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ARTICLE

Micro-slips in an experimental granular shear band
replicate the spatiotemporal characteristics of
natural earthquakes
David Houdoux1, Axelle Amon1, David Marsan2, Jérôme Weiss3 & Jérôme Crassous 1✉

Memory effects in seismology—such as the occurrence of aftershock sequences—are

implicitly assumed to be governed by the time since the main event. However, experiments

are yet to identify if memory effects are structural or time-dependent mechanisms. Here, we

use laser interferometry to examine the fluctuations of deformation which naturally emerge

along an experimental shear fault within a compressed frictional granular medium. We find

that deformation occurs as a succession of localized micro-slips distributed along the fault.

The associated distributions of released seismic moments, as well as the memory effects in

strain fluctuations and the time correlations between successive events, follow exactly the

empirical laws of natural earthquakes. We use a methodology initially developed in seis-

mology to reveal at the laboratory scale the underlying causal structure of this behavior and

identify the triggering kernel. We propose that strain, not time, controls the memory effects

in our fault analog.
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Earthquakes are natural phenomena displaying scale-free
statistics1. Empirical power laws are observed for the dis-
tribution of their moments (Gutenberg–Richter’s law),

rupture lengths and durations, rupture slips 2, temporal3 and
spatial correlations between earthquakes4, which also express
through a decaying rate of aftershocks (Omori’s law)5, char-
acterized by a scale-free (sub)diffusion6,7. Understanding the
origin of those laws as well as reproducing them at the laboratory
scale remains nowadays major issue. From a fundamental point
of view, these scaling laws are reminiscent of nonequilibrium
dynamics and critical phenomena8,9 and raise the question of the
existence of a universality class to which earthquakes would
belong. Among mechanical systems, possible candidates for such
a universality class are those for which deformation occurs
through avalanches. The mechanical response of those systems is
characterized by intermittent dynamics alternating slow elastic
loading and rapid sliding and relaxation, leading to jerky
dynamics and/or stress drops.

Power-law distributions of slip sizes or relaxed energies have
been evidenced experimentally in various systems, such as the
stationary propagation of a fractured front in a heterogeneous
material10, compression of heterogeneous materials11,12, or
systems involving frictional sliding on or within a granular
media13,14. The common basic ingredients underlying the
dynamics of those different systems are the existence of the
material disorder and the decomposition of the dynamics in
elementary events localized both in space and time, coupled
together by elasticity. Progressive evolution of avalanche size and
duration statistics has been reported for different heterogeneous
materials12 or granular media15 upon increasing the loading up to
a macroscopic yield or failure stress at which scale-free statistics
are observed, arguing for a “stress-tuned” critical behavior fun-
damentally different from a self-organized critical dynamics
characterized by steady-state statistics16. It has been proposed on
the basis of a mean-field model of plasticity that those different
systems, as well as deformed microcrystals and earthquakes,
could belong to the same class of universality16,17. This, however,
was mainly addressed from an analysis of the size distribution of
avalanches as well as their average shape. In the case of earth-
quakes, the stress-tuned critical hypothesis was argued16 on the
basis of dependence of magnitude distributions on the slip
direction on the fault plane (the rake angle), which gives indirect
information about the differential stress acting on the fault18.
However, if seismic moment distributions appear to be indeed
exponentially tapered at very large scales, the associated upper
corner magnitude was found to be independent of the region or
the depth interval considered, or of the plate velocity, i.e., to
be rather “universal”19. On the other hand, an important and
ubiquitous feature of brittle deformation in the crust is the
existence of aftershocks, which occurrences are also governed by
scale-free laws. Much fewer attempts have been done to model
those spatio-temporal correlations, through the introduction
of a memory mechanism such as a slow healing of frictional
properties20, or viscoelastic relaxation21. Similarly, lab experi-
ments reproducing the clustering of events in time and space
remain scarce.

As a matter of fact, systems displaying avalanches can have also
fundamental differences that limit the pertinence of a universal
picture. As already noted, systems in a stationary regime must be
distinguished from those for which the spatio-temporal dynamics
are evolving (stress-tuned). In the case of frictional granular
media, besides a progressive increase of the maximum avalanche
size15, the spatial distribution of plastic events evolves during
loading: initially homogeneously distributed in the bulk of the
material, plasticity progressively localizes to form shear bands at
macroscopic yield22–24, in which all the shear rate concentrates

afterward while the rest of the system becomes an elastic “solid”.
Identifying clustering in time is only possible within those shear
bands when the spatio-temporal organization becomes stationary.
For stationary systems, the dimensionality of the active zone is
expected to play a role, at least on the value of the critical
exponents. One must thus distinguish tri-dimensional systems
(e.g., plasticity distributed in the bulk of an amorphous material),
from those where the plasticity is confined to a quasi-2D zone (a
fault in the case of earthquakes, a shear band in the case of
amorphous granular media), and finally quasi uni-dimensional
active zones (e.g., a propagating crack front). Practically, in
experimental works pertaining to the plasticity of amorphous
media, it is not always clear whether the plasticity is broadly
distributed in the bulk of the system or if it is localized along a
shear band. Even when the geometry of the active zone is iden-
tified, most experimental set-ups are unable to fully resolve the
spatio-temporal organization of the avalanches which are solely
identified and studied through indirect measurements of their
sizes such as acoustic emissions (e.g., ref. 14) or stress drops on a
loading curve (e.g., ref. 15).

