Majid Zohrehbandian 
email: zohrebandian@yahoo.com
  
New insight into introducing a -approximation ratio for minimum vertex cover problem

Keywords: Discrete Optimization, Vertex Cover Problem, Complexity Theory, NP-Complete Problems. MSC 2010: 90C35, 90C60

Vertex cover problem is a famous combinatorial problem, which its complexity has been heavily studied over the years and we know that there is not any mathematical formulation that approximates it better than 2 -𝑜(1). In other words, it is known that it is hard to approximate to within any constant factor better than 2, while a 2-approximation for it can be trivially obtained. In this paper, by a combination of a well-known semidefinite programming formulation and a rounding procedure, along with satisfying new properties, we introduce an approximation algorithm for the vertex cover problem with a performance ratio of 1.999999 on arbitrary graphs, en route answering an open question about the unique games conjecture.

Introduction

In complexity theory, the abbreviation 𝑁𝑃 refers to "nondeterministic polynomial", where a problem is in 𝑁𝑃 if we can quickly (in polynomial time) test whether a solution is correct. 𝑃 and 𝑁𝑃-complete problems are subsets of 𝑁𝑃 Problems. We can solve 𝑃 problems in polynomial time while determining whether or not it is possible to solve 𝑁𝑃-complete problems quickly (called the 𝑃 vs 𝑁𝑃 problem) is one of the principal unsolved problems in Mathematics and Computer science.

Here, we consider the vertex cover problem which is a famous 𝑁𝑃-complete problem. It cannot be approximated within a factor of 1.36 [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF], unless 𝑃 = 𝑁𝑃, while a 2-approximation factor for it can be trivially obtained by taking all the vertices of a maximal matching in the graph. However, improving this simple 2-approximation algorithm has been a quite hard task [START_REF] Khot | On the power of unique 2-Prover 1-Round games[END_REF][START_REF] Khot | Vertex cover might be hard to approximate to within 2-ℇ[END_REF].

In this paper, we show that there is a (2 -ℇ)-approximation ratio for the vertex cover problem, based on any feasible solution of it. Then, we fix the ℇ value equal to ℇ = 0.000001 and we show that on arbitrary graphs a 1.999999-approximation ratio can be obtained by a combination of a well-known semidefinite programming (SDP) formulation and a rounding procedure.

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and introduces new properties about it. In section 3, we propose a rounding procedure along with using the satisfying properties to propose an algorithm with a performance ratio of 1.999999 on arbitrary graphs.

Finally, Section 4 concludes the paper.

Performance ratio for a feasible solution of vertex cover problem

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a typical example of an 𝑁𝑃-complete optimization problem. In this section, we calculate the performance ratios of vertex cover feasible solutions which lead to an approximation ratio of 2 -ℇ, where the value of ℇ is not constant and depends on the produced feasible solution. Then, in the next section, we fix the value of ℇ equal to ℇ = 0.000001 to produce a 1.999999-approximation ratio for the vertex cover problem on arbitrary graphs.

Let 𝐺 = (𝑉, 𝐸) be an undirected graph on vertex set 𝑉 and edge set 𝐸, where |𝑉| = 𝑛. Throughout this paper, suppose that the vertex cover problem on 𝐺 is hard and we have produced an arbitrary feasible solution for the problem, with vertex partitioning 𝑉 = 𝑉 ∪ 𝑉 (𝑉 is a vertex cover solution of the graph 𝐺) and objective value |𝑉 |, and for solving the problem, we use the well-known semidefinite programming (SDP) formulation as follows:

(

. 𝑧 = 1 + 𝑣 𝑣 2 ∈ +𝑣 𝑣 + 𝑣 𝑣 -𝑣 𝑣 = 1 𝑖𝑗 ∈ 𝐸 +𝑣 𝑣 + 𝑣 𝑣 + 𝑣 𝑣 ≥ -1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} +𝑣 𝑣 -𝑣 𝑣 -𝑣 𝑣 ≥ -1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} -𝑣 𝑣 + 𝑣 𝑣 -𝑣 𝑣 ≥ -1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} -𝑣 𝑣 -𝑣 𝑣 + 𝑣 𝑣 ≥ -1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} 𝑣 𝑣 = 1 𝑖 ∈ 𝑉 ∪ {𝑜} 𝑣 𝑣 ∈ {-1, +1} 𝑖, 𝑗 ∈ 𝑉 ∪ {𝑜} 1) min . 
Note that, we know for sure that just by solving this SDP formulation or the other SDP formulations with additional constraints, we cannot approximate the vertex cover problem with a performance ratio better than 2 -𝑜(1). In other words, in section 3, we are going to propose a randomized algorithm to classify the solution vectors of the SDP (1) relaxation to produce a suitable solution for the vertex cover problem with a performance ratio of 1.999999.

