Remark 34
In the construction described above, we chose to start with building a representa-
tion for all Ik, for k > 0, in I0 and then we turned to mapping the subsets I−l, for
l < 0, into I0. One could have instead alternated the insertion of Ik and I−k, for
all k > 0, starting from k = 1 and working consecutively. Other schemes can be
considered. The only restriction is that, before inserting Ik (resp., I−k), for k > 0,
one must make sure that all elements of Ik−1 (resp., I−k+1) have been inserted.

Remark 35
In the construction described above, it is not excluded that ghosts of elements
from Ik (resp., I−l) are set equivalent, w.r.t. %ϕ, to ghosts of elements from Im,
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for 0 ≤ m ≤ k − 2 (resp., −l + 2 ≤ m ≤ 0). That is why we allow the equivalence
classes of %ϕ not to be restricted to pairs (x, x). However, in this section, we do
not allow ghosts of elements from Ik (resp., I−l) to be set equivalent to ghosts
of elements from Ik−1 (resp., I−l+1). In Section 4.4, we investigate the precise
conditions under which this can be allowed.

4.2 Construction of a representation

Since Ĩ0 is at most countable, there exists a numerical representation of the com-
plete preorder %ϕ on this set. One way of building a unit representation of the
semiorder (P, I) is to select a numerical representation f of %ϕ in the ]0, 1[ rational
or real interval and to define the function u on D as follows:

u(x) = f(ϕm(x)) +m for all x ∈ Im, (5)

for all m ∈ M , and interpreting ϕ0 as the identity function. We shall refer to
equation (5) as to the lifting equation.

Enforcing the representation f to range in the ]0, 1[ interval is however a re-
strictive requirement. Instead we may choose for f any numerical representation
of the order %ϕ on Ĩ0 satisfying the following condition: for all m ∈M ,

sup{|f(ϕm(x))− f(ϕm(y))|, x, y ∈ Im} ≤ 1. (6)

Obviously, this condition is satisfied if the range of f is the ]0, 1[ interval. We shall
henceforth refer to condition (6) as to the unit threshold constraint.

The following proposition is the first main result of this paper. It shows that
any I-connected component of a semiorder defined on a denumerable set has a unit
representation.

Proposition 36
If f is a numerical representation of %ϕ on Ĩ0 satisfying the unit threshold con-
straint (6), then the function u defined by the lifting equation (5) is a unit repre-
sentation of the semiorder S = (P, I) restricted to D, i.e., for all x, y ∈ D,

xPy ⇔ u(x) > u(y) + 1,

xIy ⇔ −1 ≤ u(x)− u(y) ≤ 1.

Proof
Let x, y be such that xPy. If y belongs to Ik (k ∈ M), we have that x belongs
to Im for m ≥ k + 1 (by Proposition 24). If x ∈ Ik+1, we have u(x) − u(y) =
f(ϕk+1(x)) + k + 1− f(ϕk(y))− k > 1, which entails f(ϕk+1(x)) > f(ϕk(y)) since
ϕk+1(x) � ϕk(y) by construction.

27



If x ∈ Im, for m ≥ k+2, we have u(x)−u(y) = f(ϕm(x))+m−f(ϕk(y))−k > 1
since m − k ≥ 2 and f(ϕm(x)) − f(ϕk(y)) > −1. The latter inequality is proved
to hold as follows. It is trivially true in case f(ϕm(x)) − f(ϕk(y)) ≥ 0. We thus
consider the opposite case in which f(ϕm(x)) < f(ϕk(y)). We distinguish three
sub-cases.

1. Case k ≥ 0. Using Proposition 24.4, we know that there exists a P -chain
xPz1P z2P . . . Pzm−k, with zi ∈ Im−i for i = 1, . . . ,m− k. By construction
of the ghosts, we have f(ϕm(x)) > f(ϕm−1(z1)) > . . . > f(ϕk+1(zm−k+1)) >
f(ϕk(zm−k)). Therefore f(ϕk(zm−k)) < f(ϕm(x)) < f(ϕk(y)). Using (6)
yields f(ϕm(x))− f(ϕk(y)) > −1.

2. Case m ≤ 0. Using Proposition 24.5, we know that there exists a P -chain
wm−kPwm−k+1P . . . Pw1Py, with wi ∈ Ik+i for i = 1, . . . ,m − k. By con-
struction of the ghosts, we have f(ϕm(wm−k)) > f(ϕm−1(wm−k+1)) > . . . >
f(ϕk+1(w1)) > f(ϕk(y)). Therefore f(ϕm(wm−k) > f(ϕk(y)) > f(ϕm(x)).
Using (6) yields f(ϕm(x))− f(ϕk(y)) > −1.

3. Case m > 0 and k < 0. Using Proposition 24.4, we know that there exists
a P -chain xPz1P . . . Pzm, with zi ∈ Im−i for i = 1, . . . ,m. By construc-
tion of the ghosts, we have f(ϕm(x)) > f(ϕ0(zm)). Using Proposition 24.5,
we know there exists a P -chain w−kPw−k+1P . . . Pw1Py, with wi ∈ Ik+i

for i = 1, . . . ,−k. By construction of the ghosts, we have f(ϕ0(w−k)) >
f(ϕ−1(w−k+1)) > . . . > f(ϕk+1(w1)) > f(ϕk(y)). We see that f(ϕ0(zm) ≥
f(ϕ0(w−k)) is not compatible with f(ϕm(x)) < f(ϕk(y)). Therefore, we have
0 < f(ϕk(y))− f(ϕm(x)) < f(ϕ0(w−k))− f(ϕ0(zm) ≤ 1.

Hence, if xPy, then u(x) > u(y) + 1.
Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g. that x � y

and y ∈ Ik (k ∈ M). By Proposition 24.2, 24.3 and 24.5, we know that x ∈ Ik or
x ∈ Ik+1. In the former case, 0 < u(x)−u(y) = f(ϕk(x))+k−f(ϕk(y))−k < 1, due
to condition (6) on f . In the latter case, we have 0 < u(x)− u(y) = f(ϕk+1(x)) +
k+ 1− f(ϕk(y))− k < 1 because the difference f(ϕk+1(x))− f(ϕk(y)) is negative.
To establish this, we consider the following two possible cases:

• k ≥ 0. By construction of the ghosts and the extension %ϕ of % for k ≥ 0,
we have ϕk(a) �ϕ ϕk+1(x) �ϕ ϕk(b) for all a ∈ A = {z ∈ Ik : xIz} and all
b ∈ B = {z ∈ Ik : xPz}. Since y belongs to A and f represents %ϕ, we have
that f(ϕk(y)) > f(ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension %ϕ of % for
k = −l < 0, we have ϕ−l+1(a) �ϕ ϕ−l(y) �ϕ ϕ−l+1(b) for all a ∈ A = {z ∈
I−l+1 : zPy} and all b ∈ B = {z ∈ I−l+1 : zIy}. Since x belongs to B
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and f represents %ϕ, we have that f(ϕ−l(y)) = f(ϕk(y)) > f(ϕ−l+1(x)) =
f(ϕk+1(x)).

Hence, if xIy, then |u(x)− u(y)| ≤ 1. 2

Remark 37
Note that the hypothesis that X is a denumerable set is used twice in the above
construction. First, for constructing a mapping of the whole set D in the subset
I0, while respecting the order of the elements in their respective original subsets
Im. Second, this hypothesis entails the existence of a numerical representation of
the %ϕ preorder on Ĩ0.

Remark 38
Proposition 36 shows that a semiorder on an I-connected set always has a unit
representation. It offers an alternative proof of Manders (1981, Prop. 8, p. 237).

Observe also that, if we enforce f to range in the ]0, 1[ interval, then, in Ĩ0, it
is impossible that the difference, in terms of f , between two objects is exactly 1.
Hence, Proposition 36 also shows that, on an I-connected component, it is always
possible to build a representation that is at the same time strict (i.e., it fulfills (1))
and nonstrict (i.e., it fulfills (2)). We will see below that this observation is not
limited to the case of an I-connected component. It holds true in the general case
of a denumerable semiorder which admits a numerical representation. This also
extends Beja and Gilboa (1992, Th. 3.8, p. 436) for the case of an I-connected
component of a semiorder. It is not only possible to obtain a strict representation
or a nonstrict one but it is also possible to build a representation that is at the
same time strict and nonstrict. We will see below (see Remark 61) that this holds
true for all semiorders on denumerable sets admitting a numerical representation.

Finally observe that, since X is countable, it is not restrictive to enforce f to
range in the ]0, 1[ ∩ Q interval. This shows that a semiorder on an I-connected
component has a unit real representation iff it has a unit rational representation.
For a semiorder that is I-connected, this gives an alternative proof of Manders
(1981, Prop. 7, p. 236). Using the analysis in Section 5 below, it is easy to extend
the analysis to a class of semiorders that are not I-connected (see Remark 61).

4.3 Illustrating the construction of a representation

We build a representation for the I-connected semiorders in Examples 28 and 29.

Example 28 [cont’d]

We consider the decomposition of the semiorder in Example 28 in subsets In, n ∈ N,
obtained by starting from bipartition (A,B), with B = {0} and A = X \B.
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• I0 = {0, 1}.

• I1 = {1 + 1/2, 2 + 1/3}.
The insertion constraints are: 0 < ϕ1(1 + 1/2) < 1 < ϕ1(2 + 1/3). We insert
the elements ϕ1(I1) separating them from these in I0 by a value of 1/2, i.e.,

ϕ1(1 + 1/2) = 1/2, ϕ1(2 + 1/3) = 3/2.