To address the challenging issue of reproducing an analog of a
fault gouge at the lab scale, a straightforward approach consists of
imposing the bi-dimensional geometry in stationary conditions
by confining a granular material between elastic plates14,25–27. In
the vast majority of those experimental studies, quasi-periodical
stick-slip events with a typical size are observed, indicating that
finite-size effects dominate the dynamics28. The slip events then
involve the whole length of the shear band and the dynamics lose
their universal features. In addition, those macro-slip events are
characterized by a reverse asymmetry of the activity compared to
earthquakes, with foreshocks of increasing size as approaching
the macro-instability, but an absence of aftershocks14, likely
resulting from the finite-size effects mentioned above. A recent
experiment with a quasi-2D shear cell in a stationary regime
displayed intermittent dynamics sharing several features of
earthquake dynamics, such as the G-R law and a power-law decay
of the rate of aftershocks27. While giving promising results in
terms of the analogy between the dynamics of stationary sheared
granular materials and that of earthquakes, it did not give a direct
characterization of the localization and the spatial extension of
the detected events. Consequently, the aftershock characterization
amounts to a time correlation analysis of discrete events, without
quantifying the underlying causal triggering. We can thus ask: is
it possible to build a laboratory analog of a fault gouge where
well-identified events would share all the properties of earth-
quakes, and more particularly their spatio-temporal, scale-free
clustering properties arising from stress transfers and the result-
ing cascades of triggering29–32.

Here we present experimental results obtained in a 3D granular
system in a post-(macro)yield regime displaying a stationary
shear band and in which finite-size effects do not dominate the
dynamics. Using an interferometric method of measurement of
micro-deformations we provide a direct spatially-resolved mea-
surement of the micro-slip events that govern the frictional
motion along the shear band. We are able to measure the loca-
lization, the spatial extension, and the magnitude of those events,
providing the first direct experimental measurement at the
laboratory scale of frictional micro-slips along a fault. We show
that the statistics of those events display scale-free behavior in
close agreement with earthquake phenomenology. Using a
methodology developed for earthquake analysis30, we go another
step further compared to previous experimental studies by
quantifying the causal triggering between events. We show that
this underlying triggering process can explain the observed space-
time correlations in the dynamics, much like it does for earth-
quakes. We argue on this basis that a frictional shear band in a
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granular material represents a formal analog of tectonic faults,
with intermittent dynamics probably belonging to the same
universality class.

Strain fluctuations inside a shear band
Stationary shear band and strain imaging. We use for this study
an experimental set-up that consists of a biaxial cell filled with a
granular material composed of an assembly of glass beads con-
fined into a rectangular box (see Fig. 1a). The two lateral faces are
deformable latex membranes which allow us to impose a con-
fining stress σ1 to the material. This stress is kept constant during
the whole experiment. The material is slowly compressed by
moving at a fixed velocity the top face with respect to the bottom
face, and the axial macroscopic deformation εM, and the applied
axial stress σ3 are measured (see “Methods”).

The strain fluctuations are imaged using an interferometric
technique based on diffusing wave spectroscopy (DWS). For this,
the material is illuminated with an extended laser beam, and the
speckle images are regularly recorded. We note δε�M the macroscopic
strain increment between two successive images, and its value is
δε�M ¼ 5:10�7 if not otherwise specified. The speckle images are
then divided into square zones, and for two successive images, the
normalized autocorrelation function of the scattered intensities is
calculated for each zone. Associating a color to the value of the
correlation at a position, we obtain maps of correlation gI(εM, r),
where r is the position on the observation plane, as shown in Fig. 1d.
High correlation gI ≈ 1 (white pixels) indicates that beads are
uniformly translated without relative motions, whereas low correla-
tion gI < < 1 (dark pixels) is the signature of bead relative motions. In
addition to this interferometric correlation technique, we use a
conventional digital image correlation method on the speckle
pattern: the displacement of zones of the speckle pattern between
different images are measured, giving access to the displacement
field. This measure is used to determine the mean relative velocity of
blocks when shear bands are formed.

Starting from an initial condition of a material submitted to an
isotropic confining pressure, the material is slowly compressed.
The beginning of the compression is associated with a plastic flow
spatially distributed into the sample and to an increase of the
stress difference σ3− σ1 (see Fig. 1b). We analyzed this plastic
flow in previous works22 (see also Supplementary Movie 1) and
we do not look further to this initial stage here. When the
deformation εM of the material exceeds a yield strain εY ≈ 4.5%,
the stress difference σ3− σ1 is roughly constant (see Fig. 1b), and

the deformation localizes into the material, with the formation of
one or two linear shear bands33. The shear is not localized close
to a moving mechanical boundary as it is the case for a Couette
cell (where the shear band appears at rotor), or in a gouge
confined between two rigid blocks. Here, the shear band emerges
spontaneously in the system. Its orientation is linked to intrinsic
properties of the material (it is linked to the deviatoric stress at
failure through the Mohr–Coulomb relationship) and not to
geometrical constraints. Its width is the result of the self-
organization of the system: the flowing material forming the band
and the solid material surrounding it is the same and this
separation of phase emerges spontaneously in the system.

