N
N

N

HAL

open science

Conditional Non-parametric Bootstrap for Non-linear
Mixed Effect Models

Emmanuelle Comets, Christelle Rodrigues, Vincent Jullien, Moreno Ursino

» To cite this version:

Emmanuelle Comets, Christelle Rodrigues, Vincent Jullien, Moreno Ursino.
parametric Bootstrap for Non-linear Mixed Effect Models. Pharmaceutical Research, 2021, 38 (6),

pp-1057-1066. 10.1007/s11095-021-03052-6 . hal-03280469

HAL Id: hal-03280469
https://hal.science/hal-03280469

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Conditional Non-


https://hal.science/hal-03280469
https://hal.archives-ouvertes.fr

Pharmaceutical Research manuscript No.
(will be inserted by the editor)

Conditional non-parametric bootstrap for non-linear
mixed effect models

Emmanuelle Comets - Christelle
Rodrigues - Vincent Jullien - Moreno
Ursino

Received: date / Accepted: date

Abstract Purpose: Non-linear mixed effect models are widely used and in-
creasingly integrated into decision-making processes. Propagating uncertainty
is an important element of this process, and while standard errors (SE) on pa-
rameters are most often computed using asymptotic approaches, alternative
methods such as the bootstrap are also available. In this article, we propose a
modified residual parametric bootstrap taking into account the different levels
of variability involved in these models.

Methods: The proposed approach uses samples from the individual condi-
tional distribution, and was implemented in R using the saemix algorithm. We
performed a simulation study to assess its performance in different scenarios,
comparing it to the asymptotic approximation and to standard bootstraps in
terms of coverage, also looking at bias in the parameters and their SE.

Results: Simulations with an Emax model with different designs and sig-
moidicity factors showed a similar coverage rate to the parametric bootstrap,
while requiring less hypotheses. Bootstrap improved coverage in several sce-
narios compared to the asymptotic method especially for the variance param-
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eters. However, all bootstraps were sensitive to estimation bias in the original
datasets.

Conclusions: The conditional bootstrap provided better coverage rate
than the traditional residual bootstrap, while preserving the structure of the
data generating process.

Keywords Bootstrap - Conditional distribution - Non-linear mixed effect
models - Uncertainty of parameter estimates

1 Introduction

Nonlinear mixed effect models (NLMEM) are widely used namely in phar-
macokinetics to characterise the evolution of drug concentrations after dose
administration, and in pharmacodynamics where they are used to integrate
disease models and pathophysiology to better understand the response of bi-
ological systems to treatment [1]. Modelling and simulation has become a
key component in the analysis and design of clinical trials to establish the
most promising therapeutic candidates, as well as the dosage regimens more
likely to be effective and safe [2], and is also increasingly used to individu-
alise diagnostics and treatments [3]. As the models become increasingly more
comprehensive, and the extrapolations increasingly more sophisticated, it be-
comes also important to report the confidence we have in them to propagate
this uncertainty into decision making processes and realistic evaluation. In the
present article, we focus on the issue of standard errors of estimation (SE),
which measure the precision of estimation for the parameters in the model.
In maximume-likelihod estimation, they are often computed using an asymp-
totic approximation as the inverse of the Fisher information matrix [4], while
Bayesian methods consider the entire posterior distributions and use it to as-
sess and propagate uncertainty [5]. How well the asymptotic approximation
holds in practice depends on the sample size, both in terms of number of sub-
jects and in terms of number of samples per subject, and on the degree of
non-linearity in the model [6]. Other approaches to derive the standard errors
include log-likelihood profiling [7], Sampling Importance Resampling (SIR) [§]
and bootstrap methods [9].