Theorem 1. Suppose that in SDP formulation [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF] we have 𝑧 * ≥ + = ( ) . Then, for all vertex cover feasible solutions, = 𝑉 ∪ 𝑉 , we have the approximation ratio

A (𝟏. 𝟗𝟗𝟗𝟗𝟗𝟗)-approximation algorithm for the vertex cover problem

In section 2 and based on the produced feasible solution, we could introduce a (2 -𝜀)-approximation ratio where ℇ value was not a constant value. In this section, we fix the value of ℇ equal to ℇ = 0.000001 to produce a 1.999999-approximation ratio for the vertex cover problem on arbitrary graphs. To do this, we assume the following assumption about the solution of the SDP (1) relaxation. Note that, the induced subgraph on G is a triangle-free graph and we know that almost all trianglefree graphs are bipartite. However, if the solution of the SDP (1) relaxation meets the Assumption (1), it is necessary to introduce a suitable feasible solution based on G to produce a performance ratio of 1.999999. In other words, to produce a performance ratio of 1.999999, we should solve the SDP (1) relaxation.

Then, if the solution of the SDP (1) relaxation does not meet the Assumption (1), we have a performance ratio of 1.999999 and if the solution of the SDP (1) relaxation meets the Assumption (1), it is sufficient to produce a normalized random vector 𝑤, where |𝐻 | ≥ .

Theorem 4. Let 𝑢, 𝑤 be two normalized random vectors, then for any normalized vector 𝑣 * , we have Pr 𝑢𝑣 * ≤ 0.5003 & 𝑤𝑣 * ≤ 0.5003 < 0.60933.

Proof. Let 𝑣 * = 𝑣 + 𝑣 , where 𝑣 is the projection of vector 𝑣 * onto the 𝑢 -𝑤 plane (suppose that the vector 𝑢 is on the 𝑜𝑥 axis) and 𝑣 is the projection of 𝑣 * onto the normal vector of that plane. Then, (0 ≤ 𝜃 ≤ cos (0.5003)), and the gray region is symmetric concerning the ox axis, the oy axis, and the origin.

Note that, the maximum area of the region 𝑆, where 𝑆 is the area of the common gray region between two vectors 𝑢 and 𝑤, is produced based on the |𝑢𝑤| ≅ 1 condition (and the minimum value is produced when |𝑢𝑤| ≅ 0). Now, we can introduce our algorithm to produce an approximation ratio 𝜌 ≤ 1.999999.

Zohrehbandian Algorithm (To produce a vertex cover solution with a factor 𝝆 ≤ 𝟏. 𝟗𝟗𝟗𝟗𝟗𝟗)

Step 1. Solve the SDP (1) relaxation.

Step 

Assumption 1 .Definition 1 .

 11 By solving the SDP (1) relaxation, a) For less than 𝑛 of vertices 𝑗 ∈ 𝑉 and corresponding vectors we have 𝑣 * 𝑣 * < 0. Otherwise, we can produce 𝑉 = 𝑗 ∈ 𝑉 𝑣 * 𝑣 * < 0 and 𝑉 = 𝑉 -𝑉 , to have a feasible solution with |𝑉 | ≥ 𝑛 and |𝑉 | ≤ 𝑛 ≤ 999999|𝑉 |. Then, based on Theorem (2) we have an approximation ratio less than 𝑛 of vertices 𝑗 ∈ 𝑉 and corresponding vectors we have 𝑣 * 𝑣 * > 0.0004. Otherwise, 𝑧 * ≥ ( ) × Then, based on Theorem (1) and for all feasible solutions 𝑉 = 𝑉 ∪ 𝑉 , we have the Let ε = 0.0004 and G = 𝑗 ∈ V 0 ≤ 𝑣 * 𝑣 * ≤ +ε . Based on Assumption (1), after solving the SDP (1) relaxation, we have a performance ratio of 𝑚𝑎𝑥{1.999994, 1.999998} < 1.999999 (if the solution of the SDP (1) relaxation does not meet the Assumption (1)) or for more than 𝑛 of vertices j ∈ V and corresponding vectors we have 0 ≤ 𝑣 * 𝑣 * ≤ +ε; i.e. |G | ≥ 0.989999n (if the solution of the SDP (1) relaxation meets the Assumption (1)).