Average vs. instantaneous strain. The map of the correlation of
the scattered intensity can be linked to the shear motion of the
sliding blocks at each side of a band. This may easily be seen
qualitatively: for this we consider a correlation map obtained in
the stationary regime (see Fig. 1d), i.e., when the stress difference
is in a plateau phase, and εM > 5%. The correlation is close to 1
into the four triangular zones partitioned by decorrelated
boundaries. This indicates that the material is split into four rigid
blocks separated by deformed zones.

To obtain quantitative information about the shear field inside
the band, we assume (this hypothesis will be discussed just below)
that the motion of the beads around a point r is mainly a shear
γm(r, εM)= ∂ux/∂z, where u is the local displacement of a block
with respect to another one, and (x, z) are local coordinates
associated to a band (see Fig. 1d for axis definition). By making
this assumption, we neglect other components of the strain tensor
and uncorrelated motion of the beads. If the beads move
accordingly to this shear field, the decorrelation can then be
related to the local shear as (see Supplementary Methods 2 and
Supplementary Figs. 2–4):

γmðr; εMÞ ¼ �γ0ln ½ gIðr; εMÞ� ð1Þ
with γ0= 2.6 × 10−4 a constant given by the optical properties of
the material. The time-averaged local deformation is defined as:

�γmðr; εMÞ ¼ ð1=ΔεMÞ
Z εMþΔεM

εM

γmðr; εM 0ÞdεM 0 ð2Þ

The hypothesis of local shear can be quantitatively tested. For
this, we integrate (2) along a direction perpendicular to the shear
band, and we obtain uxðzÞ � uxð�1Þ ¼ R z

�1 �γmðz0; εMÞdz0.
Figure 1c shows the displacement field across the shear band,

Fig. 1 Imaging shear band fluctuations. a Schematic of the experimental set-up. The material is submitted to a biaxial stress test. The front face of the sample
is imaged on a camera. As illumination is done using coherent light, those images display speckles. b Normalized deviatoric stress as a function of macroscopic
deformation. εY is the yield strain, and the gray zone is the post-yielding zone analyzed in this study. c Relative displacement ux of two blocks separated by a
shear band as a function of the direction perpendicular to the shear band. Symbols are experimental data, the plain line is uxðzÞ ¼ Δux ´ ½1þ tanhð�2z=wÞ�=2,
with Δux= 32 nm and w= 22d. d Map of the correlation between two successive speckle images. The color of the pixel is related to the value of the
correlation. Blue arrows represent the directions of displacement of the blocks with respect to the shear bands. The dashed area is the Region of Interest (ROI)
for performing speckle analysis. e Schematic of the shear band separating two sliding blocks as composed of discrete shear events of fixed-width w and of
size L × L.
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demonstrating that the strain is concentrated into a narrow zone
of width w= 22d. This value is in agreement with the reported
values of shear band thickness in biaxial experiments34. The
spreading of light due to the diffusive transport of photons inside
the granular material is expected to occur on a scale of the order of
l* ~ 3d, which is small compared to our measured value of w. This
value of w= 22d is, therefore, representative of the thickness of
the actually sheared zone.

For our macroscopic strain increment δε�M ¼ 5:10�7, the
relative sliding of the two blocks Δux= ux(∞)− ux(−∞) if
found to be Δux= 32 nm. This value is close to the imposed
value Δux= 25 nm that we may estimate from the displacement
of the top plate and the orientation of the shear band. This
agreement confirms the hypothesis that the decorrelation of the
speckle pattern is mainly due to the shear motion of the beads.
The small difference between the imposed and the measured
value of displacements may have different origins. Shearing a
granular media usually produces some dilation or compaction,
creating a decorrelation of the scattered light. Also, some non-
affine motion of the beads occurring in the sheared zones may
produce decorrelation35. Finally, our optical model of perfectly
spherical beads ignores possible bead rotations.

Memory effect in strain fluctuation. We now analyze the fluc-
tuations of the local shear. Since deformation is located in the
shear band, we consider the transverse-averaged shear deforma-
tion γT ðx; εMÞ ¼ 1

2w

R w
�w γmðr; εMÞdz. Figure 2b shows γT(x, εM)

into the (x, εM) plane. We can clearly see that the shear is het-
erogeneous both in space (i.e., along the shear band) and inter-
mittent. In order to analyze those fluctuations, we introduce the
normalized spatiotemporal correlation function:

Cðδx; δεMÞ ¼
hγT ðx; εMÞ ´ γT ðx þ δx; εM þ δεMÞi
hγT ðx; εMÞihγT ðx þ δx; εM þ δεMÞi

� 1 ð3Þ

where 〈⋅〉 is an average both on deformation and position (see
“Methods” for details). Figure 2a is a plot of C(δx= 0, δεM) as a
function of the δεM. There is clearly memory in the deformation.
Moreover, this correlation function decays as a power law
Cðδx ¼ 0; δεMÞ � ðδεMÞ�θ , with θ= 0.74. Binning in space and
time the moment along the San Andreas Fault system from the
Californian earthquake catalog (see Supplementary Methods 1 for
details), very similar spatiotemporal patterns (Fig. 2d) and
correlations (Fig. 2c) are obtained. The analogy between our
shear band and tectonic faults in terms of scaling laws of seismic
moments, temporal clustering, and aftershock triggering, is
thoroughly analyzed in what follows.