Bootstrap methods mimic the process of repeating a study several times
to assess the distribution of an estimator, using only the data available in the
original study through resampling. For independent and identically distributed
observations, Efron [10] proposed resampling with replacement from the pool
of available measurements, creating bootstrap datasets on which the estimator
of interest is applied in order to approximate its distribution. In more com-
plex settings, like linear regression or non-homoscedastic error models, issues
such as within-subject correlation and heteroscedastic variances have to be
considered. Several bootstrap approaches have been proposed in these situ-
ations, with the most intuitive being the case bootstrap, also called paired
bootstrap [11], where the resampling is performed at the level of the subject.
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Alternatively, the residual bootstrap resamples residuals in the empirical dis-
tribution (non-parametric residual bootstrap) or in an external distribution
with suitable characteristics (parametric boostrap) [12]. Bootstraps were ex-
tended to NLMEM by considering the different levels of variability involved at
the individual and population level. Das and Krishen [13] proposed a residual
bootstrap involving two levels of resampling. In small sample studies, however,
the distribution of the residuals does not reflect the variability in the popu-
lation because of a phenomenon called shrinkage, causing a regression to the
mean due to the limited amount of information to jointly estimate a large num-
ber of parameters and /or the residual variability. Carpenter et al. [14] proposed
to correct the distribution of residuals before resampling, using a ratio between
the empirical variance-covariance matrix and the estimated variance matrix of
the random effects. Different bootstrap methods were summarised and evalu-
ated both in linear and non-linear mixed effect models by Thai et al. [9, 15]. For
linear mixed effect models with homoscedastic variance, the case, parametric
and non-parametric bootstraps exhibited good performances in terms of ab-
sence of bias and coverage rates, while the asymptotic method proved reliable
for the estimation of the parameters and their SE [9]. These bootstraps were
then evaluated in NLMEM, where the results were more contrasted. In this
more challenging settings, all bootstraps and the asymptotic method exhibited
some measure of bias, especially on a model involving non-linear pharmacoki-
netics where some parameters have strong non-linearity [15]).

The objective of the present manuscript was to develop a new bootstrap
approach and evaluate it by comparison to usual bootstraps in NLMEM. Our
proposed approach, the conditional non-parametric bootstrap, is a residual
bootstrap using samples from the the conditional distribution of the individual
parameters, which have been shown to correct the shrinkage in the empirical
Bayes estimates in non-linear models [16]. We use simulations inspired by
the study performed by Plan et al. [17], using an Emax and a Hill model to
investigate the influence of non-linearity with both sparse and rich designs.

2 Methods
2.1 Statistical models

Let the random variable y;; denote the observation of the longitudinal
data, which we will assume in this work to be continuous, at time ¢;; for subject
i=1,..N (j =1,..,n;). Following [18], the NLMEM can be formalised as
a hierarchical model involving a parametric structural model f defining the
longitudinal evolution, depending on fixed parameters p and subject-specific
random effects 7; with a parametric distribution, coupled with a probability
distribution on the measurements, here a Gaussian with a standard deviation
defined by a parametric function g:
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Yij = [(xi5,0:) + g(xi5,05,0) €5
0; = h(p,m:)
ni ~ N(0, $2)
€5 ~ N(0,1)

(1)

In these equations, 6; denotes the individual parameters, which we assume are
related through a function h to the p-dimensional vector containing the fixed
effects p, and the g-dimensional vector containing the random effects n;. €;;
is a random variable assumed to be normally distributed. o denotes variance
parameters entering the function g, which expresses the standard deviation of
the measurement error and is generally either constant (homoscedastic vari-
ance) or a function of f. The random effects n; and the residual errors ¢;;
are assumed to be independent for different subjects and to be independent
of each other for the same subject. We will denote by & = {x;1, ..., Zin, } the
design variables, for example the n; sampling times for subject i.

The parameters of the model ¥ = (u, {2,0) can be estimated by maxi-
mum likelihood. In NLMEM, the likelihood associated with equation (1) is
intractable as individual likelihoods need to integrate out the unknown pa-
rameters 6; over their distribution Dy. In this study, we used the SAEM al-
gorithm to obtain parameter estimates [19, 18]. The maximum likelihood es-
timate (MLE) 0 of 6 is asymptotically normally distributed with mean 6 and
asymptotic covariance matrix given by the inverse of the Fisher information
matrix (FIM), denoted Mg, usually obtained through a first-order approxima-
tion of the model [4]. During the estimation process, the individual parameters
0; act as nuisance parameters, but their conditional distribution is used dur-
ing the stochastic approximation phase to sample the unknown parameters
7; and obtain a complete dataset from which the conditional log-likelihood
is derived [19]. The estimated individual parameters, called empirical Bayes
estimates (EBE), can be defined as the mode or the median of the conditional
distribution obtained at the end of the estimation process.

