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The classification of irregularly sampled Satellite image time-series
(SITS) is investigated in this paper. A multivariate Gaussian process mix-
ture model is proposed to address the irregular sampling and the multivariate
nature of the time-series. The spectral and temporal correlation is handled us-
ing a Kronecker structure on the covariance operator of the Gaussian process.
The multivariate Gaussian process mixture model allows both for the clas-
sification of time-series and the imputation of missing values. Experimental
results on simulated and real SITS data illustrate the importance of taking
into account the spectral correlation to ensure a good behavior in terms of
classification accuracy and reconstruction errors.

1. Introduction. Satellite images availability has exponentially grown in the last
decade. Thanks to free data access policy, optical satellite image time-series (SITS) such
as Landsat or Sentinel-2, offer an unique opportunity to monitor the state and evolution of
our living planet. Therefore, SITS have found many applications in ecological monitoring (Li
et al., 2018; Fauvel et al., 2020), meteorology (Liu, Gopal and Kalagnanam, 2018; Bertolacci
et al., 2019) or agricultural system mapping (Useya and Chen, 2018; Moeini Rad et al., 2019;
Feng et al., 2019), among others.

SITS are characterized by their spatial and spectral resolutions, and their revisit cycle. The
spatial resolution corresponds to the size of a pixel on the ground, e.g., a square of 10 meters
while the spectral resolution is related to the number of wavelengths collected by the sensor,
ranging typically in the visible and near infra-red part of the spectrum (Manolakis, Lockwood
and Cooley, 2016). The revisit cycle stands for the time between two acquisitions over the
same location: SITS have constant and short (e.g. few days) revisit time. Hence, for a given
temporal period, a pixel is the collection of spectral measurements made at different times
over the same location.

These properties lead to an unprecedented amount of numerical data, for which statistical
methods are used to extract meaningful information such as land cover, crops yields . . . For a
pixel-wise based analysis, the predictor variables are multivariate time-series and the output
variables represent the information to be extracted. While spatial independence is usually
assumed (Landgrebe, 2005), temporal and spectral correlations are commonly taken into
account in statistical models (Lopes et al., 2017).

However, external random meteorological factors interfere with the availability of the ac-
quired data at the pixel scale. Indeed, as displayed in Fig. 1, shadows and clouds result in
missing data in the time-series. Furthermore, orbital trajectory generates an irregular tempo-
ral sampling: Even though the acquisition scheme is regular, acquisition days are different
for pixels located at different places (Inglada et al., 2017). As such, each pixel of the SITS
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Fig 1. True color Sentinel-2 satellite image time-series. Data were acquired in 2018 at different time steps over
the area of Toulouse, France (images were downloaded from Theia Land Data Center: http://www.theia-
land .fr/en/presentation/products).
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Fig 2. Illustration of the irregular temporal sampling for the SITS used in this work. Three time-series at different
locations for one spectral band are reported: A black dot indicates that the pixel is clear (no shadow or cloud)
at the considered time, and a light-gray dot indicates that the pixel has been tagged as clouds or shadows by the
data provider.

has its own size in the temporal domain: Fig. 2 illustrates the irregular temporal sampling on
the data under consideration in this paper.

Specific models are thus required to properly analyze such time-series, as described in
Section 2. Conventional approaches usually start by resampling the data onto a common
temporal grid. In this work, we aim at analyzing irregularly sampled multidimensional SITS
without any temporal resampling. In particular, the supervised pixel classification task is
considered, i.e. the assignment of each pixel of the time-series to a predefined class.

To this end, a mixture of multivariate Gaussian Processes is proposed. A linear dependence
model is assumed between the spectral variables leading to a separable covariance function

http://www.theia-land.fr/en/presentation/products
http://www.theia-land.fr/en/presentation/products
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in time and spectral domains. The resulting model provides statistical information on the
underlying process for each class (mean and covariance functions) and scales linearly w.r.t.
the number of samples.

The remainder of this paper is organized as follows. Section 2 reviews the state-of-the-art
on classification with missing data and Gaussian processes. The statistical model is intro-
duced in Section 3 while inference aspects are discussed in Section 4 including the estimation
of the model parameters, the supervised classification, and the imputation of missing values.
These statistical procedures are validated on simulated data in Section 5. Section 6 is dedi-
cated to the application of our methodology to the classification of SITS from a Sentinel-2
data-set. Section 7 concludes with a discussion on possible extensions of this work.

2. Related Work. This section briefly reviews state-of-the-art methods for model-based
classification, classification dealing with missing values and classification with Gaussian pro-
cesses.

2.1. Supervised model-based classification. Supervised model-based classification (also
referred to as model-based discriminant analysis) starts from a training set of n indepen-
dent realizations from a random pair (Y,Z) ∈ E × {1, . . . ,C} and assumes that the condi-
tional distribution of y|Z = c belongs to some parametric family: p(y|Z = c) = pc(y;θc), for
all c ∈ {1, . . . ,C} and y ∈ E, where E is an arbitrary space. Letting πc = P(Z = c), the marginal
distribution of Y can be written as a finite mixture

p(y) =

C∑
c=1

πc pc(y;θc),

whose parameters can be estimated by the maximum likelihood principle. A non-labeled
observation can then be classified thanks to the Maximum a posteriori (MAP) criteria:

ĉ = arg max
c∈{1,...,C}

p(Z = c|y) = arg max
c∈{1,...,C}

πc pc(y;θc),

thanks to Bayes’ rule. When E = Rq, the multivariate Gaussian distribution is often adopted
for pc(y;θc) and gives rise to the well-known Quadratic discriminant analysis (QDA) method.
We refer to (Hastie, Tibshirani and Friedman, 2009, Section 4.3) for a discussion on the
advantages and drawbacks of QDA and for possible extensions. Recent studies extend the
model-based classification framework to non-Gaussian distributions such as the skew-normal
distributions (Theodossiou, 1998; Chamroukhi, 2017) to deal with asymmetric data, or t-
distributions (Andrews and McNicholas, 2012; Murray, Browne and McNicholas, 2017) to
deal with outliers. We refer to (Bouveyron et al., 2019, Chapter 9) for an in-depth review.
The case E = Rq also encompasses the situation of discretized time-series on a common grid.
Specific models can be then defined, as in (Povinelli et al., 2004) for temporal signatures.

If E is discrete, including for example the case of categorical data, extensions focus on the
multinomial (Celeux and Govaert, 1991) or the Dirichlet (Bouguila, Ziou and Vaillancourt,
2003) distributions. In the case of ordinal data, other extensions are proposed using a dedi-
cated model of the process generating data (Biernacki and Jacques, 2016). Finally, when E is
more complex, e.g. infinite dimensional, non-parametric techniques are used. Kernel meth-
ods are probably the most popular non-parametric techniques in this situation (Hofmann,
Schölkopf and Smola, 2008). Recall that a kernel is a positive definite function that corre-
sponds to a dot product in a feature space. It allows for the construction of non-linear and
non-parametric classifiers on E without computing explicitly the feature space. Kernels can
be defined, for instance, on strings (Lodhi et al., 2002), graphs (Kriege, Johansson and Mor-
ris, 2020), vector-valued functions (Alvarez, Rosasco and Lawrence, 2012; Flaxman et al.,
2019), or combinations of several data types (Bouveyron, Fauvel and Girard, 2015).
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2.2. Classification with missing data. When dealing with remote sensing data, i.e.
spatial-spectro temporal data such as SITS, handling missing values (Shen et al., 2015) is
a recurrent problem. Classification dealing with missing data occurs when some inputs in
the training set are incomplete, i.e. the number of available coordinates in y can be differ-
ent from one sample to another, see (Schafer, 1997; García-Laencina, Sancho-Gómez and
Figueiras-Vidal, 2010; Bagnall et al., 2017) for reviews.