Results
Definition of shear transformation events. As we saw in Fig. 2a,
the local shear γT(x, εM) exhibits important fluctuations, alternating
activity, and quiescent phases. The concept of shear transformation
zone has been introduced to deal with the flow of disordered mate-
rials: spatial zones reorganize, creating a local shear. We define such
zones from the light scattering data. For this, we apply a threshold to
the image γm(r, εM), and we use a particle detection algorithm to
obtain individual shear events (see Supplementary Methods 3 and
Supplementary Fig. 5 for details about threshold and detection
algorithm). Events are numbered, and each event i is associated with a
macroscopic deformation εM;i

at which the event occurs, a position ri
(defined as the barycenter of γm), a surface Σi on the image, and a
mean microscopic shear γi. We also define a “seismic moment” as
Mi ¼ μuiL

2
i with μ the shear modulus of the granular assembly, ui

the shear displacement, and L2i the shear surface (see Fig. 1e). For a
shear zone of width w, we have Σi=wLi and ui=wγi, and thus
Mi ¼ μγiΣ

2
i =w. The shear modulus of the granular assembly may be

estimated from mean-field theory of granular elasticity (equation (14)
of ref. 36) and is μ= 200MPa for the pressure of 30 kPa. The shear
bandwidth w= 22d is measured from the mean strain (Fig. 1c). The
moment magnitude is defined asmw;i ¼ 2

3 log 10ðMiÞ � 6:07, withMi

expressed in37 Nm. The energy dissipated during an event is
Ei ¼ τuiL

2
i , where τ is the shear stress along the shear band and is

then directly linked to the moment: Mi/μ= Ei/τ. The value of τ= 33
kPa may be obtained from the principal stresses σ1 and σ3 at failure
using Mohr–Coulomb construction.

Scaling laws of events. We now look at the statistical character-
ization of the events. We consider for this the sequence of events
occurring on one half shear band for macroscopic deformation
6% ≤ εM ≤ 10% (gray zone on Fig. 1b). The total number of
counted events is Ntot ≈ 1.1 × 105. The minimum moment is
dependent on the threshold and is Mmin= 6 × 10−7 Nm, whereas
the largest events have Mmax= 0.05 Nm. The probability density
function of energy dN/dM is plotted on Fig. 3a, and decays as a
power of energy dN/dM ~M−β, with β≃ 2.1. Although our
moments stand in a range roughly 20 orders of magnitude below
that of earthquakes, this behavior is similar to the empirical
Gutenberg–Richter’s law. Indeed, the number N(M) of earthquakes
with a moment magnitude larger than mw is log 10ðNðmwÞÞ ¼
a� bmw, leading to dN/dM ~M−(1+(2/3)b). The value of b for
faults is usually ≃1.01, leading to a slope β≃ 1.66. It may be verified
(see Supplementary Methods 4 and Supplementary Fig. 6) that the
distributions remain the same during the whole post-failure
regime, and that they do not depend on the occurrence of large
events. In this sense, our model gouge is in a stationary state. The

(a) (c)
granular experiment(b)

Californian catalog data(d)

Fig. 2 Strain fluctuations and correlations. a, b Granular experiment. a Spatiotemporal correlation function C(δx= 0, δεM) as a function of δεM see Eq. (3).
b Spatiotemporal evolution of the local strain γT(x, εM) (see text) in a shear band. c, d Californian earthquake catalog. c Spatiotemporal correlation function
C(δx= 0, δt) as a function of δt (see Supplementary Methods 1). d Spatiotemporal evolution of the seismic momentM resulting from earthquakes from the
Californian catalog projected along the main direction of the fault (see Supplementary Methods 1 and Supplementary Fig. 1 for details).
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mean deformation of an event of moment M is defined as
hγi ¼ ∑MþdM>Mi >Mγi=∑MþdM >Mi >M , for a small dM. As shown
on Fig. 3b, this quantity is relatively constant 〈γ〉 ~M0.17. The
broad distribution of the values of the moments Mi (or equiva-
lently of the relaxed energies Ei) is then mainly due to a broad
distribution of sizes Li, but not of deformation γi. In other words,
the stress drop in an event Δτi= μγi has always the same order of
magnitude. This is consistent with what is generally considered for
earthquakes. Indeed, compilations of earthquake data argue for a
scaling38 M ~ L3, while M= μL2u= μγL3=ΔτL3, hence implying
a constant stress drop. In our experiment, Δτi/μ= γi ≈ 10−4, this
ratio is relatively close to the one typically obtained for earthquakes
where39 Δτ/μ ≈ 3 × 10−5. We should however mention that, in our
case, the increase of 〈γ〉 i.e., of Δτ, with the seismic moment,
though weak, is significant (Fig. 3b). In the case of earthquakes, a
potential similar scaling would be indiscernible, owing to the large
uncertainty on the estimation of the average slip and the variety of
geophysical contexts. We may also consider the relative fraction of
the shear stress which is relaxed during an event: Δτi/τ= μγi/τ. For
large events, 〈γ〉 ≈ 2.10−4, whereas 〈γ〉 ≈ 3.10−5 for small events,
hence showing that the events relax typically ~0.1–1 of the mean
stress.