The complete preorder %ϕ is the natural preorder on the numbers involved
in the construction and it will be so in the remaining steps.

• I2 = {2 + 2/3, 3 + 1/4, 3 + 1/2}.
The insertion constraints are: ϕ1(1 + 1/2) < ϕ2(2 + 2/3) < ϕ2(3 + 1/4) <
ϕ1(2 + 1/3) < ϕ2(3 + 1/2). We insert the elements ϕ2(I2) separating them
from these in ϕ1(I1) ∪ I0 by a value of 1/4; we set, e.g.,

ϕ2(2 + 2/3) = 3/4, ϕ2(3 + 1/4) = 5/4, ϕ2(3 + 1/2) = 7/4.

Note that ϕ2(2 + 2/3) and ϕ2(3 + 1/4) could alternatively have been both
positioned in the interval ]1/2, 1[ or both in the interval ]1, 3/2[.

• I3 = {3 + 3/4, 4 + 1/5, 4 + 2/5, 4 + 3/5}.
The insertion constraints are: ϕ2(2 + 2/3) < ϕ3(3 + 3/4) < ϕ3(4 + 1/5) <
ϕ2(3 + 1/4) < ϕ3(4 + 2/5) < ϕ2(3 + 1/2) < ϕ3(4 + 3/5). We insert the
elements ϕ3(I3) separating them from these in ϕ2(I2)∪ϕ1(I1)∪ I0 by a value
of 1/8, we set, e.g.,

ϕ3(3+3/4) = 7/8, ϕ3(4+1/5) = 9/8, ϕ3(4+2/5) = 11/8, ϕ3(4+3/5) = 15/8.

A number of arbitrary choices have been made in assigning these values. The
above ghost insertion choices are represented on Figure 3.

We now indicate how we may define ϕk+1(Ik+1) knowing ϕk(Ik), for k ≥ 1. We
have:

Ik = {k +
k

k + 1
, k + 1 +

1

k + 2
, . . . , k + 1 +

k

k + 2
}, for k ≥ 1.

Ik+1 has one more element than Ik. One easily verifies that the insertion constraints
are : ϕk(k + k

k+1
) < ϕk+1(k + 1 + k+1

k+2
) < ϕk+1(k + 2 + 1

k+3
) < ϕk(k + 1 + 1

k+2
) <

ϕk+1(k + 2 + 2
k+3

) < . . . < ϕk(k + 1 + t
k+2

) < ϕk+1(k + 2 + t+1
k+3

) < . . . < ϕk(k +

1 + k
k+2

) < ϕk+1(k + 2 + k+1
k+3

), with 2 ≤ t ≤ k − 1. In words, the ghosts of the
two smaller elements in Ik+1 are positioned between the ghosts of the least and
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7/4
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7/8

3 + 3/4

9/8

4 + 1/5

11/8

4 + 2/5

15/8

4 + 3/5

Figure 3: Ghosts insertion illustrated on Example 28

the second least elements in Ik. For the rest, the ghosts positions of both subsets
alternate.

We may recursively assign the following values to ϕk+1:

ϕk+1(k + 1 +
k + 1

k + 2
) = ϕk(k +

k

k + 1
) +

1

2k+1

ϕk+1(k + 2 +
1

k + 3
) = ϕk(k +

k

k + 1
) +

3

2k+1

ϕk+1(k + 2 +
t+ 1

k + 3
) = ϕk(k + 1 +

t

k + 2
) +

1

2k+1
, for 2 ≤ t ≤ k.

Provided the values of ϕ1 and ϕ2 are set as indicated above, and the general
assignment rules are followed, it is easy to see that the values of ϕi for i = 1, . . . , k
are integer multiples of 1

2k
. Given the way the values of ϕk+1 are set, they are odd

integer multiples of 1
2k+1 and hence are distinct from all previously assigned values.

The assignment rules ensure that the insertion constraints are satisfied.
The greatest value taken by ϕk+1 is equal to the greatest value taken by ϕk

plus 1
2k+1 . Therefore, 0 < ϕk+1 < 2 for all k ≥ 0. A representation f of the %ϕ

preorder, ranging in ]0, 1[, is thus obtained e.g., by setting f(ϕk(x)) = 1
2
ϕk(x), for

all x ∈ Ik and all k such that Ik exists. A unit representation of the semiorder is
then obtained using the lifting equation (5). 3

Remark 39
It is worth noticing that the procedure described in Sections 3.1, 3.2, 4.1 and
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4.2 unifies the construction of a numerical representation for finite and countable
(I-connected) semiorders. Consider for instance the finite semiorder obtained by
restricting the set X and the relation in Example 28 to the elements less than or
equal to 4 + 3/5. A preliminary check for equivalent elements leads to identify
the elements x = 3 + 3/4 and y = 4 + 1/5, which have the same predecessors and
successors, i.e., xP = yP and Px = Py = ∅. These elements form an equivalence
class, denoted by a. It will be represented by a single ghost and both elements
of the class a will be associated the same value in numerical representations (the
option of identifying equivalent elements was made in the introductory section).
A numerical representation of this finite semiorder can be constructed by the
standard procedure. Starting from x0 = 0, we obtain the same intervals I0, I1, I2
while I3 = {a, 4+2/5, 4+3/5}. The ghost of a may be set for instance to the value
7/8 while the other ghosts remain unchanged. We get a numerical representation
u with unit threshold by setting f(x) = 1/2ϕk(x) for x ∈ Ik, k = 0, 1, 2, 3 and
applying formula (5). In particular, we have u(3 + 3/4) = u(4 + 1/5) = 3 + 7/16.

Example 29 [cont’d]

Let X = Q and S = (P, I) be the usual semiorder on the rationals (see Example
29). We consider the decomposition obtained by using UFP, starting from the
bipartition (A,B), with A = {x ∈ Q : x ≥ 0} and B = X \A. We have I0 = [0, 1],
the closed unit rational interval.

For x ∈ I1 =]1, 2], ϕ1(x) is inserted between A0
x = {y ∈ I0 : y ≥ x − 1}

and B0
x = {z ∈ I0 : z < x − 1}. The element x is the only one in I1 that

has to be inserted between A0
x and B0

x. Therefore we create a ghost for x, that
we label (x, 1) and position (w.r.t. %ϕ) just below x − 1 ∈ I0. Hence we have:
ϕ1(x) = (x, 1) ≺ϕ a, for all a ∈ A0

x and ϕ1(x) = (x, 1) �ϕ b, for all b ∈ B0
x. Doing

this for all x ∈ I1, we have (x, 1) ≺ϕ x − 1 for all x ∈ I1. For x ∈ Ik, k ≥ 1,
we label its ghost ϕk(x) = (x, k) and insert it just below x − k and also below
(x′, j), for all 1 ≤ j ≤ k such that x′ ∈ Ij and x′ − j = x − k. Hence we have:
ϕk(x) = (x, k) ≺ϕ (x′, j) ≺ x − k. In a similar way, for x ∈ I−l, l ≥ 1, we cre-
ate a ghost ϕ−l(x) = (x,−l) and insert it above x + l. For x ∈ I−l, l ≥ 1, its
ghost ϕ−l(x) = (x,−l) is positioned above x + l and also above (x′,−j), for all
1 ≤ j ≤ l such that x′ ∈ I−j and x′ + j = x + l. Eventually, associated to each
x ∈ I0 \ {0, 1}, we have a family of ghosts (x + m,m), for all m ∈ Z (where
(x, 0) is interpreted as x ∈ I0). For the special points x = 1 and x = 0, the
associated ghosts are, respectively, (1 + k, k), k ≥ 0 and (−l, l), l ≥ 0. Therefore,
Ĩ0 is the set of pairs (x + m,m), x ∈ I0 \ {0, 1},m ∈ Z together with the pairs
(1 + k, k), k ≥ 0 and (−l, l), l ≥ 0. This set is ordered by %ϕ as follows: for
all x, x′ ∈ I0 and all m,m′ ∈ Z such that (x + m,m), (x′ + m′,m′) ∈ Ĩ0, we have
(x+m,m) �ϕ (x′+m′,m′) iff x > x′ or x = x′ and m < m′. The set Ĩ0 is countably
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infinite and %ϕ is a complete preorder on Ĩ0, hence it has a numerical representa-
tion f in the rational ]0, 1[ interval9. Letting u(x + m) = f((x + m,m)) + m, for
all x ∈ I0, yields a numerical representation of the semiorder S on Q. Note that
such a representation is at the same type strict and nonstrict (see Remark 38). 3

4.4 Sparing ghosts

In the construction of a representation described in Sections 4.1 and 4.2, all ele-
ments from Ik, k ≥ 1, are represented by ghosts that are distinct and also distinct
from ghosts of elements of Ik−1 (and similarly for I−l and I−l+1). The complete
preorder %ϕ that is constructed on Ĩ0 actually is a linear order since distinct el-
ements in Ĩ0 are never equivalent (i.e., the symmetric part ∼ϕ of %ϕ reduces to
identical pairs). In this section we determine the conditions under which ghosts
of elements from Im and Im′ , with m 6= m′, can be set equivalent (w.r.t. %ϕ).
Actually, there is no need for conditions unless m = k and m′ = k − 1 with k > 0
or m = −l and m′ = −l + 1 with l > 0. We illustrate a variant of the ghost
construction on Example 29. While positioning ghosts, we put as many ghosts as
possible in the same equivalence class of %ϕ. Although we do not really “spare
ghosts” in the true sense, we do not discriminate between as many of them as
possible.