Three main approaches can be found in the literature. A first solution is to impute missing
values before the classification itself. The pre-processing gives rise to a training set with ob-
servations re-sampled on a common grid that can be considered as vectors in a finite space
E = Rq, opening the door to classical model-based classification methods. We refer to (Lin
and Tsai, 2020) for a review on imputation techniques. For SITS, Inglada et al. (2017) used
such two-stage approaches on Sentinel-2 SITS where a linear interpolation was applied be-
fore performing the classification with a Random Forests classifier. Yet, by applying imputa-
tion techniques without any connection to the actual processing, propagated errors from the
interpolation may degrade the results.

Alternative solutions are based on functional data analysis (Ramsay and Silverman, 2005).
Each observation is interpreted as a sample from a random function. As such, it can be ap-
proximated by an expansion on some basis functions. The statistical analysis is then per-
formed on the random vectors of coefficients, see (Schmutz et al., 2020) for an application
to clustering. Nonparametric smoothing techniques may also adopted, see (Ferraty and Vieu,
2006, Chapter 8) for an overview.

Finally, purely non-parametric methods can also be implemented by defining an appro-
priate dissimilarity measure between samples of varying size. In the context of time-series,
Dynamic time warping (DTW) (Chouakria and Nagabhushan, 2007) is one of the most pop-
ular algorithms. It computes an optimal match between two vectors with different lengths.
This map defines a dissimilarity that can be used for comparison in order to cluster samples
into multiple groups.

2.3. Classification with Gaussian processes. A recent approach for supervised classi-
fication is based on the use of Gaussian processes (GPs) in a Bayesian framework. More
specifically, Gaussian processes are used as prior distributions on the regression function
linking the label Z to the explanatory variable X. In the binary classification case, the condi-
tional Bernoulli distribution of Z is defined through a logit transformation: logit(p(Z = 1|X =

x)) := f (x) where f (x) is a centered Gaussian process. The considered prior Gaussian pro-
cess is, most of the time, one-dimensional. Extensions to the multi-dimensional case include
the so-called multi-tasks or multi-outputs GP models, see (Bonilla, Chai and Williams, 2007;
Alvarez, Rosasco and Lawrence, 2012). Finally, some recent works focus on non Gaussian
processes such as Student-t processes which have gain attention over the past years (Shah,
Wilson and Ghahramani, 2014a; Chen, Wang and Gorban, 2020).

The discrete nature of Z makes the exact inference of model parameters infeasible. To
overcome this difficulty, several techniques have been proposed, including the Laplace ap-
proximation, or through the expectation-propagation algorithm (Nickisch and Rasmussen,
2008). Such approaches rely on the inversion of a n × n covariance matrix and thus scale in
O(n3) which makes the inference computationally demanding for large data sets. Scalable
GPs were proposed to overcome this vexing effect, using for instance variational inference as
in (Hensman, Matthews and Ghahramani, 2015). We refer to (Liu et al., 2020) for a review on
this topic. In the next Section, we define a mixture of multivariate Gaussian processes which
can be used for classification or imputation tasks without resort to approximate inference
techniques.
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3. Mixture of Multivariate Gaussian processes. The mixture of multivariate Gaussian
processes model is introduced in Paragraph 3.1 and some associated properties are derived in
Paragraph 3.2.

3.1. Model. Let T be a compact subset of R, throughout this document, we denote by
GP1(0,K) a continuous univariate centered Gaussian process on T with covariance function
K : T 2→ R. Recall that, by definition, W ∼ GP1(0,K) implies that, for all (t1, . . . , tq) ∈ T q,
the random vector (W(t1), . . . ,W(tq))> follows a multivariate centered Gaussian distribution
Nq(0,Σ) such that Σi, j = K(ti, t j), see for instance (Rasmussen and Williams, 2006).

For all p > 0, let us similarly denote by IGPp(0,K) a p− dimensional, independent, cen-
tered Gaussian process defined as

W = (W1, . . . ,Wp)> ∼ IGPp(0,K) if and only if

Wb ∼ GP1(0,K), ∀b ∈ {1, . . . , p},

Wb yWb′ , ∀b , b′ ∈ {1, . . . , p}2,

where y stands for independence. The above defined multivariate Gaussian processes are
the building blocks to define more general multivariate Gaussian processes denoted by
MGPp(m,K,A) where m : T → Rp is the mean function, K : T 2 → R is the covariance
operator and A a non-singular p × p matrix:

(1) Y ∼MGPp(m,K,A) if and only if Y = AW + m with W ∼ IGPp(0,K).

Let us remark that model (1) is not identifiable without additional constraints. Indeed,
MGPp(m,K,A) and MGPp(m, λK,A/

√
λ) yield the same process for all λ > 0. This is-

sue is discussed in further details in Section 4, see also the next paragraph for some basic
properties of multivariate Gaussian processes defined in (1).

Introduce Z a discrete random variable taking its values in c ∈ {1, . . . ,C}with πc = P(Z = c).
The mixture of multivariate Gaussian processes (M2GP) is defined by:

(2) Conditionally to Z = c, Y ∼MGPp(mc,Kc,Ac),

where mc : T → Rp, Kc : T 2→ R and Ac is a non-singular p× p matrix, for all c ∈ {1, . . . ,C}.
In the context of SITS classification, Y represents the (unobserved) multidimensional pro-
cess and p denotes the number of spectral bands. The particular case Ac = Ip yields a mix-
ture of independent Gaussian processes (MIGP) whose applications to classification have
been investigated in (Constantin, Fauvel and Girard, 2021). Let us also note that multivari-
ate Gaussian processes have already been used in the machine learning community, without
formal definition though, see for instance the so-called multi-task Gaussian process (Bonilla,
Chai and Williams, 2007) or the multivariate Gaussian process regression (Chen, Wang and
Gorban, 2020).

3.2. First properties. Let C and D be two matrices of size m × n and p × q respectively.
Recall that the Kronecker product C ⊗D is the mp × nq matrix such that

C ⊗D =


c11D . . . cn1D
...

. . .
...

cm1D . . . cmnD


and vec(C) ∈ Rmn is the vector obtained by stacking the n columns of C:

vec(C) = (c11, . . . , cm1, c12, . . . , cm2, . . . , c1n, . . . , cmn)>.