We finally look at the ratio of energy dissipated by events of
moment greater than M: EevðMÞ ¼ ∑Mi ≥M

Ei, compared to the
total dissipated energy Edis (see Supplementary Methods 5 for the
details). Figure 3c shows that typically half of the energy is
dissipated in events of moment M > 10−4 Nm, while all detected
events account for a value Rs= 90% of Edis. Rs is an equivalent of
the seismic coupling defined in tectonics1. The fact that the value
is close to 1 means that only a minor part of the energy is
dissipated into a continuous motion, distinct from the detected
intermittent shear transformation events. For tectonic faults, the
coupling can vary considerably with the geophysical context but
is generally strong for interplate continental faults40.

Temporal organization of events. The statistical laws governing
the succession of shear transformations may be analyzed within
the framework of the statistical laws of natural earthquakes.

We first look at the rate of events occurring at the same
position as a particular event (so-called mainshock). Figure 4a
shows the rate of events occurring after (“aftershocks”) of before
(“foreshocks”) “mainshocks” of magnitude mw ≥−9 (total
number of mainshocks ≈13 × 103). Only aftershocks or foreshock
events occurring at the same position (±15d) are counted. For
large delays, the rate of events is constant, corresponding to a
background (dN/dε)bg rate of events uncorrelated to the
mainshocks, while, at small delays, the rate excesses the
background rate. The excess rate of aftershocks (dN/dε)exc=
(dN/dε)− (dN/dε)bg decays with the macroscopic deformation as
ðdN=dεÞexc � δε�1

M (see Fig. 4b). This behavior is reminiscent of
Omori’s law5 which states that the rate of seismic events
occurring after a mainshock decays with the time t to the
mainshock as n(t) ~ t−1. Note however that such analysis
amounts to blindly characterize time correlations between events.
In particular, unlike what is generally done in earthquake
analysis, the magnitude of the “mainshock” is not prescribed to
be larger than that of its “aftershocks”. Such correlation analysis is
a signature, but not a formal quantification, of causal triggering,
which is explored in details later. An opposite evolution,
reminiscent of an inverse Omori’s law, characterizes, on average,
an increasing rate of foreshocks before mainshocks, though with a
smaller rate (Fig. 4a) that expresses an asymmetry of time
clustering.

The productivity law describes the number of excess events in
response to an event of magnitude mw. For this, we integrate the
total number of aftershocks in excess to the background:
Nexc ¼

R1
δε�M

ðdN=dεÞexcdðδεMÞ. Figure 4c shows the evolution of

Nexc with the mainshock magnitude mw, and we find that
Nexc / 10α:mw , with α≃ 0.44. This result may be compared with
the productivity law for natural earthquakes, where the number
of aftershocks nAS / 10α:mw , with α in the range 0.6–1.241. In
striking contrast, the number of foreshocks appears independent
of the mainshock magnitude (Fig. 4c). This is in full agreement
with a previous analysis of seismic foreshocks showing that such
precursory activity before any event is a mere statistical
consequence of cascades of triggering42. The triggering of
deformation events in our system is thoroughly analyzed below.

Fig. 3 Scaling law of events. a Probability density dN/dM of events of momentM. Dotted line is a power-law ~M−2.1. bMean deformation 〈γ〉; as a function
of the moment. The dotted line is a power-law ~M0.17. c Ratio between the energy dissipated in events of moment ≥M and the total dissipated energy.
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The distribution of events during the loading may be further
characterized by considered the first-return deformation prob-
ability P(δεM) which is analogous to the first return time
probability for earthquakes. For this, we measure the macroscopic
deformation δεM between successive events, occurring at the same
position (±15d) along the band. Only events of magnitude greater
than mw are considered. Figure 5a shows the distribution of inter-
occurrence deformations for different moment thresholds. The
distributions decay with a power-law, followed by an exponential
decay. As shown on Fig. 5b, those distributions may be properly
collapsed by considering for every magnitude mw, the normalized
deformation of x ¼ δεM=δεM , where δεM is the mean deforma-
tion between successive events. As indicated in Fig. 5b, the
distribution may be well approximated by a Gamma distribution

PðxÞ / xq�1 expð�x=BÞ ð4Þ
with q= 0.6 and B= 1.9. P(x) decays as a power-law with exponent
≈0.4 up to values of x ≈ 1, then exponential decays take place. This

behavior is not surprising, as it has been shown to be a mere
consequence of triggering dynamics characterized by a GR
distribution, the Omori’s, and productivity laws43. Our results are
very similar to observations for tectonic seismicity where q≃ 0.6744,
or micro-seismicity q≃ 0.7445. Such scaling laws are also observed in
fracture experiments46.

Discussion
Shear band viewed as a minimal model of the gouge. Starting
from an initially homogeneous assembly of beads, our system
organizes spontaneously to reach a stationary regime where all
the deformation is concentrated along shear planes. The analysis
of the statistical properties of the strain fluctuations along those
planes shows a strong quantitative and qualitative analogy with
the statistical characteristic of natural earthquakes along a fault:
the shear band may be viewed as a simplified gouge. We discuss
here why this scale-free organization of deformation along a
gouge is not observed in other laboratory systems.