2.2 Conditional bootstrap

Bootstrap consists in repeatedly generating pseudo-samples distributed
according to the same distribution as that the original sample. In NLMEM,
bootstrap methods include the case bootstrap (Case), resampling the entire
vector of individual observations, the parametric bootstrap resampling resid-
uals from a theoretical distribution (Par) and the non-parametric bootstrap
resampling from estimated residuals (NP) [15]. We propose a new bootstrap
method, which we call conditional non-parametric residual bootstrap (cNP),
using samples from the conditional distributions instead of shrinkage-corrected
empirical Bayes estimates.

The algorithm is as follows: after fitting the model to the data, we obtain
K samples for each vector n;, nir. (k = 1,..., K) from the conditional distri-
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butions, center them and resample vectors of individual parameters 7} with
replacement. In this work we implement this step by sampling from all condi-
tional samples over ¢ = 1...N, k = 1...K but we could also resample for each
individual within his or her conditional samples. Error residuals are sampled
from the centered and shrinkage-corrected residuals as in NP bootstrap. More
details on bootstrap algorithms and implementation are given in supplemen-
tary material.

2.3 Simulation study

Models: The model used for this simulation is a Hill (or sigmoid E,ax) model,
a standard model in dose-response studies where the effect of a drug in response
to a dose d, E(d) follows:

d?

E(d) = Eo + Fmar —————r
(d) = Eo + d] + EDY,

(2)
It involves 4 parameters, the initial effect Eg, the maximum effect E.x, the
concentration at which half the maximum effect is achieved ECsq and the
sigmoidicity factor v which controls the non-linearity of the model through
the curvature. Interindividual variability was modelled through a log-normal
distribution for all parameters, except for v which was assumed to be the same
for all subjects (no ITV). A correlation was simulated between E,,x and ECs,
and we used a proportional error model with coefficient of variation o. The
parameters used in the simulation were the same as those used by Plan et
al. [17], and are given in Table 1.

Table 1 Parameters used in the simulation for the Epax model (see [17]).

Parameter Value Parameter Value
Eo (-) 5 wi, 0.09
Emax (-) 30 Wi 0.49
EDso (mg) 500 wWhee, 0.49
~ (=) lor3 cov(Eo, Emax) 0.245
o (-) 0.1

Scenarios: We investigated different scenarios to assess the influence of non-
linearity, with v = 1 and 3, and design (Table 2). For each value of v we
considered two designs, a rich design with N=100 subjects given 4 doses each
(0, 100, 300, 1000), and a sparse design with N=200 subjects divided in 4
groups of 50 subjects given 2 doses each among the following 4 combina-
tions (0,1000),(100,1000),(0,300) and (100,300). To evaluate the performance
of bootstraps with a smaller sample size, the two scenarios with a Hill model
were also evaluated with N=20 subjects (rich design) and 20 subjects per
group (sparse design).
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Table 2 Simulation scenarios.

Simulation scenarios  Value of v  Design  Number of subjects

SEmax,R 1 rich 100
SEmax,s 1 sparse 200
SHill,R 3 rich 100
Swil,s 3 sparse 200
SHill,smallR 3 rich 20
SHill,smalls 3 sparse 80

For each scenario, we simulated K=200 datasets. Bootstrap distributions
were obtained with B=100 bootstrap samples for each bootstrap. Additional
simulations with up to B=500 bootstrap samples were used to assess the num-
ber of bootstrap samples necessary.

Bootstrap evaluation: The bootstraps were evaluated in terms of coverage rate,
and we also computed the bootstrap mean 0 B.k, the bootstrap standard error
(SE) and the bootstrap confidence interval (CI) for each estimated parameter
from the bootstrap distributions. The bootstrap parameters estimates and
their SE were defined as unbiased with relative error within +5%, moderately
biased (from +5% to £10%) and strongly biased (> £10%). The coverage rate
of the 95% CI was considered to be good (from 90% to 100%), low (from 80%
to 90%) and poor (< 80%). A good bootstrap was defined as a method without
bias for parameter estimates and their corresponding SE, and ensuring a good
coverage rate of the 95% CI.

All computations and simulations were performed in R [20] using the de-
velopment version of the saemix library [21]. Details of the computations are
given in Supplementary Material.