Keeping these definitions in mind, the matrix-variate normal distribution MN p,q (Dawid,
1981; Srivastava, von Rosen and von Rosen, 2008) is defined for all p× q random matrix Y?

as:

(3) Y? ∼MN p,q(M,Σ,Λ) if and only if vec(Y?) ∼Npq(vec(M),Σ ⊗Λ),
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where M is a p × q matrix, Σ and Λ are symmetric positive definite matrices of size q × q
and p× p respectively. We refer to (Dawid, 1981) for an early definition of the matrix-variate
normal distribution (as well as some of its derivatives), to (Gupta and Nagar, 1999) for a
general account on matrix-variate distributions and to (Allen and Tibshirani, 2010) for an
application to missing data imputation. The associated density function is defined for all
p × q matrix y by

(4) p(y) = (2π)−pq/2 det(Σ)−p/2 det(Λ)−q/2 exp
(
−

1
2

tr
[
Λ−1(y −M)Σ−1(y −M)>

])
,

where tr(·) denotes the trace operator. The next Proposition establishes that the finite sized
marginals of the multivariate Gaussian process (1) can be interpreted as random matrices
from a matrix-variate normal distribution.

Proposition 1 Let Y ∼MGPp(m,K,A) and introduce Y? the p × q random matrix defined
as Y? = (Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. Then,

(5) Y? ∼MN p,q(M,Σ,AA>),

where M = (m(t1), . . . ,m(tq)) and Σ is the covariance matrix defined by Σk,` = K(tk, t`) for all
(k, `) ∈ {1, . . . ,q}2. Equivalently,

vec(Y?) ∼Npq(µ,Σ ⊗AA>),

with µ = vec(M).

In the SITS framework, Y? represents the observed q−dimensional SITS which is a dis-
cretized version of Y at q timestamps. An illustration is provided in Fig. 3 where T = [0,1]
and p = q = 10. Only the first two coordinates are represented for lack of space reasons. Let
〈·, ·〉 denote the Euclidean scalar product on Rp and ‖ · ‖ be the associated norm. For all non
zero vectors (u, v) ∈ Rp × Rp, we also introduce cos(u, v) = 〈u, v〉/(‖u‖ ‖v‖). As a direct con-
sequence of the covariance structure in (5), the correlation ρ between the elements of the
random matrix Y? can be derived:

Corollary 1 Suppose the assumptions of Proposition 1 hold.

(i) For all (b,b′) ∈ {1, . . . , p}2 and j ∈ {1, . . . ,q}, one has

ρ(Y?
b, j,Y

?
b′, j) = cos (ab,ab′),

(with ab the bth line of A) and is thus independent of j ∈ {1, . . . ,q}.
(ii) For all ( j, j′) ∈ {1, . . . ,q}2 and b ∈ {1, . . . , p}, one has

(6) ρ(Y?
b, j,Y

?
b, j′) = Σ j, j′

/√
Σ j, jΣ j′, j′ ,

and is thus independent of b ∈ {1, . . . , p}.

It appears that A tunes the dependence between the lines of Y? (i.e. the spectral bands in the
SITS context) while Σ drives the dependence between the columns (i.e. the acquisition times
of the SITS).

A likelihood ratio test is introduced in (Lu and Zimmerman, 2005) to check whether the
separability of the covariance (5) is adapted to the data in hand. However, this test has not
been extended to irregularly sampled time-series. Let us also mention that, in (Mahanta,
Aghaei and Plataniotis, 2013), the same Kronecker product model is used to regularize the
estimation of the covariance matrix in high dimension.
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4. Inference. This section addresses several inference aspects associated with the M2GP
model. Consider {(Y1,Z1), . . . , (Yn,Zn)} a set of n random pairs identically distributed from
the M2GP model. Clearly, πc can be estimated by its empirical counterpart π̂c = nc/n where
nc =

∑n
i=1 I{Zi = c} is the number of samples in class c (and I{·} is the indicator function).

Besides, from (2), Yi ∼MGPp(mc,Kc,Ac) conditionally to Zi = c, for all i ∈ {1, . . . ,n}. The
unknown quantities to be estimated are mc : T → Rp, Kc : T 2→ R and the matrix Ac. The use
of parametric models for mean and covariance functions is discussed in Subsection 4.1 and
the Maximum likelihood estimation (MLE) of all resulting parameters is presented in Sub-
section 4.2. The associated classification method based on the Maximum a posteriori (MAP)
rule and the imputation of missing values are described in Subsection 4.3 and Subsection 4.4
respectively.

4.1. Parametric mean and covariance functions. Let J > 0 and introduce {ϕ1, . . . , ϕJ} a
subset of J basis functions of L2(T ). For all b ∈ {1, . . . , p}, the bth coordinate (mc(t))b of
mc(t) is expanded as

(7) (mc(t))b =

J∑
j=1

αc,b, j ϕ j(t),

with t ∈ T , and where ac,b, j is the projection coefficient of (mc(·))b on ϕ j(·). Denoting by αc
the p × J matrix defined by:

αc =


αc,1,1 αc,1,2 . . . αc,1,J

αc,2,1
. . . . . . αc,2,J

...
...

. . . . . .
αc,p,1 . . . . . . αc,p,J


and letting b : t ∈ T 7→ (ϕ1(t), . . . , ϕJ(t))> ∈ RJ , then (7) can rewritten matricially as mc(t) =

αcb(t).
The covariance operator Kc is assumed to belong to a family of symmetric positive-definite

kernels, (Rasmussen and Williams, 2006, Chapter 4). A typical kernel is the squared exponen-
tial kernel (also known as Gaussian or RBF kernel) with an additive white noise covariance
function:

(8) Kc(t, t′|θc) = γ2
c exp

(
−

(t − t′)2

2h2
c

)
+σ2

cI{t = t′},

where (t, t′) ∈ T 2.The parameters are collected in θc with, in this case, θc = {γc,hc,σc}.

4.2. Maximum likelihood estimation. Assume each multivariate Gaussian process Yi is
observed on its own finite grid of distinct qi timestamps (ti

1, . . . , t
i
qi

) ∈ Rqi and note Yi,? =

(Yi(ti
1), . . . ,Yi(ti

qi
))> the associated p × qi random matrix. Let us stress that this formalism

naturally allows to deal with irregularly sampled SITS since the size of Yi,? may depend
on i. From Proposition 1, one has

(9) Conditionally to Zi = c, Yi,? ∼MN p,qi(αcBi,Σc,i(θc),AcA>c ),

where the covariance matrix Σc,i(θc) is defined for all ( j, j′) ∈ {1, . . . ,qi}
2 by Σc,i(θc) j, j′ =

Kc(ti
j, t

i
j′ |θc) and Bi = (b(ti

1), . . . ,b(ti
qi

)) is a J × qi design matrix. Parameters {αc,θc,Ac} are
estimated by minimizing the negative log-likelihood given hereafter.
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Lemma 1 The negative log-likelihood associated with (9) can be expanded as

L =
1
2

C∑
c=1

`c(αc,θc,AcA>c ),

(up to an additive constant) where, for all c ∈ {1, . . . ,C},

`c(αc,θc,AcA>c ) = Qc log det(AcA>c ) + p
∑
i|Zi=c

log detΣc,i(θc)

+ tr

∑
i|Zi=c

(Yi,? − αcBi){Σc,i(θc)}−1(Yi,? − αcBi)>{AcA>c }
−1

 ,(10)

with Qc =
∑

i|Zi=c qi.

It appears that the likelihood only involves the product of matrices AcA>c and not the matrix
Ac itself. This is a direct consequence of (5): The matrix-variate normal distribution of the
sampled process Y? only depends on the above product. The parameters of interest are thus
αc, θc and AcA>c and the MLE is obtained by solving C independent optimization problems:

(11) (α̂c, θ̂c, ÂcA>c ) = arg min
αc,θc,AcA>c

`c(αc,θc,AcA>c ),

for all c ∈ {1, . . . ,C}. The solution is partially explicit as explained in the next Proposition.