Fig. 4 Temporal organization of events. a Rate of events dN/dεM occurring after (•) and before (∘) an event of magnitude mw ≥−9 as a function of the
deformation increment δεM. The dotted line is the background rate. b Rate of aftershock (•) or foreshock (∘) events in excess to the background level as a
function of δεM. The line is a δε�1

M decay. c Number of events occurring in excess to background activity after (•) or before (∘) a main-shock event of
magnitude mw. The line is a power law Nexc � 100:4mw .

Fig. 5 Distribution of inter-occurrence times. a Distribution of inter-occurrence deformation between successive events, for different magnitudes.
b Distribution of re-scaled inter-occurrence deformation δεM=δεM. The plain line is the gamma distribution PðxÞ / xq�1 expð�x=BÞ with q= 0.6 and B= 1.9.
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Many mechanical systems other than crustal faults exhibit
crackling noise when plastically deformed10,11,15,27,46–48. In
particular, the statistical properties of deformation or mechanical
stress fluctuations follow power laws which reveal the absence of
any particular scale in the system at least in an extended inertial
(scale) range. Those fluctuations arise from individual deforma-
tions which interact elastically to create complex scale-free
dynamics. In the case of plasticity of amorphous materials before
the macroscopic yielding15,16,48,49, the criticality of the system is
related to the approach of the yield point. In this case, the plastic
events are expected to be initially randomly distributed through-
out the bulk of the sample and not localized in structures analog
to natural faults. The brittle failure of an amorphous material is
another configuration where crackling noise is observed10. In this
case, the plasticity occurs in a damaged zone close to the
propagating crack tip, and stationary plastic deformation cannot
be defined. In some experiments such as compression of
disordered materials46 or some granular experiments13,27, the
spatial extension of events and their localization is unknown.

In order to obtain a zone of intense plasticity in a stationary
regime, one can shear an artificial gouge, made of a granular
material confined between elastic plates of very different elastic
modulus (much stiffer or much softer)14,25,26. At first glance, this
appears to be a reasonable realization of a natural gouge which
consists of highly crushed rocks confined between rigid material.
However, in those cases, avalanches of various sizes are not
observed, but instead, the dynamics are dominated by macro-slips
involving all the sliding interface. De Geus et al.28 have recently
proposed a numerical model of frictional contact consisting of an
amorphous layer confined between two elastic blocks, in which
scale-free dynamics and large macro-slips events implying the
whole interface coexists. Such a competition between an
avalanche regime and a periodic stick-slip is reminiscent of the
Parkfield segment of the San Andreas Fault, confined between a
creeping zone and an unloaded segment, where large and pseudo-
periodic earthquakes have been observed50. In our experiment,
the dynamics of the model gouge are dominated by scale-free
avalanches and we do not observe such macro-slips. This
difference of behavior may arise from the difference in the
confinement of the gouge. When the gouge is confined between
elastic plates, there is an important contrast of mechanical
properties between the gouge (which is an elasto-plastic granular
material), and the plates (which are perfectly elastic). We may
then expect that the plates transmit integrally the mechanical
stress over all the gouge, leading to macroscopic slip events. In
our experiments, materials that compose the fault and the
surrounding medium are the same: both consist of the same glass
beads. Given the applied pressure in our experiment, we do not
expect any bead crushing, and this is in agreement with optical
observations. So, the mechanical properties of the material are

probably very close inside and outside the shear band, and they
are both elasto-plastic. So, the material outside the gouge does not
behave as a rigid block transmitting the mechanical stress on all
the interfaces. This is probably why we do not observe any large
macro-slips but only localized avalanches displaying scale-free
dynamics.

In summary, since the stationary shear band emerges from
bulk material, we are able to observe a scale-free stationary
dynamics occurring in a confined space. The shear band of
granular material has the right dimensionality (the 2D shear
plane in 3D space) and the right mechanical properties to
accurately model a complex gouge at the laboratory scale. As a
consequence, we directly observe shear events distributed along
the shear plane. The statistical properties of those events are
summarized in Table 1, and their size distributions, temporal and
spatial organizations, as well as correlations of displacement, are
very similar to the ones observed for natural earthquakes. We
demonstrate below that the analogy can be pursued one step
further through a thorough analysis of triggering.

Triggering of deformation events. Correlations in the defor-
mation field and among deformation discrete events are found
both in time and in space and obey power-law regimes that
highlight the scale invariance of the system. However, correlation
is distinct from causality, which in the present context is
equivalent to triggering, i.e., how the occurrence of a deformation
event mechanically triggers subsequent deformation events. The
underlying causal structure can be inferred from the data using
methods that have been developed in seismology30,31,51 or in
social science52. We find that triggering obeys a scale-free pro-
ductivity law, so that the number N of directly triggered events,
per mainshock, depends on the magnitude as N � 100:24mw

(Fig. 6a), along with an Omori-like kernel, albeit with a relatively
steep decay, the density of triggering events decreasing with time t
after the trigger as t−p with p in the 1.6–1.8 interval, cf. Fig. 6b.
Departure from these power laws is observed for the biggest
events, that produce relatively more aftershocks in the early times,
but are then followed by a clear activity shutdown, both features
being likely due to a finite size effect and exhaustion of the
stressed, ready-to-fail patches along with the deformation band
after such large events. It is customary in the framework of these
models to define a so-called branching ratio, which measures the
capacity of a perturbation to sustain itself over potentially an
infinite time (if the branching ratio is close to 1) or instead to die
off quickly (if it is close to 0). This ratio can be estimated as the
number of directly triggered aftershocks per “mainshock” aver-
aged over all the events of the catalog. We here find that the
branching ratio is very close to 1, implying that the background
(i.e., non-triggered) activity consists of a few % at most so that
most of the activity is made of events triggered by preceding

Table 1 Quantitative comparison between natural gouges and granular shear band.

