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Appendix A - Bootstrap methods

Let B be the number of bootstrap samples to be drawn from the original
dataset, a general bootstrap algorithm is:

1. Generate a bootstrap sample by resampling from the data and/or from esti-
mated model

2. Compute the estimates of the parameters of the model for the bootstrap sample
3. Repeat steps 1-2 B times and compute the 95th bootstrap confidence interval

from the bootstrap distribution as

θ̂∗(α·B) ≤ θ̂ ≤ θ̂∗((1−α)·B) (1)

where α=0.025 and θ̂∗(α·B) is the α-quantile of the bootstrap distribution. The

mean and standard deviation of the distribution of the bootstrap estimates θ̂∗b (b =
1...B) can be viewed as the bootstrap estimates of the parameters and their SE,
however the bootstrap distribution may be asymmetric contrary to the asymptotic
estimate.

Case bootstrap (Case)

This method consists of resampling with replacement the entire subjects (ξi,Yi

where Yi = (yi1, yi2, ...., yini
)′) from the original data before modelling. It is also

called the paired bootstrap. It is the most obvious way to do bootstrapping and is
mostly assumption-free.

Non-parametric residual bootstrap (NP)

This method resamples with replacement from the residuals obtained after model
fitting for all subjects. In non-linear mixed effect models, two levels of variability
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must be considered, within-subject and between different subjects. The bootstrap
sample is obtained as follows:

1. fit the model to the data
2. estimate the individual parameters η̂i (as the EBE), then center and normalise

them as detailed below
3. draw a sample η∗i with replacement for i = 1, ...N from the resulting set
4. calculate the residuals ǫ̂ij = yij − f(xij, θ̂i), then center and normalise them
5. draw a sample {ǫ∗i }={ǫi∗j∗} with replacement globally from the resulting set
6. generate the bootstrap responses y∗ij = f(xij , µ, η

∗

i ) + g(xij, µ, η
∗

i , σ) ǫ
∗

ij

The normalisation in step 2 and 4 is necessary because, due to the small number
of samples, these estimates generally suffer from regression to the mean and their
variance may be considerably smaller than the true variability in the population [4].
To correct for this, [1] suggested centering the residuals, to ensure their distribution
has mean 0, and inflating the variance by using the ratio between the estimated and
empirical variance-covariance matrices. The transformation of random effects was
carried out using the eigenvalue decomposition (EVD) proposed by Thai et al. [6],
to limit numerical difficulties due to almost singular matrices. This procedure reads
as follows:

1. center the raw estimated random effects: η̃i = η̂i − η̄i
2. obtain the EVD of the estimated variance-covariance matrix: Ω̂ = VΩ DΩV T

Ω

where DΩ is the diagonal matrix containing the eigenvalues of Ω̂
3. obtain the EVD of S, the variance-covariance matrix of the centered random

effects: S = VS DSV
T
S where DS is the diagonal matrix containing the eigen-

values of S
4. calculate the correction matrix Aη using these two decompositions as Aη =

VS D
−1/2
S VΩ D

−1/2
Ω

5. transform the centered random effects using the ratio Aη: η̂
′

i = η̃i ×Aη

Similarly, the residuals were transformed as follows:

1. center the raw estimated residuals: ǫ̃ij = ǫ̂ij − ǭij
2. calculate the correction factor Aσ = 1/σemp where σemp is the empirical stan-

dard deviation of the centered residuals
3. transform the centered residuals using the ratio Aσ: ǫ̂

′

ij = ǫ̃ij ×Aσ

Parametric residual bootstrap (Par)

The parametric bootstrap requires the strongest assumptions as it depends both on
the model and the distributions of parameters and errors. This method resamples
the residuals by simulating from the estimated distributions obtained after model
fitting. The bootstrap sample is obtained as follows:

1. Fit the model to the data
2. Draw a sample {η∗i } from a normal distribution with mean zero and covariance

matrix Ω
3. Draw a sample {ǫ∗i } from a normal distribution with mean zero and covariance

matrix Ini
where I denotes the identity matrix

4. Generate the bootstrap responses y∗ij = f(xij , µ, η
∗

i ) + g(xij, µ, η
∗

i , σ) ǫ
∗

ij
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Conditional residual bootstrap (cNP)

Instead of using the empirical Bayes estimates and correcting the random effects
for shrinkage, the conditional residual bootstrap uses samples from the conditional
distribution. The algorithm then becomes:

1. fit the model to the data
2. obtain K samples for each vector ηi, ηik (k = 1, ...,K) from the conditional

distributions and center them
3. draw a sample η∗i with replacement to obtain i = 1, ...N of vectors of individual

parameters
4. calculate the residuals ǫ̂ij = yij − f(xij, θ̂i) and center them ǫ̃ij = ǫ̂ij − ǭij
5. calculate the correction factor Aσ = 1/σemp where σemp is the empirical stan-

dard deviation of the centered residuals and transform the centered residuals
as ǫ̂

′

ij = ǫ̃ij ×Aσ

6. draw a sample {ǫ∗ij} with replacement globally from {ǫ̂ij} by assigning an equal
probability 1∑

N

i=1
ni

to each value

7. generate the bootstrap responses y∗ij = f(xij , µ, η
∗

i ) + g(xij, µ, η
∗

i , σ) ǫ
∗

ij

The conditional non-parametric bootstrap differs from the standard non-parametric
bootstrap in the sampling and normalisation step for the random effects. In this
work we implement step 3 by sampling from all conditional samples over i =
1...N, k = 1...K but we could also resample for each individual within his or her
conditional samples.