We recall the assumption made at the outset that no pair of distinct elements in
X are equivalent with respect to %, i.e., the equivalence classes of ∼ are singletons.

Proposition 40
For k ≥ 1, let Ik = {zt, t ∈ Tk}, with Tk ⊆ N, a set of consecutive integers starting
with 1. In the construction of a representation described in Section 4, the ghost
ϕk(zt) can be set equivalent (w.r.t. %ϕ) to the ghost ϕk−1(z′) for some z′ ∈ Ik−1 if
and only if the following two conditions are satisfied:

1. Ak−1
t = {x ∈ Ik−1 : ztIx} has a least element (w.r.t. %), which is z′,

2. zt is the greatest element in Ik that is indifferent to z′.

9One way of building such a representation is as follows.

1. Label each element of the denumerable set I0 = [0, 1] ∩ Q by a positive integer, i.e.,
I0 = {xn, n ∈ N0}; let n(0) (resp. n(1)) be such that xn(0) = 0 (resp. xn(1)=1).

2. Set g(xn) = xn +
∑

j:xj<xn

1
2j + 1

2n+1 .

3. Set g((xn + m,m)) = g(xn)− sign(m) 1
2n+1

∑
1≤j≤|m|

1
2j , whenever (xn + m,m) ∈ Ĩ0.

4. Set f((x + m,m)) = 1
2g((xn + m,m), whenever (x + m,m) = (xn + m,m) ∈ Ĩ0.

f is a numerical representation of %ϕ ranging in the (rational) interval ]0, 1[.
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Similarly, for l ≥ 1, let I−l = {zt, t ∈ T−l}, with T−l ⊆ N, a set of consecutive
integers starting with 1. The ghost ϕ−l(zt) can be set equivalent (w.r.t. %ϕ) to the
ghost ϕ−l+1(z

′) for some z′ ∈ I−l+1 if and only if the following two conditions are
satisfied:

1. B−l+1
t = {x ∈ I−l+1 : ztIx} has a greatest element (w.r.t. %), which is z′,

2. zt is the least element in I−l that is indifferent to z′.

Proof
Consider the case k ≥ 1. We first prove that we can set ϕk(zt) equal to ϕk−1(z′)
if the conditions are fulfilled. Let zs ∈ Ik. If zs � zt, we have that zsPz

′, by
the second hypothesis. Hence we have to set ϕk(zs) �ϕ ϕk(zt) ∼ϕ ϕk−1(z′),
which raises no problem. For all z ≺ z′, we have ztPz, which is compatible
with ϕk−1(z) ≺ϕ ϕk−1(z′) ∼ϕ ϕk(zt).

We now prove the necessity of the two conditions. Suppose that we set ϕk(zt) ∼ϕ

ϕk−1(z′) while there exists z′′ with z′ � z′′ and ztIz
′′. Then, using a representation

f of the complete preorder on Ĩ0, we build the representation of the semiorder ac-
cording to formula (5), and obtain u(zt) = u(z′)+1 > u(z′′)+1, which contradicts
ztIz

′′.
In a similar way, assuming that we set ϕk(zt) ∼ϕ ϕk−1(z′) while there exists

zs ∈ Ik with zs � zt and zsIz
′, and constructing a representation of the semiorder

as described in Section 4.2 leads to u(zs) > u(zt) = u(z′) + 1, which contradicts
zsIz

′.
The case l ≥ 1 is proved similarly. 2

Remark 41
In case z′, zt satisfy the conditions in Proposition 40 for k ≥ 1 (resp., for l ≥ 1),
the pair (z′, zt) (resp., the pair (zt, z

′)) has been called a hollow in Pirlot (1990,
1991). This notion, together with the dual notion of nose (a minimal strict pref-
erence pair), plays a crucial role in the theory of minimal representation of a finite
semiorder. It turns out that their role is also important in the characterization
of the uncountable semiorders admitting a unit representation (see Bouyssou and
Pirlot, 2020a,b).

Remark 42
In case we “spare ghosts” in the insertion process and apply the representation
construction process described in Section 4.2, we obtain a representation that is
strict (formula (1)) and not nonstrict (as soon as the semiorder has at least one
hollow, i.e., a pair z′, zt satisfying the conditions in Proposition 40).
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Example 29 [cont’d]

Let us reconsider the ghost insertion procedure described in section 4.3 for the case
of Example 29, i.e., the usual semiorder S = (P, I) on Q. We insert the ghosts
of the elements of I1 =]1, 2] in I0 = [0, 1]. For x ∈ I1, x − 1 in I0 is the least
rational indifferent to x and x is the greatest indifferent to x − 1. Therefore the
conditions of Proposition 40 are fulfilled and we may assign the ghost ϕ1(x) to the
indifference class (w.r.t. %ϕ) of x−1 ∈ I0. This can be done for all elements in I1.
Each element in I1 is indifferent to an element in I0. Only the indifference class
of 0 ∈ I0 remains a singleton. We go on with inserting the ghosts of the elements
x of I2. Since x and x − 1 ∈ I1 fulfill the conditions of Proposition 40, we add
ϕ2(x) to the indifference class of ϕ1(x− 1) and x− 2, for all x ∈ I2. Going on in
the same way for all Ik, k ≥ 1, and then, similarly, for inserting the ghosts of all
the elements of I−l, l ≥ 1, we eventually come to the following complete preorder
%ϕ on Ĩ0. The elements of I0 are ordered as with %. Each element x 6= 0, 1 in I0
is indifferent (∼ϕ) to the ghosts of x + m, for all m ∈ Z. The cases x = 0 and
x = 1 are particular; x = 0 is indifferent to −l, for all l ∈ N; x = 1 is indifferent
to k, for all k ∈ N. In order to obtain a unit representation of the semiorder S,
we may select the canonical representation of the complete preorder %ϕ, i.e., we
define f(x) = x for each x in I0 and all ghosts belonging to its indifference class.
Then we apply (5), yielding u(x) = x−m+m = x for all x ∈ Im,m ∈ Z.

Note that we allowed f(x) to range in [0, 1], not in ]0, 1[. The obtained numer-
ical representation actually returns the semiorder in its initial form. This would
not be the case if we restricted the range of f(x) to a subset of ]0, 1[. Note also
that the obtained representation is strict (and not at the same time nonstrict)
even if we restrict f(x) to range in ]0, 1[ (see Remark 42). 3

4.5 Bounds on the representations

In this section we establish bounds on the values of the unit representations con-
structed by the procedure described above. The existence of such bounds will be
useful for assembling unit representations on the various connected components
of (X, I) in order to obtain a unit representation of the whole semiorder (see Sec-
tion 5).

Proposition 43
Let D be a connected component of (X, I) and let D =

⋃
m∈M Im = (

⋃
k≥0 Ik) ∪

(
⋃

l>0 I−l), where the subsets Im,m ∈M are a decomposition of D as described in

Section 3.2. Let f be a representation of the complete preorder %ϕ on Ĩ0 satisfying
the unit threshold constraint (6) and u the representation of the semiorder (P, I)
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on X defined by the lifting equation (5). The following inequalities hold: for all
a ∈ I0,

k − 1 < u(x)− u(a) ≤ 2k + 1 for all x ∈ Ik, k ≥ 0, k ∈M,

−2l − 1 ≤ u(x)− u(a) < −l + 1 for all x ∈ I−l, l ≥ 0,−l ∈M.

There exist semiorders for which the non-strict inequalities above are tight and the
strict inequalities cannot be improved.

Proof
1. For x ∈ I0, the first double inequality with k = 0 holds since xIa and u is a

representation of the semiorder.

2. We prove the first double inequality by induction. Assume that 0 < k and
k ∈ M . Assume that the first double inequality holds for m = 1, . . . , k − 1.
In particular, for all y ∈ Ik−1, we have k − 2 < u(y) − u(a) ≤ 2k − 1. By
Proposition 24.4, for all x ∈ Ik, there is y ∈ Ik−1 such that xPy. Therefore,
u(x) > u(y) + 1 > u(a) + k− 2 + 1. The strict inequality is thus established.
To establish the other inequality, we use the I-connectedness of D, which
implies that there are z ∈ Ik and y ∈ Ik−1 such that zIy. By also using
xIz, we get : u(x) ≤ u(z) + 1 ≤ u(y) + 2 ≤ u(a) + 2k − 1 + 2. The double
inequality for k ≥ 0 thus holds.

3. The proof of the second double inequality is similar. It is left to the reader.

The fact that, for some semiorders, the strict bound cannot be improved and the
other bound is tight is shown by Example 44 below. 2

Example 44
Let (P, I) be the semiorder on Z defined for all x, y ∈ Z by xPy if x > y + 1 and
xIy if |x− y| ≤ 1. Two integers are indifferent if and only if they are consecutive.
Let I0 be {0, 1}. We have:

Ik = {2k, 2k + 1} for k ≥ 0,

I−l = {−2l,−2l + 1} for l ≥ 0.