Proposition 2 Let c ∈ {1, . . . ,C}.

(i) Solutions of (11) satisfy the following two properties. Given θ̂c, one has:

(12) α̂c =

∑
i|Zi=c

Yi,?{Σc,i(θ̂c)}−1(Bi)>

∑

i|Zi=c

Bi{Σc,i(θ̂c)}−1(Bi)>
−1

,

(13) ÂcA>c =
1

Qc

∑
i|Zi=c

(Yi,? − α̂cBi){Σc,i(θ̂c)}−1(Yi,? − α̂cBi)>.

(ii) The partial derivative of (10), w.r.t. the kth coordinate of θc is given by:
(14)
∂`c(αc,θc,AcA>c )

∂(θc)k
=

∑
i|Zi=c

tr
([

p{Σc,i(θc)}−1 − βc,i(αc,θc)>{AcA>c }
−1βc,i(αc,θc)

] ∂Σc,i

∂(θc)k
(θc)

)
,

where βc,i(αc,θc) = (Yi,? − αcBi){Σc,i(θc)}−1.

In practice, the computation of the MLE is achieved thanks to an iterative procedure based
on (12)–(14), described in Algorithm 1 and discussed in Paragraph 4.5.

4.3. Supervised classification. Starting from a training set from the M2GP model
{(Y1,?,Z1), . . . , (Yn,?,Zn)} with Yi,? = (Yi(ti

1), . . . ,Yi(ti
qi

))>, our goal is to assign a label
c̃ ∈ {1, . . . ,C} to a new p × q random matrix Ỹ? = (Y(t̃1), . . . ,Y(t̃q))>. We focus on the MAP
rule which consists in maximizing w.r.t. c the posterior probability

P(Z = c|Ỹ?) ∝ πc p(Ỹ?|Z = c),

where p(Ỹ?|Z = c) is matrix-variate normal density defined as

p(Ỹ?|Z = c) = (2π)−pq/2 det
(
Σ̃

c(θc)
)−p/2

det
(
AcA>c

)−q/2

× exp
(
−

1
2

tr
[
{AcA>c }

−1(Ỹ? − αcB̃)Σ̃c(θc)−1(Ỹ? − αcB̃)>
])
,(15)
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see (22) in the proof of Lemma 1. Here, the covariance matrix Σ̃c(θc) is defined for all
( j, j′) ∈ {1, . . . ,q}2 by Σ̃c(θc) j, j′ = Kc(t̃ j, t̃ j′ |θc) and B̃ = (b(t̃1), . . . ,b(t̃q)) is a J × q design ma-
trix. In practice, all parameters are replaced using their MLE counterparts and c̃ is selected
by minimizing the negative log posterior probability, that is:

c̃ = arg min
c

{
p log det

(
Σ̃

c(θ̂c)
)
+ q log det

(
ÂcA>c

)
− 2 log(nc/n)

+ tr
[{

ÂcA>c
}−1

(Ỹ? − α̂cB̃)Σ̃c(θ̂c)−1(Ỹ? − α̂cB̃)>
] }
.

In the SITS framework, the above formula provides a natural way to classify a new multivari-
ate time-series even though it is not observed at the same timestamps as the examples from
the training set.

4.4. Imputation of missing values. The next result provides the distribution of the MGP
process at time t† conditionally to its label and to observations at times t1, . . . , tq.

Proposition 3 Assume that, conditionally to Z = c, Y ∼MGPp(αcb,Kc,Ac) and introduce
Y? the p × q random matrix defined as Y? = (Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. Let
t† ∈ T such that t† , tk for all k ∈ {1, . . . ,q}. Then,

conditionally to Z = c and Y? = y?, Y(t†) ∼Np

(
µc(t

†,y?), Λc(t†)
)
,

with
µc(t

†,y?) = αcb(t†) + (y? − αcB){Σc(θc)}−1kc(t†),

Λc(t†) =
[
Kc(t†, t†|θc) − kc(t†)>Σc(θc)−1kc(t†)

]
⊗AcA>c ,

and where kc(t†) = (Kc(t†, t1|θc), . . . ,Kc(t†, tq|θc))>. Recall that the covariance matrix Σc(θc)
is defined for all ( j, j′) ∈ {1, . . . ,q}2 by Σc(θc) j, j′ = Kc(t j, t j′ |θc) and B = (b(t1), . . . ,b(tq)) is a
J × q design matrix.

As a consequence, when Y(t†) is not observed (but its label is known to be c), this miss-
ing value can be imputed by the conditional expectation given in Proposition 3, where the
unknown parameters are replaced by their associated MLE:

Ŷc(t†) = α̂cb(t†) + (Y? − α̂cB){Σc(θ̂c)}−1k̂c(t†).(16)

This allows for the reconstruction of SITS values at unobserved times. If the label of Y?

is unknown, the distribution of the MGP process at time t† conditionally to observations at
times t1, . . . , tq can still be derived from Proposition 3:

conditionally to Y? = y?, Y(t†) ∼
C∑

c=1

P(Z = c|Y? = y?)Np

(
µc(t

†,y?), Λc(t†)
)
,

leading to

µ(t†,y?) =

C∑
c=1

P(Z = c|Y? = y?)µc(t
†,y?),

Λ(t†) =

C∑
c=1

P(Z = c|Y? = y?)
(
Λc(t†) + µc(t

†,y?)>µc(t†,y?)
)
− µ(t†,y?)>µ(t†,y?).

Thus, when both Y(t†) and its label are not observed, Y(t†) can be imputed by

(17) Ŷ(t†) =

C∑
c=1

P̂(Z = c|Y?)Ŷc(t†),
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where Ŷc(t†) is given in (16), Y? = (Y(t1), . . . ,Y(tq)) and

P̂(Z = c|Y?) = π̂c p̂(Y?|Z = c)
/ C∑

k=1

π̂k p̂(Y?|Z = k) ,

with p̂(Y?|Z = k) the estimated matrix-variate density defined similarly to (15) by

p̂(Y?|Z = k) = (2π)−pq/2 det
(
Σk(θ̂k)

)−p/2
det

(
ÂkA>k

)−q/2

× exp
(
−

1
2

tr
[
ÂkA>k }

−1
(Y? − α̂kB)Σc(θ̂k)−1(Y? − α̂kB)>

])
.

4.5. Numerical implementation. The computation of the MLE is implemented as de-
tailed in Algorithm 1 using the results of Proposition 2. To deal with the idenfiability issue
mentioned in Paragraph 3.1, AcA>c is normalised by ηc such that ‖AcA>c ‖F = 1 (where ‖ · ‖F
denotes the Frobenius norm) and each covariance matrix Σc,i(θc) is modified accordingly
so that the likelihood remains unaffected (step (d) of Algorithm 1). The gradient step (e) is
performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, see (Zhu et al.,
1997). More specifically, the L-BFGS-B version is used which allows for box and positivity
constraints. As described in (Zhu et al., 1997), the gradient step is obtained by line search and
the algorithm stops when: the objective function (i.e. the likelihood) does not change signifi-
cantly, the (infinite) norm of the projected gradient is sufficiently small or when the maximum
number of iterations is reached. Since the objective function is not convex, the optimization
process is sensitive to the initialization. In practice, multiple random restarts are used and the
best solution is retained. Let us highlight that, in practice, steps (a)-(e) are computed for all
classes in parallel since the model parameters are decoupled w.r.t. the classes.