3 Results
3.1 Bootstrap distributions

As an illustration, Figure 1 shows the distribution of the parameters ob-
tained for one randomly selected simulated dataset obtained with the different
bootstraps in scenario Sgin g (Appendix B shows example of simulated data).
For each parameter, we plot in red the true value (used in the simulation) and
in blue the value estimated by saemix (for Eg and wgma, the two values are al-
most identical so the lines are overlayed). In this example the distributions are
for the most part similar, but we notice some discrepancy for wg.nq Where the
NP bootstrap is shifted to the left, and in some cases the distribution appears
more peaked, usually with Par or with Case.
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Fig. 1 Bootstrap distributions obtained for one randomly sampled distribution in scenario
Swil,r- The red line in each plot represents the true value of the parameter and the blue

line the value estimated by saemix.
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3.2 Bootstrap performances

Figure 2 shows the total relative bias on parameter estimates and their
SE for the 6 scenarios simulated in this study. Dashed lines delineate abso-
lute relative biases within 5% and dotted lines absolue relative biases within
10%. To make the graph easier to read, each line of the plot, representing
one scenario, has its own scale on the Y-axis because of the difference in in-
formation between the different designs. The results from the estimation by
saemix on each dataset are shown in grey, and the SE in this case are ob-
tained using the asymptotic FIM, and the bootstrap distributions in different
colours. The plots in the left column, representing the relative bias on the fixed
and random parameters in the model, show a similar pattern across the dif-
ferent bootstraps: all the fixed parameters are estimated without bias across
all scenarios except Sill,smang Which had the least information. Concerning
random effects, the covariance term seems most sensitive to a sparse design.
For the rich designs (scenarios SEmax,r and Swin r), the asymptotic method
underestimated the SE for the random effects in Sgmax,r and for nearly all
the parameters in Sgi,r with biases as high as -30%. With the rich design
however, the bootstraps manage to compensate some of the bias and reduce it
to the 10% range. Additional results suggest that biased bootstrap estimates
are associated with biased estimates on the original dataset (Appendix C).

With sparse designs (SEmax,S and Smin,s), although the bootstraps remain
biased for the estimation of the SE, they correct in part the high bias of the
asymptotic method. Finally, the last two lines show the scenarios with a small
number of subjects, where all methods fail to estimate properly the parameters
and their SE, although there again most of the bias on the parameters is in
fact due to poor estimates by saemix.

Comparing the conditional non-parametric bootstrap (cNP) with the non-
parametric bootstrap (NP), we note that ¢cNP behaves generally similarly to
NP in the first three scenarios in terms of parameter estimates, while it per-
forms slightly better in Smin,s (sparse design, higher model non-linearity) and
in the scenarios with less subjects except for the estimation of the covariance
term in scenario Suil,smar. The estimates of the SEs are also on the whole
slightly more accurate with cNP.
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Bootstrap =e= Case =&= NP -#= cNP == Par == Asymptotic

RBias RBiasSE

H'xew3s
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Fig. 2 Relative bias on parameters (left) and SE (right) for the 6 scenarios simulated in this
study. Dotted lines delineate absolute relative biases within 5% and dashed lines absolue
relative biases within 10%. Each line of plot has its own scale on the Y-axis.
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In Figure 2 we used the standard deviation of the bootstrap distribution to
estimate the SE, however the bootstrap is a non-parametric approach designed
to produce the distribution of the estimator, and this distribution may not be
symmetrically distributed. Therefore in Figure 3 we plot the coverage for each
parameter in the 6 scenarios (rich designs in the left column and sparse designs
in the right column), using the 4 bootstrap distributions and the asymptotic
confidence intervals.

Bootstrap =e= Case == NP CNP == Par =& Asymptotic

SEmax,R SEmax,S

¥

804

704

SHillLR SHill,S

Coverage rate (%)

704

SHill,smallR SHill,smallS

704

. . . . . . . . . . . . . . . . .
N e Q @ N o Q N @ N x N 3 Q o N N @
R L SR 2 oL G S L P SRS S C Ot
G e P P o SIS R S g
of®” o o o o o

Fig. 3 Coverage rates for the 6 scenarios simulated in this study. Dotted lines indicate a
coverage of 90 and 100%.
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This plot shows good coverage for the case, parametric, and conditional
non-parametric bootstraps in the first four scenarios, while the asymptotic
method struggles with the non-linearity in the Hill model (see also Appendix
D and E). ¢NP performs better than NP in all scenarios investigated, with
coverage rates closer to the nominal value (a comparison between the cover-
age rates for these two approaches is given in Figure S10, Appendix I). Similar
bias and coverage rate were found for o in both bootstrap approaches, which is
consistent with using the same correction in the cNP as in the NP bootstrap.
To complement the coverage itself, Appendix F shows a figure showing the
percentage of cases in which the true parameter is either lower or higher than
the confidence interval. This figure indicates that apart from very few cases,
lower coverage is due to the confidence interval being too low with respect to
the true value of the parameter. We also note in Sgin,s and Suil,smans that
except for Eg, the bootstraps for fixed effects tend to yield coverages close to
100%, suggesting overly wide confidence intervals. To investigate this further
we also computed 50% CI (see Appendix G) and found that indeed, cover-
ages could go as high as 70% in particular in Sgin,s and Swinsmans for these
parameters, with none of the bootstraps appearing to have a clear advantage.