In case we decide to “spare ghosts”, we may set ϕ1(2) = 1, ϕ2(4) ∼ϕ ϕ1(3) �ϕ

ϕ1(2) and, in general, for k > 0, ϕk(2k) ∼ϕ ϕk−1(2k − 1) �ϕ ϕk−1(2k). For I−l
and l > 0, we may set ϕ−1(−1) = 0, ϕ−2(−3) ∼ϕ ϕ−1(−2) ≺ϕ ϕ−1(−1) and, in
general, ϕ−l(−2l + 1) ∼ϕ ϕ−l+1(−2l + 2) ≺ϕ ϕ−l+1(−2l + 3).

We may then build f as follows on
⋃

k≥0 ϕk(Ik) : f(0) = 0, f(1) = 1 = f(ϕ1(2)),
f(ϕ1(3)) = f(ϕ2(4)) = 1 + ε for 0 < ε ≤ 1, f(ϕk−1(2k − 1)) = f(ϕk(2k)) =
1+(k−1)ε. On ϕ−l(I−l), l ≥ 0, we may set: f(ϕ−1(−1)) = f(0) = 0, f(ϕ−1(−2)) =

36



f(ϕ−2(−3)) = −ε, f(ϕ−l+1(−2l+2)) = f(ϕ−l(−2l+1)) = (−l+1)ε. If we set ε = 1
and define u by using (5), we get, for Ik = {2k, 2k + 1}, u(2k) = f(ϕk(2k)) + k =
1 + (k − 1) + k = 2k and u(2k + 1) = f(ϕk(2k + 1)) + k = 1 + k + k = 2k + 1.
In a similar way, we have u(x) = x for x ∈ I−l for all l > 0. Therefore, u(x) = x,
for all x ∈ Z. The inequality u(x) − u(a) ≤ 2k + 1, for all x ∈ Ik, k ≥ 0 is
satisfied to equality for x = 2k + 1 and a = 0. In a similar way, the inequality
−2l − 1 ≤ u(x)− u(a) is satisfied to equality for x = −2l and a = 1.

Let us build now other ghosts and another representation u that show that the
strict inequalities in Proposition 43 cannot be improved. This time, it is decided
not to spare ghosts. It is not difficult to see that we may position the ghosts
in such a way that the preorder %ϕ on Ĩ0 can be represented by the function f
defined as follows. Choose a constant ε such that 0 < ε ≤ 1. We set f(0) = 0 and
f(1) = 1. For all k > 0, we set f(ϕk(2k)) = f(ϕk−1(2k− 2)) + ε

2k
= ε(1

2
+ . . . 1

2k
) =

ε(1 − 1
2k

) and f(ϕk(2k + 1)) = f(ϕk−1(2k − 1)) + ε
2k

= 1 + ε(1 − 1
2k

). We then
define u(x) for x ∈ Ik, k > 0, using (5). We have u(2k) = k + ε(1 − 1

2k
) and

u(2k + 1) = 1 + k + ε(1 − 1
2k

). Therefore, for x ∈ Ik, k > 0, and a ∈ I0, we have
u(x)−u(a) ≥ u(2k)−u(1) = k− 1 + ε(1− 1

2k
) > k− 1 + ε. Since ε may be chosen

arbitrarily close to 0, the difference u(x)−u(a) may be arbitrarily close to k−1. In
a similar way, we may define f on the ghosts of I−l for all l > 0 in such a way that
u(−2l) = −l− ε(1− 1

2l
) and u(−2l+ 1) = 1− l− ε(1− 1

2l
). Therefore, for x ∈ I−l,

l > 0, and a ∈ I0, we have u(x)− u(a) ≤ u(−2l + 1)− u(0) = −l + 1− ε(1− 1
2l

).
Since ε may be chosen arbitrarily close to 0, the difference u(x) − u(a) may be
arbitrarily close to −l + 1. 3

Remark 45
In case we enforce the representation f of the complete preorder %ϕ to range in
]0, 1[ (instead of allowing for the less restrictive unit threshold constraint (6)), we
get the following bounds on the representation u: for all a ∈ I0,

k − 1 < u(x)− u(a) < k + 1 for all x ∈ Ik, k ≥ 0, k ∈M,

−l − 1 ≤ u(x)− u(a) < −l + 1 for all x ∈ I−l, l ≥ 0,−l ∈M.

It is easy to verify that the above inequalities cannot be improved.

4.6 Uniqueness

The question of the uniqueness of unit representations for semiorders is more
delicate than, e.g., for linear orders. In the latter case, it is well-known that
the numerical representation of a linear order, when it exists, is unique up to a
strictly increasing transformation. The first issue raised by the representation of
semiorders is related to the fact that equivalent elements of X are not necessarily
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represented by the same number. Regular representations are precisely these in
which equivalent elements are assigned the same number (see Roberts, 1979, p. 60
and p. 252). This issue can be avoided by considering only semiorders without
equivalent elements, which we assume in this paper (see Section 2, p. 4).

A second issue relates to the possible existence of several connected components
in the graph of (X, I). Basically, the minimal difference between two elements
belonging to consecutive connected components has to be larger than 1. The
possible ways of assembling numerical representations of the semiorders on different
connected components will be discussed in Section 5.

In this section, we focus on the uniqueness of the unit representation of a
semiorder restricted to a connected component D of (X, I). In the construction
process of a representation (described in Sections 3.2 and 4), we can point out
three types of arbitrary choices, which may result in different representations:

• the choice of the initial bipartition (A,B) and the application of DFP or
UFP for generating I0, in the construction of the partition {Im,m ∈ M} of
D in Section 3.2,

• in some cases, several positions for inserting ghosts are allowed. Their po-
sition is well-determined only with respect to the ghosts in the indifference
class Im inserted at the previous step. It is possible to “spare ghosts” (or
not) by “merging” them with some previously inserted ones,

• the choice of a numerical representation of the complete preorder %ϕ on Ĩ0
is arbitrary modulo condition (6), which states that the difference between
the values associated to indifferent elements of X must be at most 1.

Actually, the first source of arbitrariness, i.e., the particular partition {Im,m ∈
M} considered, is irrelevant. Indeed, the procedure for constructing a representa-
tion involves three steps: construction of a partition into indifference classes, ghost
insertion, choice of a numerical representation of the order on the ghosts and lift-
ing. All unit representations of the semiorder can be obtained by this procedure,
whatever the way the initial step is performed. This is shown in Proposition 46
below. The last two steps are the only ones that matter. The process of con-
struction of a representation described in Sections 4.2 and 4.4 can generate any
unit representation of the semiorder on D (independently of the chosen partition
{Im,m ∈ M}). The decisions made during this process are thus the only degrees
of freedom in the construction of a unit representation. In other words, the unit
representation of a connected semiorder is unique up to the possible orders on the
ghosts and the choice of a representation of the order % on Ĩ0 satisfying condition
(6). Before stating and proving this “uniqueness” result, we illustrate on Exam-
ple 29 how the different degrees of freedom come into play in the construction of
a representation

38



Example 29 [cont’d]

Let X = Q and S = (P, I) be the usual semiorder on the rationals (see Exam-
ple 29). Consider the partition into equivalence classes Im,m ∈ Z described on
page 20. We have I0 = [0, 1], Ik =]k, k + 1], for k ≥ 1, and I−l = [−l,−l + 1[,
for l ≥ 1. Let x ∈ I1. Its ghost ϕ1(x) must be inserted in order to satisfy
x− 1− ε ≺ϕ ϕ1(x) -ϕ x− 1, for all ε > 0.

We may choose to insert ϕ1(x) strictly before x−1, i.e., ϕ1(x) ≺ϕ x−1. This will
result in a “gap” in the range of the semiorder representation u to be constructed,
i.e., u(Q) will not intersect the interval [u(x)− 1, u(x)[. Such a gap appears in the
representation whenever a ghost of x ∈ Ik, k ≥ 1 (resp. x ∈ I−l, l ≥ 1) is not set
equivalent (∼ϕ) to the ghost of x− 1 (resp. x+ 1).

In contrast, if we choose to systematically “spare” ghosts, as done in Exam-
ple 29 on page 35, then the ghost of each element x 6∈ I0 is equivalent (∼ϕ) to an
element in I0. In this case, the only degree of freedom is the choice of a numerical
representation f : I0 → [0, 1] of the linear order %=≥ restricted to I0. Any gap in
the range of f will reproduce for each indifference class Im. Indeed, if there is an
interval [α, β] ⊆ [0, 1] such that f(I0)∩[α, β] is empty, then u(Im)∩[α+m,β+m] is
also empty, for all m ∈ Z. Actually, the shape of f as a function from I0 into [0, 1]
will be reproduced by the lifting operation for all indifference classes Im. With
the particular choice f(x) = x, for all x ∈ [I0], the canonical representation of the
semiorder is restored, as shown in Section 4.4 (Example 29)

Proposition 46
Let u be any unit representation of the semiorder (P, I) restricted to the connected
component D of (X, I). This representation can be obtained by the construction
process described in Section 4.2 and 4.4 by making appropriate feasible choices.