Input : Sample
{
(Yi,?,Zi) ∈ Rp×qi × {1, . . . ,C}, i = 1, . . . ,n

}
and initialization (θ1, . . . ,θC).

Output: MLE
(
α̂c, ÂcA>c , θ̂c

)
, c = 1, . . . ,C.

for c = 1 to C do
repeat

(a) Update αc using (12);
(b) Update AcA>c using (13);
(c) Compute ηc← ‖AcA>c ‖F ;
(d) Update AcA>c ←AcA>c /ηc and Σc,i(θc)← ηcΣ

c,i(θc), i = 1, . . . ,n;
(e) Update θc with a gradient step using (14);

until `c(αc,AcA>c ,θc) has converged;
end

Algorithm 1: Computation of MLE of model parameters.

The numerical complexity of one iteration for all classes of Algorithm 1 isO(n(q3
∞ + p3 + J3))

where n is the sample size and q∞ = max{qi, i = 1, . . . ,n}. The computation of the MLE thus
scales linearly w.r.t. n. In constrast, the cost associated with standard classfication methods
based on Gaussian processes is O((C + 1)n3) (Rasmussen and Williams, 2006, Algorithm
3.3). Here, the computation of the MLE only relies on the inversion of p × p and qi × qi
matrices whose sizes do not depend on the sample size.

Let us note that Algorithm 1 can be interpreted as an extension of the so-called Flip-flop
method introduced independently by Mardia and Goodall (1993); Dutilleul (1999). This lat-
ter method in an iterative way to compute the MLE associated with the matrix-variate normal
distribution. As such, it is limited to the situation where q1 = q2 = · · · = qn which only occurs
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when all Gaussian processes are observed on a common grid. Identifiability issues are dis-
cussed in (Srivastava, von Rosen and von Rosen, 2008) and the method is extended to higher
order tensor distributions in (Manceur and Dutilleul, 2013). Applications of matrix-variate
normal distribution are found in different contexts such as electro-encephalography (Spin-
nato et al., 2014) or remote sensing (Glanz and Carvalho, 2018).

Finally, all the above estimations procedures have been implemented in Python using the
Scikit-Lean API, see (Buitinck et al., 2013). The Fourier basis {ϕ1, . . . , ϕJ} was chosen to
estimate the mean function (see (Constantin, Fauvel and Girard, 2021) for other bases), while
the family of symmetric positive-definite kernels was selected among the Kernels class in the
Scikit-Learn library.

5. Validation on simulated data. The performance of the inference procedure associ-
ated with the M2GP model is illustrated on simulated data.1 The simulated model is described
in Paragraph 5.1. First, the influence of the dependence between coordinates as well as the
influence of the number of observation times are investigated in Paragraph 5.2. Second; the
consequences on the classification and imputation accuracy are discussed in Paragraph 5.3.

5.1. Experimental design. A binary classification problem is considered. Two classes are
simulated from a 10-dimensional M2GP model on T = [0,1] with 1,000 samples per class
leading to n = 2,000 and p = 10. Mean functions are generated following (7) with a Fourier
basis of size J = 11. Coefficients αc,b, j are simulated independently from a N1(0,0.02) dis-
tribution, c ∈ {1,2}, b ∈ {1, . . . ,10} and j ∈ {1, . . . ,11}. The covariance operator is identical
for both classes: K1(·, ·) = K2(·, ·). It is defined following (8) as the sum of a RBF kernel
and a white noise covariance function. The associated parameters are θ1 = {γ1,h1,σ1} =

{1.5,150,0.05} = θ2. We also set A1 = A2 with

(18) A1A>1 =


1 β · · · β

β 1 · · ·
...

...
...
. . . β

β · · · β 1

 ,
so that β tunes the pairwise correlation between the 10 coordinates of the Gaussian processes.
In the following, we shall consider β ∈ {0,1/4,1/2}. In practice, M2GP processes are simu-
lated on random grids of varying size q ∈ {10,20, . . . ,100}, see Fig. 3 for an illustration in the
case q = 10 and β = 0.

5.2. Estimation results. All estimation procedures are evaluated on 100 replications of
the above described simulation model. First, for all c ∈ {1,2}, the quality of the reconstructed
mean M̂c = α̂cB is measured by the normalized Mean Squared Error (nMSE) defined as:

(19) nMSE(M̂c,Mc) =
‖Mc − M̂c‖

2
F

‖Mc −Mc‖
2
F

,

where Mc is the empirical mean of the processes in class c. The lower this score is, the better
the estimation. An example of reconstructed mean is presented on Fig. 4, for one replication.

1The code and a notebook are available at https://gitlab.inria.fr/aconstan/mixture-of-
multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-
image-time-series.

https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-image-time-series
https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-image-time-series
https://gitlab.inria.fr/aconstan/mixture-of-multivariate-gaussian-processes-for-classification-of-irregularly-sampled-satellite-image-time-series
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Fig 3. Two simulated M2GP processes (transparent lines) in dimension p = 10 observed at q = 10 timestamps
(dots), from two classes (c = 1: blue, c = 2: red). The mean functions are depicted as continuous opaque lines.
Top panel: first coordinates, bottom panel: second coordinates (only the first two coordinates p1 and p2 are
represented).

Second, the quality of the estimation of the covariance structure AcA>c (see 18) by ÂcA>c is
assessed by the cosine score defined as:

(20) C(ÂcA>c ,AcA>c ) = 1 −
〈ÂcA>c ,AcA>c 〉F
‖ÂcA>c ‖F‖AcA>c ‖F

.

Let us note that C(ÂcA>c ,AcA>c ) ∈ [0,2] with C(ÂcA>c ,AcA>c ) = 0 when ÂcA>c and AcA>c
are proportional. Finally, turning to the estimation of the kernel part (8) of the dependence
structure, we focus on the estimation accuracy of the length-scale by computing the absolute
difference between the true length-scale h1 = h2 = 150 and its estimated counterpart. The
results are averaged over the 100 independent replications and are reported on Fig. 5 for the
first class. Similar results are obtained for the second one. It appears that, unsurprisingly, the
quality of the estimates increases with the number q of discretization times. At the opposite,
the dependence parameter β does not seem to influence much the accuracy of the estimation.
One can nevertheless note that, as expected, the variability of the estimators increases with β,
as the information carried by correlated coordinates decreases. Besides, the estimated length-
scales do not depend on β, this may be explained by the separability property exhibited in
Corollary 1.