Bootstrap evaluation

We computed the statistics of interest obtained from B bootstrap samples drawn
for each simulated dataset k, including the bootstrap mean θ̂B,k, the bootstrap
standard error (SE) and the bootstrap confidence interval (CI) for each estimated
parameter. In bootstrap theory, the bootstrap estimate of bias is usually calculated
by the difference between the mean of bootstrap estimates and the estimate of
parameter in the original dataset, to separate the bias of estimation procedure
with the bias of bootstrap [3]:

RBbias(θ̂) =
1

K

K∑

k=1

θ̂B,k − θ̂k

θ̂k
× 100 (2)

The bootstrap standard error for the kth simulated dataset was obtained as
the standard deviation of the bootstrap distribution (SD(θ̂B,k)). We compared
the bootstrap SE to the empirical SE obtained from K simulated datasets giving
the ”true” value observed across the simulations.

SEempirical(θ̂) =

√√√√ 1

K − 1

K∑

k=1

(θ̂k − θ0)2 (3)

We also compared this empirical SE with the asymptotic SE, given by the software
as the inverse of the Fisher information matrix.
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The relative bias on SE by each bootstrap method is then computed as the
percentage difference between the average bootstrap SE and the empirical SE:

RBias(SE(θ̂)) =
1
K

∑K
k=1 ŜEB,k − SEempirical(θ̂)

SEempirical(θ̂)
× 100 (4)

The coverage rate of the 95% bootstrap CI of parameter is the probability that
bootstrap CI contains the true value of the parameter.

The bootstrap approaches were compared in terms of the average RBias on
the bootstrap parameter estimates, the RBias on SE, and the coverage rate of the
95% confidence interval (CI) of all parameter estimates from one million bootstrap
samples.

Implementation

Simulations were performed in R [5]. The parameters of the models were estimated
using the saemix library [2] in the development version available on github (https:
//github.com/saemixdevelopment/saemixextension). The default options were
used to run the SAEM algorithm; the initial parameters were set to the true
value in all runs, and simulated annealing was used with the default number of
iterations (half of the iterations in the first phase, eg 150 iterations out of the first
300). The results were analysed in R. The runs were set up using a laptop and
the simulation studies were run on the CATIBioMed cluster maintained by IFR02
(Bichat hospital, Paris).

Code and simulated data used in this study

The saemix code including the bootstrap methods can be found on the github
repository https://github.com/saemixdevelopment/saemixextension. An exam-
ple of code used to simulate data, estimate parameters and run the different boot-
strap is available in the folder bootstrap as an Rstudio notebook https://github.com/

saemixdevelopment/saemixextension/blob/master/bootstrap/comets_condBoostrapSaemix.

Rmd along with an example of simulated data (instructions to download the neces-
sary files and run the code are provided in the notebook).

The full data simulated in the 6 scenarios has been uploaded to the Zenodo
repository, as well as the saemix estimates and the bootstrap distributions for each
dataset in the 6 scenarios (https://doi.org/10.5281/zenodo.4059718).
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Appendix B - Simulated data

Figure S1 shows the data simulated in one randomly selected simulation for each
scenario (simulation 87). The scenarios in the left column involved a rich design
with 4 doses given to each patient, while the scenarios in the right column were
simulated using a sparse design with 2 doses per patient, and the patients were
split in 4 groups to ensure enough information to estimate the parameters.
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Fig. S1 Data simulated in one randomly selected dataset for each scenario.
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Appendix C - Relative bias on parameters and their estimation errors

Table S1 shows the relative bias for the asymptotic method with respect to the
true parameters, computed as:

RBbiasasym(θ̂) =
1

K

K∑

k=1

θ̂k − θ̂0

θ̂0
× 100 (5)

Table S1 Relative estimation errors for the parameters estimated by saemix for the 6 scenar-
ios.