Proof
Consider any partition (Im,m ∈M) of D into indifference classes, as described in

Section 3. We may define Ĩ0 and the complete preorder %ϕ on the ghosts directly,
by using the representation u. Let

Ĩ0 =
⋃

m∈M
ϕm(Im),

setting ϕ0(x) = x whenever x ∈ I0. Let ϕm(x) (resp., ϕm′(y)) be the ghost of
x ∈ Im (resp., y ∈ Im′). We define the complete preorder %ϕ on Ĩ0 by:

ϕm(x) %ϕ ϕm′(y) if u(x)−m ≥ u(y)−m′. (7)

This order on the ghosts, corresponds to one feasible way of inserting recursively
the ghosts as described in Section 4.2 and 4.4. Consider for instance z ∈ Ik, for
some k > 0, k ∈ M . The position of ϕk(z) in the preorder %ϕ must satisfy the
following requirements:
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1. ϕk(z) �ϕ ϕk(z′) for all z′ ∈ Ik with z � z′. This requirement is satisfied
since z � z′ entails u(z) − k > u(z′) − k and therefore ϕk(z) �ϕ ϕk(z′),
by definition (7). The requirement for z′ ∈ Ik with z′ � z is established
similarly.

2. assuming k ≥ 1, we must have ϕk(z) -ϕ ϕk−1(z′) for all z′ ∈ Ik−1 such that
zIz′. We have indeed that z′Iz and z � z′ entails 0 < u(z) − u(z′) ≤ 1.
Therefore u(z) − k ≤ u(z′) − k + 1 yields ϕk(z) -ϕ ϕk−1(z′), by definition
(7). In the case z′ ∈ Ik−1 and zPz′, we have u(z) > u(z′) + 1. From
u(z)− k > u(z′)− k + 1 and (7), we deduce ϕk(z) �ϕ ϕk−1(z′).

3. the conditions for sparing ghosts, i.e. considering some ghosts as indifferent
in the preorder %ϕ are respected by (7).

The similar conditions relative to the insertion of ϕ−l(z) for z ∈ I−l, for some
l > 0,−l ∈M follow in an analogous way.

Now let us choose, as representation of the complete preorder %ϕ on Ĩ0, the
following function f , defined by:

f(ϕm(x)) = u(x)−m,

for all x ∈ Im. The function f is a representation of %ϕ on Ĩ0 since ϕm(x) %ϕ

ϕm′(y) iff f(ϕm(x)) = u(x)−m ≥ f(ϕm′(y)) = u(y)−m′. Function f satisfies (6)
since |u(x)− u(y)| ≤ 1, for all x, y ∈ Im and all m ∈M . Applying (5) restates the
unit representation u. 2

5 Building a unit representation for

non-connected semiorders

At this stage we know from Proposition 36 that each I-connected component of a
semiorder S = (P, I) on a countable set X has a unit representation. When does
this imply that the semiorder as a whole has a unit representation? When this is
the case, can we build the unit representation of the whole semiorder by assembling
the unit representations of its components? Manders (1981) and Beja and Gilboa
(1992) have given distinct necessary and sufficient conditions guaranteeing that a
semiorder on a countable set admits a unit representation.

The goal of this section is to analyze these conditions and to show how to
obtain a representation of the semiorder from those of its I-connected components,
provided a representability condition is fulfilled.
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5.1 Manders’ condition

For the reader’s convenience, we recall definitions that allow to formulate the
condition used in Manders (1981, p. 238-239).

Let P ∗ denote the covering relation associated to P , i.e., for x, y ∈ X, we have
xP ∗y if xPy and there is no z ∈ X such that xPzPy. So, xP ∗y if y is an immediate
successor of x in the partial order P . Manders (1981) defines the relation I∗ as
follows. For x, y ∈ X, we have xI∗y if xIy or xP ∗y or yP ∗x. The transitive closure
of I∗ is denoted by I∗. To illustrate these definitions, let S = (P, I) be the usual
semiorder Q (see Example 29). For all x, y ∈ Q, we have xP ∗y iff y+1 < x ≤ y+2
and xI∗y iff |x− y| ≤ 2.

Condition 1 (Manders)
The relation I∗ is connected.

Manders’ condition amounts to say that for all x, y ∈ X, there is an I∗-chain
joining x to y. In other words, it is possible to go from x to y following a path
that uses either indifference arcs or jumps between “nearest neighbors” in the P
relation.

We give an alternative formulation of Manders’ condition and we prove that
they are equivalent.

Condition 2
For all x, y ∈ X with xPy, there is a P ∗-chain joining x to y.

Proposition 47
The semiorder S = (P, I) on X satisfies Condition 1 iff it satisfies Condition 2.

Proof
1. Let x, y ∈ X with xPy. Assume that I∗ is connected. Consider an I∗-chain

(xi, i = 0, . . . , n) joining x = x0 to y = xn. This chain is composed of pairs
of elements belonging to I, P ∗ or (P ∗)−1. We may assume w.l.o.g. that
Not [xi ∼ xi+1], for all i.

Assume first that this chain is monotone w.r.t. to the trace %, i.e., xi � xi+1

for all i = 0, . . . , n− 1. This implies that the chain has only pairs belonging
to I or P ∗. If it has only P ∗ pairs, there is nothing to prove. Otherwise,
for some i, we have (case 1) xiIxi+1P

∗xi+2 or (case 2) xiP
∗xi+1Ixi+2 or else

(case 3) the chain has only I pairs.

Case 1. Let xiIxi+1P
∗xi+2. Either we have xiP

∗xi+2 or there is z ∈ X
with xiPzPxi+2. In the former case, we may remove the I pair from the
chain, going directly from xi to xi+2 using the P ∗ pair (xi, xi+2). In the
other case, there is z ∈ X such that xiPzPxi+2. It is easy to prove that
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xiP
∗zP ∗xi+2. Indeed, clearly, xi+1 � z � xi+2. There is no w ∈ X such

that xi+1 � zPwPxi+2, since this would contradict xi+1P
∗xi+2. Therefore,

zP ∗xi+2. In a similar way, there is no w ∈ X such that xiPwPzPxi+2.
Otherwise we would have xi+1 � wPzPxi+2 contrary to xi+1P

∗xi+2. In
all cases, we may thus replace the sub-chain xiIxi+1P

∗xi+2 by a sub-chain
composed of one or two P ∗ pairs, thus eliminating the I pair.

Case 2. Let xiP
∗xi+1Ixi+2, is dealt with similarly. The conclusion is that

the I pair can be removed by replacing the initial sub-chain by one or two
pairs from P ∗.

Case 3. The chain only has I pairs. We know that xPy. If xP ∗y, the result
is immediate. Otherwise, there is z ∈ X with xPzPy. For some i, we have
xi % z � xi+1. If xP ∗z, we may replace the initial pairs of the chain (from
x = x0 to xi+1) by xP ∗zIxi+1 which yields another I∗-chain from x to y.
This chain has a configuration that pertains to case 2. We thus apply the
procedure for case 2 chains, which results in the elimination of I pairs.

By repeatedly applying the above procedures to case 1 or case 2, we eliminate
all I pairs.

To finish, consider an I∗-chain that is not monotonic w.r.t. %. If the chain
goes beyond y, let xj be the first element such that y � xj. So, we have
xj−1 % y. Clearly, we have either xj−1Iy or xj−1P ∗y. In both cases we
may replace the initial chain by the shorter I∗-chain (x′i, i = 0, . . . , j) with
x′i = xi, for i = 1, . . . , j − 1, and x′j = y. We may thus restrict our attention

to I∗-chains for which xi % y, for all i.

Consider an I∗-chain (xi, i = 0, . . . , n) with x0 = x, xn = y and xi % y, for all
i. Assume that this chain is not monotonic w.r.t. %. Let k be the least value
of i, 0 ≤ i < n such that xk+1 � xk. Let xl be the first element in the chain
such that xk � xl. Clearly, we have either xkIxl or xkP

∗xl. We may thus
remove from the chain the pairs (xi, xi + 1) for i = k, . . . , l − 1, and replace
them by the single pair (xk, xl) which belongs either to I or P ∗. Iterating
this procedure, we transform the chain into an I∗-chain that is monotonic
w.r.t. %. So the case of non-monotonic I∗ chain can be reduced to that of
monotonic ones. This concludes the first part of the proof.

2. Proving the converse is easy. Assume that Condition 2 is fulfilled. Consider
a pair x, y ∈ X. There are three cases. If xIy, the thesis is established. If
xPy, Condition 2 entails the existence of a P ∗-chain, hence an I∗-chain from
x to y. Finally, if yPx, Condition 2 entails there is a P ∗-chain from y to x,
hence a (P ∗)−1-chain from x to y. The latter is also an I∗-chain. 2
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5.2 Beja and Gilboa’s condition

It reads as follows (Beja and Gilboa, 1992, Axiom 1, p. 435).

Condition 3 (Beja and Gilboa)
For every P -chain (xi ∈ X, i ∈ J), J ⊆ Z, a set of consecutive integers

• if the P -chain has no last element, for all z ∈ X, there is n ∈ J such that
zPxn,

• if the P -chain has no first element, for all z ∈ X, there is n ∈ J such that
xnPz.

In words, this property says that, if we have an infinite P -chain without a last
element, there is no object which all elements xi in the chain are preferred to. In
a similar way, for any infinite P -chain without a first element, there is no object
which is preferred to all elements in the chain. This property is called regularity
in Candeal and Induráin (2010).

We give an alternative formulation of Beja and Gilboa’s condition and we prove
that they are equivalent.

Condition 4 (Bounded P -chain condition)
Every bounded P -chain is finite.

This property says that, if (xi, i ∈ J) is a P -chain indexed by J ⊆ Z, a set
of consecutive integers, and there are a, b ∈ X such that aPxiPb for all i ∈ J ,
then |J | < ∞. This condition is clearly necessary for the existence of a unit
representation.

Proposition 48
The semiorder S = (P, I) on X satisfies Condition 3 iff it satisfies Condition 4.