5.3. Classification and imputation results. Here, we focus on the comparison between
results associated with M2GP and MIGP models. To assess the classification and imputation
performances, 4,000 samples are generated following the model described in Paragraph 5.1
and then split into two disjoint balanced sets. The first one is used as a training set (of size
n = 2,000) to estimate model parameters. The second one is used as a test set where the
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Fig 5. Estimation of M2GP parameters on simulated data as a function of the number q of discretization times on
class c = 1. From left to right: normalized mean squared error (19), cosine score (20) and absolute difference of
length-scales. From top to bottom: β = 0, β = 1/4 and β = 1/2.

accuracy of the classification and imputation steps associated with the two above methods are
compared. The classification performance is assessed thanks to the Overall Accuracy (OA),
that is the ratio of the number correctly classified test observations and the total number of
test observations, while the nMSE is used for the imputation task. Similarly to (19), we let

(21) nMSE(Ŷ?,Y?) =
‖Ŷ? −Y?‖2F

‖Y? −Y?‖2F

,

where Ŷ? is the imputed discretized process when the class is unknown thanks to (17), given
the observed discretized process on q points. Y? is the empirical mean of discretized pro-
cesses in the test set. The above Frobenius norms are computed on a fixed regular grid of T
defined as {t` = `/100, ` = 1, . . . ,100}. The results are reported in Fig. 6.

It appears that the classification scores associated with M2GP increase with the depen-
dence coefficient β and the number q of discretization times. On the opposite, MIGP scores
are decreasing with β, due to the independence assumption. When there is no dependence
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Fig 6. Classification overall accuracy (OA, left panel) and reconstruction normalized mean-squared error (nMSE,
right panel in log scale) boxplots computed on simulated data. Comparison between M2GP (blue) and MIGP (red)
results as functions of the number q of discretization times. From top to bottom: β = 0, β = 1/4 and β = 1/2.
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between coordinates (β = 0), both methods provide similar classification scores. Unsurpris-
ingly, M2GP outperforms MIGP as soon as a dependence occurs.

In terms of reconstruction, both methods feature similar performances, increasing with q.
The dependence strength only impacts the variance of the reconstructed processes: The larger
β is, the larger the variability.

6. Time-series classification: Application to satellite data. This section is devoted
to multivariate SITS classification using the M2GP model. The data were acquired by the
Sentinel-2 satellite, and are presented in Paragraph 6.1, with a focus on the irregular temporal
sampling. The estimated M2GP parameters are interpreted and discussed in Paragraph 6.2.
Finally Paragraph 6.3 concludes this section with classification results and comparisons to
state-of-the-art methods.

6.1. Sentinel-2 satellite image time-series. Since 2016, the Sentinel-2 mission (Drusch
et al., 2012) produces massive multispectral images,2 around 1.6TBytes a day, with a spatial
resolution of 10 m/pixel and 13 spectral bands (only 10 bands are used for the analysis).
The frequency of revisit is 5 days and clouds as well as shadows are present in the data, at
random locations. Most of the clouds and shadows positions are automatically extracted by
the data provider. Yet, thin clouds may remain in the data. The selected images cover the
area of Toulouse, France (Fig. 7) and all available acquisitions for the year 2018 were used.
The image is of spatial size 10,000×10,000 pixels (10,000 km2). Each extracted time-series
i has a dimension of p = 10 channels (or bands) and its own number of timestamps qi. The
distribution of the qis is represented in Fig. 8 for this area in 2018.

The supervised classification task consists in assigning a pre-defined label to every pixel
of the image. Fourteen classes were extracted from national data-bases and 10 pairs of train-
ing and validation data-sets are generated independently for the experiments by randomly
selecting samples for the training and testing sets. Training and testing sets were carefully
constructed to avoid spatial dependence between pixels.

Table 1 shows the number of extracted samples for each training and validation set. The
number of samples per class is unbalanced but represents the actual proportion of land cover
classes in the region.

6.2. Parameters estimation. M2GP is fitted to the satellite image time-series using the
estimators described in Section 4. A Fourier basis is adopted for estimating the means using
J = 19 functions while the time dependence structure is modeled by a RBF kernel combined
with an additive white noise. The choice of the basis and the selection of the dimension J
are discussed in the MIGP framework by (Constantin, Fauvel and Girard, 2021, Fig. 8, and
Fig. 1 in the supp. mat.).

Estimated mean functions are reported in Fig. 9 for four selected channels: blue, green,
red and near infrared (nIR) and four selected classes: continuous urban fabric, summer crops,
broad-leaved forest and water bodies. In the context of remote sensing data, nIR is often
correlated with the presence or absence of vegetation: Large values of nIR associated with
small values of red, indicate that the vegetation is abundant. This behavior is observed in
agricultural classes such as summer crops or broad-leaved forest during spring and summer.

The estimated covariance matrices between all 10 channels ÂcA>c are reported in Fig. 10
for the same classes. Similar covariance matrices have already been observed on mono-
temporal Sentinel-2 data, we refer to (Wang et al., 2018, Fig. 8) for similar results on crops
classes.

2https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products.

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
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Fig 7. The study area is located in the south of France (right bottom image). The left bottom image corresponds
to the entire area (100 km×100 km) and the upper image is a zoom over the red rectangle (11 km×5 km).
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Fig 8. Normalized histogram of the qis within the SITS data-set.

Finally, the time covariance structure is illustrated on Fig. 11. The estimated RBF kernel
on the same four classes is drawn when centered at day 180. The temporal correlation associ-
ated with natural elements, such as summer crops or broad-leaved forest, is short since their
reflectance evolves along the year (e.g. because of the vegetation cycle, or anthropic events).
In contrast, man-made materials, such as continuous urban fabrics, exhibit longer temporal
correlation because their reflectance does not evolve along the time.3

6.3. Classification results. In this section, the classification performances of M2GP are
compared to state-of-the-art methods. Four competitors are considered: Random forests

3This is true when the period of observation is not too long, few years, otherwise the material property might
be altered and its reflectance could vary.
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Table 1
Land cover classes and number of extracted samples nc per class for each training and validation set.

Class nc

Summer crops 40,000
Winter crops 30,000
Broad-leaved forest 10,000
Continuous urban fabric 10,000
Discontinuous urban fabric 10,000
Industrial or commercial units 10,000
Meadow 10,000
Orchards 10,000
Road surfaces 10,000
Vines 10,000
Water bodies 10,000
Woody moorlands 9,972
Coniferous forest 9,957
Natural grasslands 9,939

Total 189,868
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Fig 11. Normalized RBF kernels (8) centered at day 180: K(t,180) = exp(−0.5(t − 180)2/h2
c ) computed on four

classes.

(RF) (Breiman, 2001), Quadratic discriminant analysis (QDA) which is based on a finite-
dimensional Gaussian model, linear Support vector machine (SVM) classifier fitted with a
Stochastic Gradient Descent (Zhang, 2004), and, finally, Mixture of independent Gaussian
processes (MIGP) (Constantin, Fauvel and Girard, 2021)).

The time-series have been resampled on a common temporal grid of size 73 (every 5 days
of year 2018) using a linear interpolation for RF, QDA and SVM methods since they require
a fix vectorial representation of the sample. All the spectral bands have been stacked together
to obtain a vector of dimension 73 dates × 10 spectral bands = 730 features. RF is trained
with 100 trees of depth 25, and QDA is used with a regularized version of the estimated
covariance matrix (Friedman, 1989), Σ̃ = (1 − ε)Σ̂ + εI, with ε = 10−2.