Theorem 3 .Corollary 1 .

 31 For any normalized vector 𝑤, the induced subgraph on 𝐻 = 𝑗 ∈ 𝐺 ; 𝑤𝑣 * > 0.5003 is a bipartite graph. Proof. Let us divide the vertex set 𝐻 as follows: 𝑆 = 𝑗 ∈ 𝐻 𝑤𝑣 * < -0.5003 and 𝑇 = 𝑗 ∈ 𝐻 𝑤𝑣 * > +0.5003 Then, it is sufficient to show that the sets 𝑆 and 𝑇 are null subgraphs. For each edge 𝑖𝑗 ∈ 𝐸(𝐺) and based on the first constraint of the SDP model (1), if 𝑖, 𝑗 ∈ 𝐻 ⊆ 𝐺 then we have 𝑣 * 𝑣 * ≤ -1 + 2𝜀. + 𝑣 𝑣 * * + 𝑣 𝑣 * * -𝑣 𝑣 = 1 𝑖𝑗 ∈ 𝐸, 𝑖, 𝑗 ∈ 𝐻 ⊆ 𝐺 Moreover, the triangle inequality could not be violated between vectors 𝑣 * -𝑣 * , 𝑤 -𝑣 * and 𝑤 -𝑣 * . But, if 𝑖𝑗 ∈ 𝐸(𝑇) then the triangle inequality between these vectors is violated; i.e. 𝑣 * -𝑣 * ≤ ‖𝑤 -𝑣 * ‖ + 𝑤 -𝑣 * 2 -2𝑣 * 𝑣 * ≤ 2 -2𝑤𝑣 * + 2 -2𝑤𝑣 * 2 -2(-1 + 2(0.0004)) ≤ 2 -2𝑣 * 𝑣 * ≤ 2 -2𝑤𝑣 * + 2 -2𝑤𝑣 * ≤ 2 2 -2(0.5003) Therefore, we have 1.9995999 ≤ √3.9984 ≤ 2√0.9994 ≤ 1.9994, which is a contradiction. Likewise, if 𝑖𝑗 ∈ 𝐸(𝑆) then the triangle inequality between vectors 𝑣 * -𝑣 * , 𝑢 -𝑣 * and 𝑢 -𝑣 * is violated, where 𝑢 = -𝑤 ■ By introducing a normalized random vector 𝑤, where |𝐻 | ≥ , we can produce a feasible solution 𝑉 ∪ 𝑉 , correspondingly, where |𝑉 | = 𝑚𝑎𝑥{|𝑆|, |𝑇|} ≥ . Hence, based on Theorem (2), we have |𝑉 |

Figure 1 .

 1 Figure 1. 𝑢 -𝑤 plane, where the radius of the smaller circle is 0.5003, 𝑢𝑢 = 0, 𝑢𝑢 " = 0.5003 , 𝑢𝑜𝑢 " = cos (0.5003) , f(θ) = .

2 .Step 3 .

 23 If for more than of vertices 𝑗 ∈ 𝑉 and corresponding vectors we have 𝑣 * 𝑣 * < 0, then produce the suitable solution V ∪ V , correspondingly, where V = j|𝑣 * 𝑣 * < 0 . Therefore, based on the Assumption (1. a) we have | | * ≤ 1.999999. Otherwise, go to Step 3. If for more than 𝑛 of vertices 𝑗 ∈ 𝑉 and corresponding vectors we have 𝑣 * 𝑣 * > 0.0004, then 𝑧 * ≥ + 0.0000015𝑛 and it is sufficient to produce an arbitrary feasible solution. Therefore, based on Assumption (1. b) for all feasible solutions 𝑉 = 𝑉 ∪ 𝑉 we have | |

  Therefore, Pr 𝑢𝑣 * ≤ 0.5003 & 𝑤𝑣 * ≤ 0.5003 = , where Note that, if |𝑢𝑤| < 1 then we have smaller values for this probability. Therefore, by introducing two normalized random vectors 𝑢, 𝑤, we have 𝑢𝑣 * ≤ 0.5003 and 𝑤𝑣 * ≤ 0.5003 for at most 0.60933𝑛 of the vectors 𝑣 * , the optimal solution of the SDP (1) relaxation. Hence, for at least 0.39067𝑛 of the vectors 𝑣 * we have 𝑢𝑣 * > 0.5003 or 𝑤𝑣 * > 0.5003.
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of the vertices and based on the Corollary (1) we have an approximation ratio

| | * ≤ 1.999999 < 2.