Proof
1. Assume that Beja and Gilboa’s Condition 3 holds and suppose that Condi-

tion 4 is not verified. Hence there are a, b ∈ X with aPb, and a P -chain
(xi, i ∈ J) with aPxiPb for all i ∈ J and |J | = ∞. The chain has either
no last element or no first element (or has neither last nor first element). In
the former case, we have xiPb for all i ∈ J , contrary to Condition 3. In the
latter case, we have aPxi for all i ∈ J , which also contradicts Condition 3.

2. Assume that Condition 4 is verified and let us prove that Beja and Gilboa’s
Condition 3 must hold. Let (xi, i ∈ J) be a P -chain without a last element
and suppose that Beja and Gilboa’s property is violated for that chain, i.e.,
there is z ∈ X such that Not [zPxi] for all i ∈ J . We have xi−2Pxi−1P cdz
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for all i ∈ J , where the co-dual P cd of P is defined by xP cdy iff Not [yPx]. A
well-known property of semiorders (Pirlot and Vincke, 1997, Th. 3.2, p.53)
states that PPP cd ⊆ P . Therefore xi−2Pz, for all i, which implies xiPz for
all i such that i− 2 belongs to J .

Choose an arbitrary i0 ∈ J (with i0 − 1 ∈ J) and consider the truncated
P -chain (xi, i ∈ J, i > i0). This is a chain which has no last element and
such that xi0PxiPz, for all i > i0. Applying Condition 4, using the bounds
a = xi0 and b = z, we conclude that |{i ∈ J, i > i0}| <∞, which contradicts
the initial assumption that the chain has no last element. The proof in case
the chain has no first element is similar. 2

In preference to Beja and Gilboa’s Condition 3, we shall use the (equivalent)
Bounded P -chain condition, which seems more compact. The latter condition
actually implies that among all P -chains contained in an interval [a, b], with a % b,
there is (at least) one having maximal length. Putting it another way, there cannot
be P -chains of arbitrary length in a given interval10. To prove this result, we need
a lemma.

Lemma 49
Let S = (P, I) be a semiorder on X and Z a denumerable subset of X that is totally
ordered by P . Then there is a denumerable P -chain that is formed of elements of
Z.

Proof
We distinguish three cases: Z (ordered by P ) has no greatest element or it has no
least element or it has both a greatest and a least element.

1. If Z has no least element, let us pick any element y0 ∈ Z. Since y0 is not
a least element in Z, there is y1 ∈ Z with y0Py1. In turn, y1 is not a least
element, so that there is y2 ∈ Z with y1Py2. Iterating this, we generate a
P -chain (yi, i ∈ N), with yiPyi+1 for all i ∈ N.

2. If Z has no greatest element, a similar process leads to generating a P -chain
(y−i, i ∈ N).

10The Bounded P -chain condition has the flavor of an Archimedean axiom. It sounds like
“Every bounded standard sequence is finite” (Krantz et al., 1971, p.25). Here the sequence of
pairs of objects in P plays a role similar to that of equally spaced preference intervals (see, in
particular, the strong standard sequences defined in Gonzales, 2003, p. 51). Such properties are
required for enabling representations using real numbers since the values assigned to two elements
of a P -chain (resp. a standard sequence) must at least differ by a positive constant times the
number of arcs of the P -chain (resp. the number of equally spaced preference intervals) between
these two elements.
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3. If Z has both a least and a greatest element, let w0 denote its greatest
element. We construct wi recursively, starting with w0 as follows. Assume
that wi−1, i ≥ 1, has been obtained. If the set {z ∈ Z,wi−1Pz} has no
greatest element, the construction process stops in wi−1, which is such that
Zi = {z ∈ Z,wi−1Pz} ⊆ Z has no greatest element. By applying to Zi the
construction described in item 2, we obtain a P -chain (y−i, i ∈ N) included
in Zi. Otherwise, if {z ∈ Z,wi−1Pz} has a greatest element, we call it wi and
the construction of a P -chain (wj, j = 0, . . . , i) continues. If a set Zi without
a greatest element is never met, then a P -chain (wi, i ∈ N) is eventually
obtained.

In all these cases, a denumerable P -chain can be extracted from the set Z, ordered
by P . 2

Proposition 50
If P is the asymmetric part of a semiorder, the Bounded P -chain condition is
equivalent to the following property: for all a, b ∈ X, with a % b, the length of the
P -chains (xi, i ∈ J) such that a % xi % b for all i ∈ J is bounded.

Proof
This property clearly implies the Bounded P -chain condition, so that we only have
to prove the direct implication (since bounded length chains are finite). Assume
that Condition 4 holds and suppose that, contrary to the thesis, there are P -
chains of arbitrary large length contained in interval [a, b]. Consider such a chain
(x1, x2, . . . , xn) of finite length n. Since P is the asymmetric part of a semiorder,
its trace % defined in Section 2 is a complete preorder and we have a � x1 � x2 �
. . . � xn � b. The chain determines a partition of interval [a, b] into n+1 intervals.
We first prove that the P -chain can be extended into a P -chain of length n+ 1.

Since, by hypothesis, there are P -chains of arbitrary length, let us consider a
P -chain (yj, j ∈ J ′), with a % yj % b for all j and |J ′| ≥ 2(n + 1) + 1. Among
the intervals [a, x1], [x1, x2], . . . , [xi, xi+1], . . . , [xn, b] there is at least one containing
three successive elements yj−1, yj, yj+1. These three elements lie in [a, x1], in [xn, b]
or in one of the intervals [xi, xi+1]. In the latter case, we have: xiPyjPxi+1 (since
xi % yj−1Pyj implies xiPyj and yjPyj+1 % xi+1 implies yjPxi+1). We can thus
build a P -chain of length n+ 1 by inserting an additional element yj between two
elements of the chain (xi, i = 1, . . . n). The two remaining cases, i.e., [a, x1] (resp.
[xn, b]) contains three consecutive elements yj−1, yj, yj+1, are dealt with similarly,
all leading to prove the existence of a P -chain of length (n+ 1).

Under the hypothesis that there are P -chains of arbitrary length in the interval
[a, b], we can iterate the previous extension of the chain, inserting, at each step
k, at least one additional element zk. The elements zk, for k ∈ N0 (the set of
positive integers), together with the elements x1, . . . , xn of the initial chain, form a
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countably infinite set Z that is totally ordered by P . It is not necessarily a P -chain
but it contains a denumerable P -chain by Lemma 49. All its elements belong to
interval [a, b]. This contradicts the Bounded P -chain condition. 2

An immediate consequence of this property is the following.

Corollary 51
If P is the asymmetric part of a semiorder and satisfies the Bounded P -chain
condition, any subset of an interval [a, b] which is totally ordered by P is a finite
P -chain. Such subsets have a bounded cardinality which depends on a and b. If
such a subset contains a and b, it is a P -chain starting at a and terminating at b.

Proposition 50 states, under the Bounded P -chain condition, that there is a
maximal finite length P -chain in each interval [a, b]. If a and b belong to the same
connected component D of (X, I), this property is certainly true. Actually, we
have the following.

Proposition 52
The semiorder induced by S = (P, I) on a connected component D of (X, I) satis-
fies the Bounded P -chain condition.

Proof
Let a and b be two elements of D and assume w.l.o.g. that a % b. By definition
of a connected component of (X, I), a and b are linked by a finite chain of I.
Therefore, any P -chain in [a, b] must be finite. 2

This is no surprise since the Bounded P -chain condition is a necessary condition
for the existence of a unit representation of a semiorder and it has been shown in
Section 4 that any denumerable connected semiorder admits such a representation.
In contrast, semiorders that are not connected may – or not – satisfy the Bounded
P -chain condition. Consider, for instance, the set X = {(x, z), x ∈ Y = Z, z ∈
{0, 1}}. The semiorder S = (P, I) on X defined by (x, 1)P (y, 0), for all x, y ∈
Y = Z, and (x, z)P (y, z), for all x > y + 1 and z ∈ {0, 1}, does not satisfy the
Bounded P -chain condition and has two connected components. If the set Y above
is redefined as the integer interval [−n, n], for any fixed n ∈ N, n ≥ 1, then the
semiorder also has two connected components but satisfies the Bounded P -chain
condition.

5.3 Four equivalent existence conditions

We prove that the four conditions studied in the latter two sections, including
Manders’ and Beja and Gilboa’s, are equivalent.
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Proposition 53
For a semiorder S = (P, I) on a set X, Conditions 1, 2, 3 and 4 are equivalent.

Proof
We already proved that the first two and the last two conditions are equivalent
(Propositions 47 and 48). We prove below that Conditions 2 and 4 are equivalent.