The F1-score is computed to assess numerically the classification accuracy. The F1 is de-
fined as the harmonic mean of the precision and recall scores (Tharwat, 2021). Classification
maps are also presented in order to qualitatively evaluate the spatial coherency of the results
(despite a spatial pixel-wise independence assumption made by all considered methods).
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Table 2
Mean F1 score (mean(%) ± standard deviation) on the 10 independent data-sets.

QDA RF SVM MIGP M2GP

Summer crops 96.5 ± 0.27 96.8 ± 0.45 95.6 ± 0.81 90.0 ± 0.83 95.9 ± 0.44
Winter crops 91.6 ± 0.48 94.0 ± 0.77 93.9 ± 0.66 80.2 ± 0.83 92.2 ± 0.64

Broad-leaved forest 77.4 ± 3.91 86.2 ± 2.35 85.3 ± 2.63 75.7 ± 5.03 81.5 ± 3.10
Cont. urban fabric 39.8 ± 6.18 58.0 ± 1.55 55.9 ± 2.49 21.4 ± 3.49 30.9 ± 5.51

Discont. urban fabric 58.5 ± 1.39 57.3 ± 3.44 40.2 ± 12.61 42.5 ± 3.17 54.5 ± 0.80
Ind. or commercial units 31.3 ± 2.14 60.3 ± 1.35 48.3 ± 4.05 27.4 ± 0.92 38.4 ± 2.34

Meadow 58.3 ± 4.14 64.8 ± 2.94 63.0 ± 3.17 43.3 ± 3.80 55.0 ± 4.19
Orchards 72.9 ± 4.05 81.0 ± 2.64 76.4 ± 3.11 51.9 ± 5.46 77.6 ± 3.58

Road surfaces 73.1 ± 1.92 87.1 ± 1.87 78.7 ± 2.79 54.2 ± 5.79 75.0 ± 2.06
Vines 71.1 ± 4.35 78.9 ± 6.86 78.5 ± 6.57 60.9 ± 7.61 71.7 ± 5.18

Water bodies 98.7 ± 0.35 99.4 ± 0.08 99.3 ± 0.10 84.9 ± 5.38 96.8 ± 0.84
Woody moorlands 23.9 ± 7.70 56.6 ± 3.50 56.1 ± 3.85 14.1 ± 5.52 10.6 ± 12.00
Coniferous forest 76.6 ± 7.24 86.9 ± 2.76 87.0 ± 2.56 61.2 ± 5.41 82.4 ± 6.61
Natural grasslands 29.8 ± 12.88 30.7 ± 16.90 19.4 ± 14.68 15.4 ± 7.86 20.6 ± 8.46

Average F1 score 70.5 ± 0.75 78.2 ± 1.17 75.2 ± 1.11 57.4 ± 1.04 70.1 ± 0.43

Means F1 scores and their standard deviations computed on 10 independent sets are re-
ported in Table 2 for each class as well as the “average F1 score” computed on all classes.
Nnon-parametric methods (RF and SVM) provide the best classification results in terms of
F1-score. The uni-modal assumption induced by Gaussian models may thus be ill-adapted
to this data-set. M2GP and QDA provide lower and similar accuracy, even though M2GP is
based on stronger assumptions on the covariance structure than QDA.

The obtained classification maps are reported in Fig. 12 for 3 different sites. Large differ-
ences are observed in these scenes. For the first column, corresponding to the airport zone,
most of the inner vegetations are wrongly classified to natural grasslands with QDA, while
RF, SVM and M2GP classify correctly them as meadow. Runway are mostly confused with
industrial/commercial units using RF while runways are almost recovered by M2GP. Overall,
strong differences between thematic maps are observed, but visual assessment from a mono-
date color image is difficult. Yet, without taking into account the spatial dependence, M2GP
recovers most of the spatial structure of the image, and the salt and pepper classification
noise is limited, as for RF and SVM.

7. Discussion. A multivariate Gaussian process model has been introduced for the clas-
sification of irregularly sampling satellite image time-series. The multivariate model involves
a specific structure of the covariance operator that exploits the data features and also reduces
the number of parameters to estimate. Furthermore, the proposed formulation scales linearly
w.r.t. the number of samples. Experimental results on simulated and real data sets show the
importance of modeling the dependence between coordinates of the process, in particular for
classification accuracy.

Current development concerns the use of two satellite sources. Sentinel-2 satellites are
complemented with Sentinel-1 ones (which are not affected by clouds) which acquire radar
data (with a different physical content): An extension of the proposed model will consist in
combining these two time-series with irregular temporal and spectral sampling. Another pos-
sible extension would be to consider a non spatially stationary mean function, as in (Cressie,
1993).

Finally, these models can be extended to non-Gaussian processes, e.g. Student-t as
in (Shah, Wilson and Ghahramani, 2014b; Chen, Wang and Gorban, 2020) and applied to
the unsupervised classification problem.
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Fig 12. Three extracts of the classification maps obtained by QDA, RF, SVM, MIGP and M2PG methods.
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APPENDIX: PROOFS

Proof of Proposition 1. Let Y ∼MGPp(m,K,A) and introduce Y? the p×q random matrix
defined as Y? = (Y(t1), . . . ,Y(tq)) where (t1, . . . , tq) ∈ T q. From (1), we have Y = AW + m
with W ∼ IGPp(0,K). Let W? = (W(t1), . . . ,W(tq)) be the associated p × q random matrix.
Our first goal is to prove that W? ∼MN p,q(0,Σ, Ip) or, equivalently, from (3), to prove that
vec(W?) ∼Npq(0,Σ ⊗ Ip). To this end, let us consider the random variable

S =

p∑
b=1

q∑
j=1

λb, jW?
b, j,

and let us prove that S is a Gaussian random variable pour all λb, j ∈ R
pq. Clear, one also has

S =

p∑
b=1

S b, with S b :=
q∑

j=1

λb, jW?
b, j =

q∑
j=1

λb, jWb(t j),

where S 1, . . . ,S p are independent centered Gaussian random variables with variance

var(S b) =

q∑
j=1

q∑
j′=1

λb, jλb, j′Σ j, j′ .

As a consequence, S is a centered Gaussian random variable with variance

var(S ) =

p∑
b=1

var(S b) =

p∑
b=1

p∑
b′=1

q∑
j=1

q∑
j′=1

λb, jλb, j′Σ j, j′ × (Ip)b,b′ .

As a conclusion, vec(W?) ∼ Npq(0,Σ ⊗ Ip) and thus W? ∼MN p,q(0,Σ, Ip). Finally, Y? =

AW? + M ∼MN p,q(M,Σ,AA>), see (Dawid, 1981, Example 1).

Proof of Lemma 1. Combining (4) and (9) yields that the density of Yi,? conditionally to
Zi = c is given for all i = 1, . . . ,n by

(22) pi,c(y) = (2π)−pqi/2 det(Σc,i(θc))−p/2 det(AcA>c )−qi/2

× exp
(
−

1
2

tr
[
(AcA>c )−1(y − αcBi)(Σc,i(θc))−1(y − αcBi)>

])
.