Property Earthquakes Our experiment

Temporal correlation function: C(δx= 0, δt) ~ δt−θ θ≃ 0.70 aθ≃ 0.74
Moment or energy distribution: dN/dM ~M−β β≃ 1.7 β≃ 2.1
Aftershocks rate: dNas/dt ~ t−p p≃ 1.0 ap≃ 1.0b; 1.7c

Productivity law: Nas � 10αmw α≃ 0.8 aα≃ 0.4b; 0.24c

Recurrence time distribution: PðxÞ � xq�1 expð�x=BÞ q≃ 0.7 q≃ 0.6
Stress drop/shear modulus: Δτ/μ ≃3.10−5 ≃10−4

Branching ratio 0.8–153 ≲1

aWith the substitution t→ εM.
bCount of events.
cTriggering kernel.
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events, highlighting the dominance of triggering and therefore
clustering in the dynamics of deformation events. This is also
fully consistent with earthquakes, for which the branching ratio
ranges between 0.8 and 153.

The productivity in 100:24mw found here is distinct from the
100:40mw scaling observed when stacking the activity past all mw ≥
9 events as in Fig. 4c; this is due to the fact that, in the latter case,
the stacking mixes causally-triggered sequences (e.g., if A triggers
B that triggers C, then both B and C will show up in the counting
of subsequent activity, while in Fig. 6 B is counted for A while C is
counted for B). We thus checked that this mixing does indeed re-
create the observations of Fig. 4. To do so, we exploit the fact that
the causal structure can be formulated as a linear model, that is
simply amenable to simulations30,31,51. We thus simulate
synthetic datasets of deformation events based on this model
and its basic ingredients: (1) seismic moments are independent,
identically distributed, and follow the Gutenberg–Richter-like
marginal distribution of the experiment; (2) a small proportion
(about 5%) of the events occur randomly in space and time, and
correspond to “spontaneous” events, i.e., events that are not
triggered by previous events; (3) the 95% other events are
triggered events from previous “mainshocks”, their distribution
relative to the time and position of the mainshock following the
kernels observed for the experiment dataset (e.g., the temporal
kernel of Fig. 6b). Generating such synthetic datasets, we find that
the correlations (i.e., stacked rates) seen for the real data are
indeed well recovered (they are within the natural fluctuations of
simulation outcomes), demonstrating that these correlations
effectively emerge from more fundamental triggering kernels, cf.
Fig. 6c.

Structural vs. temporal memory effects. Strain correlation
functions (Fig. 2), rate excess after main-shocks (Fig. 4a), and the
causal triggering kernel (Fig. 6) all indicate the existence of scale-
free memory effects in our system. In the context of seismology,
memory effects are remarkably revealed by the existence of
aftershock sequences which are quantified by Omori’s law stating
that the number of aftershocks decays as the inverse of the time
elapsed since the mainshock1. This law assumes implicitly that
the time is the physical variable that governs the memory. The
origin of such temporal dependence is however unclear. Several
mechanisms such as the temporal dependence of microscopic
friction law54–57, sub-critical crack growth, the occurrence of
afterslip58, or poro-elasticity and the evolution with time of pore
fluid pressure59 have been proposed as a possible sources of
temporal memory effects controlling earthquake occurrences.
However, the direct links between any time-dependent micro-
scopic mechanism and memory effects in seismicity are still
debated.

In our experiment, we can test whether time is indeed the right
parameter to describe the memory effect that we observe. For this,
we performed experiments at different macroscopic deformation
rates. Figure 7a shows the normalized correlation functions of
the microscopic deformation expressed as a function of the time
increment. If every experiment shows a memory effect, the
magnitude of memory depends on the strain velocity. At a fixed
time delay δt, the correlation function decreases with the velocity.
This reveals that time does not seem to be the right parameter to
describe memory. This may be evidenced by plotting the
correlation functions as a function of the macroscopic strain
increment δεM Fig. 7b. In this plot, the curves collapse,
demonstrating that the correlation function decays with the
strain increment and not with the time increment. This
independence on the shear rate may also be evidenced by
considering the similarity of the size distributions of events on
Fig. 7c.

This laboratory observation is evidently not in contradiction
with Omori’s law. Indeed, the driving velocity of a given fault is
constant on the temporal scale of human observations. So,

Fig. 6 Triggering kernel. a Productivity law giving the mean number N of
triggered events for a trigger of magnitude mw. The best power-law fit in
N � 100:24mw obtained when discarding the last point (biggest events) is
shown in magenta. b Triggering kernels in time, conditioned on the moment
of the trigger. We consider the same 8 “classes” of seismic moments as in
(a). Power law decays in t−p, with p= 1 and p= 2, are shown for visual
guidance. c Correlation in time, as in Fig. 4b, for two instances of synthetic
datasets and for the real dataset.
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describing memory effects in terms of time increment or in terms
of strain increment is then equivalent for natural faults. The fact
that the memory is strain-dependent rather than time-dependent
in our system suggests that the memory could be linked to
structural/topological rearrangements within the granular med-
ium, inducing a redistribution of local stress and possibly
triggering slip events. It is then not surprising that the
macroscopic deformation may be the parameter that governs
the plasticity around a given position in the material. This also
raises the question of the potential role of such geometrical
rearrangements in the “time” correlations characterizing natural
seismicity. In that case, such mechanisms could combine with
truly time-dependent, thermally activated processes such as sub-
critical crack growth, to explain memory effects in earthquake
occurrences. Interestingly, slip-dependent and time-dependent
memory effects combine as well in the classical Rate-and-State
friction laws60,61 that remains nowadays a classical framework of
interpretation of earthquake physics55,62.