Scenario E0 Emax ED50 γ ωE0
ωEmax

ωED50
cov σ

SEmax,R 0.62 0.20 -0.09 -1.81 -1.06 -1.63 -0.78 0.32
SEmax,S 0.55 5.43 8.12 -3.03 2.82 34.73 24.42 -3.54
SHill,R -0.32 0.52 1.04 0.68 -1.05 1.04 -2.31 -0.51 -1.02
SHill,S 0.57 -0.28 1.46 2.07 -3.16 -0.31 -11.07 -15.67 9.14
SHill,smallR 0.21 2.03 1.88 2.50 -5.78 -0.11 -9.99 -8.85 -4.85
SHill,smallS 0.29 5.39 7.39 0.46 -8.97 1.09 -9.48 -13.70 29.09
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Appendix D - Distributions of the SE in scenario SHill,R

Figure S2 shows the distribution of the SE obtained by the four bootstraps and by
the asymptotic method in scenario SHill,R, over the 200 datasets simulated in this
scenario, comparing them with the empirical SE for each parameter. This figure
shows that in this scenario, most bootstrap distributions are very similar in shape
and extent, while the asymptotic distribution deviates for several parameters. For
σ, the case bootstrap is shifted to the left with the same mode as the asymptotic
distribution, while the NP and NPc bootstrap distributions are superimposed.
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Fig. S2 Distributions of the SE obtained by the 4 bootstrap methods and by the asymptotic
approach in scenario SHill,R. The red vertical line indicates the empirical SE
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Appendix E - Distributions of the RSE in the 6 scenarios

Figures S3 and S4 show the relative standard errors obtained using the bootstrap
and the asymptotic estimates, and compare them to the empirical SE, for fixed
and random effects respectively.
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Fig. S3 Distributions of the relative SE on the fixed effects and on σ, obtained by the 4
bootstrap methods and by the asymptotic approach in all six scenarios. The red dot denotes
the empirical RSE for each parameter. To make the figure more easy to read, and because of
the difference in information between the different scenarios, each plot has its own scale.
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Fig. S4 Distributions of the relative SE on the random effects obtained by the 4 bootstrap
methods and by the asymptotic approach in all six scenarios. The red dot denotes the empirical
RSE for each parameter. To make the figure more easy to read, and because of the difference
in information between the different scenarios, each plot has its own scale.

These plots give an indication of the informativeness of the design. In the
rich scenarios SEmax,R and SHill,R, the mean RSE on the fixed effects and on σ
is less than 10% while the mean RSE on the random effects is less than 40%.
When we move to a sparse design, the mean RSE increase to respectively 20-30%
for the fixed effects and 60% for the random effects. Finally, the designs with a
smaller number of subjects had a mean RSE higher than 80% for the covariance
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term. Designs with even smaller sample size would not allow the estimation of a
covariance term in practice (data not shown).

Appendix F - Percentage of datasets outside the 95% CI

Figure S5 shows the percentage of simulated datasets lying outside the confidence
intervals defined by the various methods, stratified by parameter and scenario.
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Fig. S5 Percentage of simulated datasets where the true parameter is outside the confidence
interval. “U” indicates the number of datasets where the true parameter is over the 97.5th per-
centile of the confidence interval, and “L” the percentage of datasets where the true parameter
is under the 2.5th percentile.
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Appendix G - Coverage rate for the 50% interval

Figure S6 shows the coverage rates for the 50% confidence intervals in the different
scenarios, showing that decreasing design information leads to overwide confidence
intervals both by the asymptotic method and by the different bootstraps.
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Fig. S6 Coverage rates for the 50% confidence interval in the 6 scenarios simulated in this
study. Dotted lines indicate a coverage of 45 and 55%.
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Appendix H - Influence of the number of bootstraps

The results shown in the main manuscript have been obtained using B=100 boot-
strap datasets for each simulation. We ran the first four scenarios with up to 500
bootstrap samples, and the results of the 95% coverage are shown in Figure S7 for
scenario SHill,R, with different number of bootstrap samples used to estimate the
bootstrap distributions. Similar plots were obtained for SHill,S (not shown).
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Fig. S7 Influence of the number of bootstraps on the coverage rate for scenario SHill,R.

It appears that 100 bootstrap samples are therefore sufficient to obtain ade-
quate coverage, while increasing B over 200 does not seem to have a major effect.
The figures in Appendix G show the influence of the number of bootstrap samples
on the estimates of the parameters and of their SE for the same scenario, and
indicate the estimates stabilise after B=100. We therefore present the results of
the simulations with B=100 as a trade-off between computational time and stabil-
ity, although in real-life where we perform bootstrap on a single dataset we may
increase this number to increase confidence in extreme percentiles of the distribu-
tion.
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Figures S8 and S9 show the bootstrap distributions of the parameter estimates
and their SE, depending on the number of bootstraps, in scenario SHill,R.
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Fig. S8 Influence of the number of bootstraps on the parameter estimates. The red lines show
the true value of the parameters.

Appendix I - Comparison of the coverage of cNP and NP

Figure S10 shows the coverage rates for the different parameters across the 6
scenarios. The lightly shaded areas represent coverages of 90 to 100%.
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Fig. S9 Influence of the number of bootstraps on the standard errors of estimation. The red
lines show the empirical SE.
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