Assume that Condition 2 holds. Contrary to the thesis, assume that (xi, i ∈ J)
is a P -chain with aPxiPb, for all i ∈ J and |J | =∞. Since aPb, using Condition 2,
we know that there is a P ∗-chain (x′j, j = 0, . . . , n) with x0 = a and xn = b. Since
|J | is infinite, for some j and i, we have xj % xiPxi+1Pxi+2 % xj+1. This entails
that xjPxi+1Pxj+1, contrary to xjP

∗xj+1. So, Condition 2 implies Condition 4.
We now assume that Condition 4 holds. Let x, y ∈ X be such that xPy. If

there is no z1 ∈ X such that xPz1Py, then xP ∗y and we are done. If there is such
a z1, we have got a P -chain of length 2 joining x to y. Again, there are two cases.
Either, this is a P ∗-chain of length 2 (and we are done) or there is z2 such that
xPz2Pz or zPz2Py. In the latter case, a P -chain of length 3 can be obtained.
By such a process, longer and longer P -chains joining x to y can be obtained
recursively. More formally, let xi, i = 0, . . . , n, with x0 = x and xn = y be the
P -chain obtained at step n. At step n + 1, there are two cases. Either all pairs
(xi, xi+1) belong to P ∗, or there is at least one i and zn ∈ X such that xiPznPxi+1.
In the former case, we have constructed a P ∗-chain of length n joining x to y and
we are done. In the latter case, we have a P -chain of length n + 1 joining x to
y. The elements of this P -chain are x, y and all elements zi, i = 1, . . . , n inserted
in the previous and the current step. By renumbering them properly, we have a
P -chain (x′i, i = 0, . . . , n + 1), with x′0 = x and x′n+1 = y. The process stops if a
P ∗-chain is obtained at some step n. Otherwise, it continues for ever, generating a
denumerable set {zn, n ∈ N0}, which is totally ordered by P but is not necessarily
a P -chain. However, by Lemma 49, there is a denumerable subset of this set
that can be ordered in a P -chain. This would contradict Condition 4. Therefore,
the algorithm described above stops after a finite number of steps and returns a
P ∗-chain joining x to y. 2

Remark 54
Note that Proposition 53 does not use the hypothesis that X is a countable set.
The four conditions are thus equivalent independently of the cardinality of X.

In the sequel, we shall mainly use the Bounded P -chain condition ( Condition 4)
as a formulation of the necessary and sufficient condition for the existence of a unit
representation of a semiorder on a countable set. In particular, we shall use it to
show that such a representation can be obtained by assembling unit representations
of the semiorder restricted to its I-connected components.
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5.4 Consequences of the Bounded P -chain condition

In Section 2.5, we defined a relation on the set F of connected components of
the indifference relation. This relation was defined by (4) and denoted by P ,
abusing notation. Lemma 14 tells us that the relation P on the set F of connected
components of (X, I) is a strict linear order. The consequences of the Bounded
P -chain condition for this order are stated in the following result.

Proposition 55
Under the Bounded P -chain condition, there is an order isomorphism between F,
linearly ordered by P , and a subset Γ ⊆ Z of consecutive integers endowed with
the order >, i.e., each I-connected component D ∈ F can be assigned an index
i belonging to a subset Γ ⊆ Z of consecutive integers in such a way that for all
i, j ∈ Γ,

i > j ⇒ DiPDj. (8)

Proof
With the aim of indexing the elements of F, we start with an arbitrary connected
component D, which we index as D0. Let us consider an arbitrary other element
E ∈ F. Either D0PE or EPD0. We consider the former case only (the latter
being dealt with similarly). As a straightforward consequence of Proposition 50,
there exists a maximal finite chain D−i, with i = 1, . . . , n1 and D−n1 = E , such
that D0PD−1P . . . PD−n1 = E . Note that this maximal chain is unique, since it
consists of all the elements of F that lie between D and E w.r.t. P . If there exists
C ∈ F such that EPC, we iterate the process, indexing by −n1 − 1, . . . ,−n1 − n2

the elements of F lying between E and C, with D−n1−n2 = C. Such iterations can
either stop after a finite number of steps or continue without limit. In the latter
case all negative integers will be used but the process will exhaust the elements
of F to which D0 is preferred. Indeed, by the Bounded P -chain condition, it is
impossible that there is D ∈ F such that D−nPD for all n ∈ N. We can index
in a similar way, using positive integers, the elements of F that are preferred to
D0. The set of indices that have been used at the end of this process constitutes
the set Γ of consecutive integers. This set can be bounded or unbounded in either
direction. The numbering of the connected components fulfills condition (8). 2

Remark 56
Proposition 55 shows that, under the Bounded P -chain condition, there is an order
isomorphism between the set F of the connected components of the graph of the
indifference relation on X, ordered by P , and a subset of consecutive integers
endowed with the usual order. The Bounded P -chain condition is a sufficient
condition for that. It is easy to show that it is not a necessary condition. Let
X = Z × {0, 1}. For all z, w ∈ Z and α, β ∈ {0, 1}, we define (z, α)P (w, β) if

48



α > β or [α = β and z > w + 1]. The indifference relation I of this semiorder has
two connected components, namely D0 = {(z, 1), z ∈ Z} and D1 = {(z, 0), z ∈ Z}.
We have D0PD1 although the semiorder does not satisfy the Bounded P -chain
condition.

On the other hand it is also easy to construct examples of semiorders that do
not satisfy the Bounded P -chain condition and for which F, ordered by P , is not
order-isomorphic with a subset of (Z, >).

A further consequence of the Bounded P -chain condition is the following.

Proposition 57
Let S = (P, I) be a semiorder on the denumerable set X and satisfying the
Bounded P -chain condition. Let D be a connected component of (X, I) and let
D =

⋃
m∈M Im where the Im are convex subsets built as described in Section 3.2. If

the sequence of subsets (Im,m > 0) is infinite, then D is up-terminal, in the sense
there is no y ∈ X with y � z for all z ∈ D. Similarly, if the sequence of subsets
(Im,m < 0) is infinite, then D is down-terminal, in the sense there is no y ∈ X
with z � y for all z ∈ D.

Proof
Assume that (Im,m = 0, 1, . . .) is an infinite sequence of subsets. By Proposi-
tion 24.4, there is an infinite sequence of elements (xm ∈ Im,m = 0, 1, . . .) such
that xm+1Pxm, for all m > 0. If there were y such that y � x for all x ∈ D,
then, in particular, y � xm+1 and xm+1Pxm, for all m > 0, would imply yPxm,
for all m > 0, contrary to Beja and Gilboa’s Condition 3, hence contrary to the
Bounded P -chain condition. The other part of the proof is similar (using Propo-
sition 24.5). 2

5.5 Assembling unit representations

Let us assume that a unit representation is known for each connected component
of (X, I) and that the semiorder S = (P, I) on X satisfies the Bounded P -chain
condition. We show how a unit representation of the whole semiorder can be
built by assembling the representations on the connected components. This de-
scription enables to understand exactly which additional degrees of freedom are
available when assembling unit representations. These complete the picture given
in Section 4.6, regarding the uniqueness of the representation.

Assuming the Bounded P -chain condition, we know by Proposition 55 that the
connected components of (X, I) can be indexed by a subset Γ ⊆ Z of consecutive
integers. We assume w.l.o.g. that 0 ∈ Γ. The following proposition distinguishes
four possible cases for a connected component Di. It provides bounds for the
representation on each I-connected component. These bounds will be essential for
assembling the representations.
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Proposition 58
Let Di ∈ F be a connected component of (X, I) and let ui be a representation of
the semiorder (P, I) restricted to Di as constructed in Section 4.1. We have the
following cases.

1. If Di decomposes in a finite number of subsets Ik, for k = −ni, . . . , 0, . . . ,mi,
then the representation ui is bounded, we have: ui < ui(x) < ui, for all
x ∈ Di and mi + ni − 2 ≤ ui − ui ≤ 2(mi + ni) + 2.

2. If the sequence of subsets Ik is not bounded above but bounded below, i.e., if
Ik exists for all k ∈ Z with k ≥ −ni, then the representation ui has no upper
bound but it has a lower bound ui. In this case, there is no element of F
above Di, i.e. i = max{j ∈ Γ}.

3. If the sequence of subsets Ik is not bounded below but bounded above, i.e., if
Ik exists for all k ∈ Z with k ≤ mi, then the representation ui has no lower
bound but it has an upper bound ui. In this case, there is no element of F
below Di, i.e. i = min{j ∈ Γ}.

4. If the sequence of subsets Ik is not bounded neither above nor below, i.e., if
Ik exists for all k ∈ Z, then the representation ui has neither an upper nor
a lower bound. In this case, Di is the only element of F ordered by P , i.e.
{i} = Γ.

Proof
If the sequence Ik is bounded, the boundedness of ui directly results from Propo-
sition 43. The inequality mi + ni − 2 ≤ ui − ui ≤ 2(mi + ni) + 2 obtains from
Proposition 43 by observing that for any fixed choice of a ∈ I0 and for all x ∈ Imi

,
y ∈ I−ni

, we have

mi − 1 < ui(x)− ui(a) ≤ 2mi + 1 (9)

ni − 1 < ui(a)− ui(y) ≤ 2ni + 1. (10)

If there are subsets Ik for arbitrary large values of k, Proposition 57 entails that
the connected component Di is up-terminal, which means that j ≤ i for all j ∈ Γ.
The existence of a lower bound for ui results from Proposition 43. The case in
which there are subsets Ik for arbitrary large negative values of k is similar. 2

The following result indicates how to build a unit numerical representation of
the semiorder on X. It is the second main result of this paper (the first one being
Proposition 36). It shows that any semiorder on a denumerable set satisfying the
Bounded P -chain condition has a unit representation.
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Proposition 59
Let ui be a representation of the semiorder (P, I) restricted to each connected com-
ponent Di, for i ∈ Γ. For each bounded ui, let ui (resp., ui) denote its lower
(resp., upper) bound. Let εi, for i ∈ Γ, i 6= 0 be arbitrary nonnegative or positive
real numbers. For i ≥ 1, εi must be positive if both bounds ui and ui−1 are at-
tained, otherwise it can also be set to zero. For i ≤ −1, εi must be positive if both
bounds ui+1 and ui are attained, otherwise it can also be set to zero. The function
u : X → R defined by:

u(x) =



u0(x) for all x ∈ D0

ui(x) + u0 − ui + 1 + εi

+
∑

1≤j≤i−1
(uj − uj + 1 + εj), for all x ∈ Di, i ∈ Γ, i ≥ 1

ui(x) + u0 − ui − 1− εi
−
∑

i+1≤j≤−1
(uj − uj − 1− εj), for all x ∈ Di, i ∈ Γ, i ≤ −1

is a unit numerical representation of the semiorder (P, I) on X.