Conclusion
By looking at the intermittent strain fluctuations, we showed that
a shear band inside an athermal disordered material is an analog
of a natural fault: the deformation consists of many micro-slip
occurring along a plane, and their collective dynamics is char-
acterized by statistical properties remarkably consistent with the

empirical laws of seismology. This analogy with natural faults is
obtained when the fluctuations are observed after macroscopic
yielding of the granular medium, when a steady-state regime
takes place. The laboratory and natural fluctuations observed are
then characteristic of a critical behavior after yielding, which is
presumably different from the stress-tuned criticality observed for
many systems before yielding. Our statistical analysis of micro-
slips also quantifies the causal triggering between events, and
reveals that this underlying triggering mechanism is at the root of
the space-time correlations in the dynamics, as it has been pre-
viously shown for natural earthquakes.

Despite its simplicity, our experimental model recreates the
whole set of spatio-temporal characteristics of earthquakes:
moment distribution, recurrence time distribution, productivity
law, decay of aftershocks rate, and triggering kernel. This
simply suggests that those laws may be reproduced by using
simple numerical or theoretical systems of frictional particles.
Hence, the analysis of such systems should allow understanding
the organization of the microscopic stress field close to the
shear band. Experimentally, the possibility to control a model
fault in the laboratory also opens the road to many studies, such
as the effect of mechanical noise on the size distribution of slip
events, the influence of the elastic properties of the surrounding
material with respect to that of the band, or a study of size
effects.

Fig. 7 Effect of deformation rate. Comparison of three experiments performed at different compression velocities: red crosses _εM ¼ 3:5 ´ 10�6 s−1; green-
filled triangles _εM ¼ 1:1 ´ 10�5 s−1; open black circles: _εM ¼ 3:5 ´ 10�5 s−1. a The normalized correlation function of the deformation (3) as a function of the
time increment δt. b Same data plotted as a function of the strain increment δεM. c Probability density dN/dM of events of moment M. (strain increment
δε�M ¼ 1:5 ´ 10�6, event threshold (see Supplementary Methods 3) γs= 0.1 γ0).
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Methods
The experimental setup consists of a biaxial compressive test in-plane strain conditions
already described63. The granular material is composed of glass beads of diameter d=
70–110 μm and initial volume fraction ≈0.60. The granular material is enclosed
between a latex membrane (85 × 55 × 25mm3) and a glass plate. A pump produces a
partial vacuum inside the membrane, creating confining stress −σ3= 30 kPa.

The sample is placed in the biaxial apparatus where a compression is imposed in
the vertical direction (noted 1 on Fig. 8a) while the lateral sides (noted 3 on Fig. 8a)
are maintained under a constant stress σ3. Two fixed planes ensure that there is no
deformation along the direction 2. At the top, a moving plate exerts a compression
of the sample at fixed velocity and the bottom plate is fixed. The velocity of the
motor is of the order v ~ μm s−1 (different velocities are used, see main text for
precise values), leading to a deformation rate _ϵM ¼ v=L � 10�5 s−1 where L= 85
mm. The origin of deformation ϵM= 0 is taken at the beginning of the contact
between top plate and sample, but its precise value is without important because
analysis considers only deformation increments. The stress applied at the top of the
sample is defined as −σ1=−σ3+ F/S, where F is the force measured by a sensor
fixed to the upper plate, and S= 55 × 25 mm2 is the section of the sample that we
consider as constant during all the experiment. When the stress plateau is attained,
one or two shear bands form into the sample (green and red planes on Fig. 8a).

Deformations are observed through the front glass plate using DWS, a method
already described elsewhere35,64. A laser beam at 532 nm is expanded to illuminate
the entire sample. The light undergoes multiple scattering inside the granular
material and we collect the backscattered rays. The latter interfere and form a
speckle pattern. The image of the front side of the sample is recorded by a 2352 ×
1728 pixels camera. Speckle images are then subdivided into square zones of size
16 × 16 pixels that we call metapixel. The correlation between two images 1 and 2 is
then calculated for each metapixel, and a map of correlation of 147 × 108 meta-
pixels is obtained. The size of the metapixel corresponds to 6.0d × 6.0d on the
sample.

Average 〈⋅〉 in Eq. (3) is computed in the following way. The total length of the
spatiotemporal series is of 7 ´ 104δε�M . To smooth out the fluctuations of the strain
rate at the level of the studied band, correlation functions are computed by slices of
length 3 ´ 103δε�M in deformation interval and on position. Then the resulting
functions are averaged on the whole duration of the series.

Data availability
Optical correlations functions (raw 8-bits images) at https://doi.org/10.5281/
zenodo.4525025.
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