The likelihood is thus defined as
C∏

c=1

∏
i|Zi=c

pi,c(Yi,?),

and the negative log-likelihood can be written as

L = −

C∑
c=1

∑
i|Zi=c

log pi,c(Yi,?) :=
1
2

C∑
c=1

`c(αc,θc,AcA>c ) +
p log(2π)

2

C∑
c=1

∑
i|Zi=c

qi,

with, for all c = 1, . . . ,C,

`c(αc,θc,AcA>c ) = p
∑
i|Zi=c

log det(Σc,i(θc)) +
∑
i|Zi=c

qi log det(AcA>c )

+
∑
i|Zi=c

tr
[
(AcA>c )−1(Yi,? − αcBi)(Σc,i(θc))−1(Yi,? − αcBi)>

]
.

The conclusion follows.
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Proof of Proposition 2. (i) Let us first consider the differential of `c(αc,θc,AcA>c ) w.r.t. αc:

d`c(αc) :=
∑
i|Zi=c

tr
(
{AcA>c }

−1
[
d(Yi,? − αcBi){Σc,i(θc)}−1(Yi,? − αcBi)>

])
= −

∑
i|Zi=c

tr
(
{AcA>c }

−1(dαc)Bi{Σc,i(θc)}−1(Yi,? − αcBi)>
)

−
∑
i|Zi=c

tr
(
{AcA>c }

−1(Yi,? − αcBi){Σc,i(θc)}−1(Bi)>(dαc)>
)

= − 2
∑
i|Zi=c

tr
(
{AcA>c }

−1(Yi,? − αcBi){Σc,i(θc)}−1(Bi)>(dαc)>
)
,

by remarking that both terms are equal in view of the properties of the trace operator. More-
over, from Kronecker product properties (Schott, 2016, Theorem 8.12), one has

d`c(αc) = − 2
∑
i|Zi=c

vec(dαc)>
(
Bi{Σc,i(θc)}−1 ⊗ {AcA>c }

−1
)
vec(Yi,? − αcBi)

= − 2(dvec(αc))>vec

{AcA>c }
−1

∑
i|Zi=c

(Yi,? − αcBi){Σc,i(θc)}−1(Bi)>
 .

Interpreting the above result as a scalar product and using the "broad" definition of matrix
derivative defined in (Magnus, 2010), if follows:

∂`c(αc,θc,AcA>c )
∂αc

= −2vec

{AcA>c }
−1

∑
i|Zi=c

(Yi,? − αcBi){Σc,i(θc)}−1(Bi)>
 .

Setting this partial derivative to zero yields∑
i|Zi=c

(Yi,? − αcBi){Σc,i(θc)}−1(Bi)> = 0,

or equivalently,

αc =

∑
i|Zi=c

Yi,?{Σc,i(θc)}−1(Bi)>

∑

i|Zi=c

Bi{Σc,i(θc)}−1(Bi)>
−1

,

which is the desired result. Second, let us consider the differential of `c(αc,θc,AcA>c ) w.r.t.
AcA>c :

d`c(AcA>c ) = Qcd log det(AcA>c ) + dtr
(
N(θc){AcA>c }

−1
)
,

where N(θc) =
∑

i|Zi=c(Yi,? − αcBi){Σc,i(θc)}−1(Yi,? − αcBi)>. From (Schott, 2016, Exam-
ple 9.6), the associated partial derivative vanishes for

AcA>c =
N(θc)

Qc
=

1
Qc

∑
i|Zi=c

(Yi,? − αcBi){Σc,i(θc)}−1(Yi,? − αcBi)>,

and the result is proved.
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(ii) Introduce βc,i(αc,θc) = (Yi,? − αcBi){Σc,i(θc)}−1 and consider the kth coordinate of the
gradient of `c(αc,θc,AcA>c ) w.r.t. θ:

∂`c(αc,θc,AcA>c )
∂θk

= p
∑
i|Zi=c

∂

∂θk
log det(Σc,i(θc)) +

∂

∂θk
tr
(
N(θc){AcA>c }

−1
)

= p
∑
i|Zi=c

tr
(
{Σc,i(θc)}−1 ∂Σ

c,i(θc)
∂θk

)

−
∑
i|Zi=c

tr
(
(Yi,? − αcBi){Σc,i(θc)}−1 ∂Σ

c,i(θc)
∂θk

{Σc,i(θc)}−1(Yi,? − αcBi)>{AcA>c }
−1

)

= p
∑
i|Zi=c

tr
(
{Σc,i(θc)}−1 ∂Σ

c,i(θc)
∂θk

)

−
∑
i|Zi=c

tr
(
βc,i(αc,θc)>{AcA>c }

−1βc,i(αc,θc)
∂Σc,i(θ)
∂θk

)

=
∑
i|Zi=c

tr
([

p{Σc,i(θc)}−1 − βc,i(αc,θc)>{AcA>c }
−1βc,i(αc,θc)

] ∂Σc,i

∂θk
(θc)

)
.

The result is proved.

Proof of Proposition 3. Let Y? = (Y(t1), . . . ,Y(tq)) be a p × q random matrix where, con-
ditionally to Z = c, Y ∼ MGPc(αcb,Kc,Ac). Recall that Proposition 1 yields vec(Y?) ∼
Npq(vec(αcB),Σc(θc) ⊗ AcA>c ), where Σc(θc) is defined for all ( j, j′) ∈ {1, . . . ,q}2 by
Σc(θc) j, j′ = Kc(t j, t j′ |θc) and B = (b(t1), . . . ,b(tq)) is a J × q design matrix. Let t† ∈ T be an
unobserved time, i.e. t† , tk, for all k ∈ {1, . . . ,q}, and kc(t†) = (Kc(t†, t1|θc), . . . ,Kc(t†, tq|θc))>.
Then, classical properties on conditional Gaussian random vectors (see for instance (Bilodeau
and Brenner, 2008, p. 63)) entail that, conditionally to Z = c and vec(Y?) = vec(y?), Y(t†)
follows the p-variate Gaussian distribution Np(µc(t

†,y?),Λc(t†)) with, on the one hand

µc(t
†,y?) = αcb(t†) + [kc(t†)> ⊗AcA>c ]{Σc(θc) ⊗AcA>c }

−1vec(y? − αcB)

= αcb(t†) + [kc(t†)> ⊗AcA>c ]{Σc(θc)−1 ⊗ (AcA>c )−1}vec(y? − αcB)

= αcb(t†) +
[
{kc(t†)>Σc(θc)−1} ⊗ {(AcA>c )(AcA>c )−1}

]
vec(y? − αcB)

= αcb(t†) +
[
{kc(t†)>Σc(θc)−1} ⊗ Ip

]
vec(y? − αcB)

= αcb(t†) + vec
(
Ip(y? − α̂cB){kc(t†)>Σc(θc)−1}>

)
= αcb(t†) + (y? − αcB)Σc(θc)−1kc(t†),

and on the other hand,

Λc(t†) = Kc(t†, t†|θc) ⊗AcA>c − [kc(t†)> ⊗AcA>c ]
{
Σc ⊗AcA>c (θc)

}−1
[kc(t†) ⊗AcA>c ]

= Kc(t†, t†|θc) ⊗AcA>c −
[
(kc(t†)>Σc(θc)−1) ⊗ Ip

]
[kc(t†) ⊗AcA>c ]

= Kc(t†, t†|θc) ⊗AcA>c −
(
kc(t†)>Σc(θc)−1kc(t†)

)
⊗ (IpAcA>c )

=
[
Kc(t†, t†|θc) − kc(t†)>Σc(θc)−1kc(t†)

]
⊗AcA>c .

The result is proved.
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