Proof
If i = 1 ∈ Γ, then u0 is bounded above and u(x) ≤ u0, for all x ∈ D0. Since D1

is not down-terminal, u1 is bounded below by u1 and, by definition of u, we have
u(y) = u1(y)+u0−u1 +1+ε1 for all y ∈ D1. In this expression, ε1 ≥ 0. Moreover,
ε1 6= 0 iff there is x ∈ D0 such that u0(x) = u0 and z ∈ D1 such that u1(z) = u1.
For all x ∈ D0 and y ∈ D1, we have u(y) ≥ u0 + 1 + ε1 ≥ u0(x) + 1 + ε1, which
represents correctly the fact that yPx.

If i + 1 ∈ Γ for i ≥ 1, then ui(x) ≤ ui, for all x ∈ Di. For such an x,
u(x) = ui(x)+u0−ui+1+εi+

∑i−1
j=1(uj−uj +1+εj) ≤ u0+

∑i
j=1(uj−uj +1+εj).

Since Di+1 is not down-terminal, ui+1 is bounded below by ui+1. For all y ∈ Di+1,

we have u(y) = ui+1(y) + u0− ui+1 + 1 + εi+1 +
∑i

j=1(uj − uj + 1 + εj) ≥ u0 + 1 +

εi+1 +
∑i

j=1(uj − uj + 1 + εj). Therefore, u(y) > u(x) + 1, for all y ∈ Di+1 and
x ∈ Di, which represents correctly the fact that yPx.

On the negative side, if i = −1 ∈ Γ, then u0 is bounded below and u(x) ≥ u0,
for all x ∈ D0. Since D−1 is not up-terminal, u−1 is bounded above by u−1 and we
have u(y) = u−1(y) + u0 − u−1 − 1− ε−1 ≤ u0 − 1− ε−1 ≤ u0(x)− 1− ε−1 for all
y ∈ D−1, x ∈ D0. Therefore, u(x) ≥ u(y) + 1 + ε−1, for all x ∈ D0 and y ∈ D−1,
which represents correctly the fact that xPy.

If i − 1 ∈ Γ for i ≤ −1, then ui(x) > ui, for all x ∈ Di. For such an x,
u(x) = ui(x)+u0−ui−1−εi−

∑i+1
j=−1(uj−uj−1−εj) ≥ u0−

∑i
j=−1(uj−uj−1−εj).

Since Di−1 is not up-terminal, ui−1 is bounded above by ui−1 and we have, for all
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y ∈ Di−1, u(y) = ui−1(y)+u0−ui−1−1−εi−1−
∑i

j=−1(uj−uj−1−εj) ≤ u0−1−
εi−1−

∑i
j=−1(uj−uj−1−εj) ≤ u(x)−1−εi−1. Therefore, u(x) ≥ u(y)+1+εi−1,

for all x ∈ D−i and y ∈ Di−1, which represents correctly the fact that xPy.
The semiorder is correctly represented in each connected component Di, for

i ∈ Γ, due to the fact that ui represents the restriction of the semiorder to Di and
u(x) obtains by adding the same constant to ui(x) for all x ∈ Di. 2

Remark 60 (Uniqueness issue)
The construction of a unit representation of the whole semiorder by assembling
unit representations of the semiorders on the connected components described
in Proposition 59 is general. All representations of the whole semiorder can be
obtained in this way. Indeed, it is clear that, starting with a unit representation u
of the whole semiorder (P, I), we obtain unit representations ui by restricting u to
Di for all i ∈ Γ. For all i−1, i ∈ Γ, for all x ∈ Di, y ∈ Di−1, we have u(x) > u(y)+1.
Denoting by ui−1 (resp., ui) the upper (resp., lower) bound of u on Di−1 (resp.,
Di), we define εi = ui−ui−1− 1. We have that εi ≥ 0. This number can be 0 only
if at least one of the bounds ui, ui−1 is not attained. These numbers, which are
also those used in Proposition 59, determine the minimal difference between the
value of elements in consecutive connected components. They are the additional
degrees of freedom available in the representation of a semiorder when the latter
has several connected components. Putting this result together with the analysis
made in Section 4.6 gives a complete picture of the degrees of freedom involved in
unit representations of a semiorder.

Remark 61
As explained in Remark 38, on a single I-connected component, it is always pos-
sible to build a representation that is at the same time strict and non strict (see
Equations (1) and (2)). It is not difficult to check that the procedure used above
to assemble representations of several connected components allows to make the
same observation for semiorder that are not restricted to have a single I-connected
component. This gives an alternative proof of the observation made in Beja and
Gilboa (1992, Th. 3.8, p. 436) (a similar observation was already made by Roberts,
1971, p. 36, footnote), as well as establishing the stronger statement that represen-
tations that are at the same time strict and nonstrict always exist on denumerable
sets.

Notice also that, if the assembled representations are all rational unit represen-
tations, as explained in Remark 38, the above process can always be performed so
as to guarantee that the overall representation stays in Q. This gives an alternative
proof of Manders (1981, Prop. 7, p. 236).
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Remark 62 (The uncountable case)
The just described process of assembling strict (resp. nonstrict) unit representa-
tions of the restrictions of a semiorder to its I-connected components into a strict
(resp. nonstrict) unit representation of the whole semiorder does not depend on
the assumption that X is denumerable. It only depends on the Bounded P -chain
hypothesis and the existence of a strict (resp. nonstrict) unit representation of the
restrictions to each I-connected component. This results from the fact that the
decompositions of X described in Sections 2.5 and 3 are valid independently of
the cardinality of X. Furthermore, if a strict (resp. nonstrict) unit representation
exists for each I-connected component of the semiorder and the Bounded P -chain
condition is verified, then the bounds (9) and (10) hold (since they only depend
on the number of maximal indifference classes in each I-connected component),
which allows assembling the representations, whatever the cardinality of X, in
particular, for uncountable X.

To conclude, we summarize the main results that we proved in this paper as
follows.

Theorem 63
1. Any I-connected semiorder S = (P, I) has a unit representation.

2. A semiorder on a denumerable set has a unit representation iff it satisfies
the Bounded P -chain condition.

3. If a semiorder on a denumerable set has a unit representation,

• it has a representation that is at the same time strict and non-strict;

• it has a representation on Q.

Statement 1 results from Proposition 36. Statement 2 is proved by Proposition 59.
Statement 3 is justified in Remark 61.

6 Discussion

We have offered a new proof of the existence of a unit representation of semiorders
on countably infinite sets. Our proof uses only elementary considerations. It is
based on the analysis of each I-connected component of the semiorder. On each
such component, we build in a recursive way a partition of this component into
maximum indifference classes. One such class is taken as a reference set and
ghosts representing elements in the other classes are adequately inserted into this
reference set. The numerical representation built on the reference set enriched
with all ghosts, is then lifted to build the desired unit numerical representation.
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As announced, it unifies the treatment of the finite and countably infinite cases.
Moreover, we feel that our proof is simpler and more direct than the two previous
ones in the literature (Beja and Gilboa, 1992, Manders, 1981).

In a companion paper (Bouyssou and Pirlot, 2020b), we show that the same
technique can be extended, through the introduction of adequate order-denseness
conditions, to cover the general case (see Candeal and Induráin, 2010). Hence,
the tools presented in this paper offer a common scheme to build unit numerical
representations of semiorders.

Besides the generalization of our results presented in Bouyssou and Pirlot
(2020b), the field offers many opportunities for further studies. Let us mention
here one of the more intriguing ones. It is clear that the function u used in the
unit representation of a semiorder can be constrained to take only values in the
set of rational numbers Q (it suffices to do so in Proposition 36, which is always
possible since any linearly ordered denumerable set can be embedded into (Q,≥)).
Investigating which semiorders have a representation using a function u taking its
values in Z is an open problem. Its solution would allow to generalize the analy-
sis of minimal integer representations in the finite case proposed in Pirlot (1990,
1991).
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D. Scott. Measurement structures and linear inequalities. Journal of Mathematical
Psychology, 1(2):233–247, 1964.

D. Scott and P. Suppes. Foundational aspects of theories of measurement. Journal of
Symbolic Logic, 23(2):113–128, 1958.

P. Suppes and J. L. Zinnes. Basic measurement theory. In R. D. Luce, R. R. Bush, and
E. H. Galanter, editors, Handbook of Mathematical Psychology, volume 1, pages 3–76,
New York, 1963. Wiley.

P. Suppes, D. H. Krantz, R. D. Luce, and A. Tversky. Foundations of measurement,
volume 2: Geometrical, threshold, and probabilistic representations. Academic Press,
New York, 1989.

D. S. Troxell. A note on the representation of unit interval graphs: a link between
interval graphs and semiorders. Ars Combinatoria, 66:121–128, 2003.

56