Concerning runtimes, to obtain 100 bootstrap samples for one dataset from
the SHill,R scenario, parametric and standard residual bootstraps took 5%
longer than the case bootstrap, while cNP took 40% longer. Most of the ad-
ditional burden for the ¢cNP bootstrap is however due to the step involving
the estimation of the conditional distribution in the current, non optimised,
version of the code, and the conditional distribution is normally estimated to
perform diagnostic graphs after an saemix run. Finally, additional results con-
cerning the influence of the number of bootstrap samples on the performances
are given in Appendix H.

4 Discussion

The aim of the present article was to propose a new bootstrap approach
for non-linear mixed effect models, and evaluate it by comparison to three
bootstrap methods previously recommended [15]. We use samples from the
conditional distributions proposed by Lavielle and Ribba [16] to bypass the
issue of shrinkage for non-parametric bootstrap.

In the present article, we use a simple simulation example based on a sig-
moid E,.x model as a proof of concept to evaluate this new bootstrap, on the
assumption that bootstrap methods should provide good results in simple cases
first if they are to be trusted with more complex situations. In our simulations,
the conditional non-parametric bootstrap showed good coverage in different
scenarios, and performed better than the standard non-parametric bootstrap.
Its performance was comparable to the case and parametric bootstraps, which
showed good performance in a simulation setting with a homogenous and in-
formative experimental design, in line with previous studies [9, 15]. A question
arising at the time was whether it would be possible to improve the correction
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of the residuals before resampling, to benefit from the non-parametric boot-
strap’s ability to maintain the structure of the original dataset, while being
less dependent on model assumptions than the parametric bootstrap. That
question echoed similar interrogations around the usefulness of graphical and
statistical diagnostics for NLMEM [22, 23] in designs with low information
where the empirical Bayes estimates exhibit high shrinkage. Recently, Lavielle
and Ribba [16] proposed new diagnostic tools which use the conditional distri-
bution of individual parameters, obtained as a product of stochastic estimation
methods that have been gaining increasing popularity in the field of pharma-
cometrics and beyond. These conditional distributions allow to bypass the
issue of shrinkage, and it was therefore a natural step to consider using these
distributions to sample from. The individual conditional distributions are a
by-product of the estimation in the SAEM algorithm, and the mode or mean
of which are used as estimates of the individual parameters. With linearisation-
based algorithms, these individual parameters are obtained by minimising a
Bayesian criterion, but additional computations could be used to derive the
same distributions. Sampling individual parameters from the individual con-
ditional distributions p(v;|y;) generates a sample of parameters representative
of the population distribution p(¢;) [16]. Diagnostic graphs using these sam-
ples, for example of parameters versus covariates, do not suffer from shrinkage.
When we use these resampled parameters to build the bootstrapped datasets
in the cNP bootstrap, we therefore expect to generate datasets representative
of the true interindividual variability. In unbalanced designs, it might also be
worth considering resampling the random effects within each subjects condi-
tional distributions; indeed, the posterior distributions capture the uncertainty
on individual parameter estimates, reflecting the informativeness of the indi-
vidual sampling design which differs according to the number and position
of the samples. As such, our cNP bootstrap retains the attractive feature of
the NP bootstrap of preserving the structure of the original dataset with an
unchanged number of samples and subjects, and combines it with a more ap-
propriate distribution for the random effects. An extension for future work will
therefore be to investigate unbalanced designs, where some subjects may have
more information than others, such as the design mixing rich and sparse data
in [15], where the non-parametric bootstrap greatly overestimated the SE for
some variance parameters but a stratified version led to a much lower cover-
age. By using conditional distributions instead of theoretical distributions as
in the parametric bootstrap, we could also expect the cNP to be more robust
to misspecifications in the random effects. This will however need to be tested
in a further study, as we show here that bootstraps cannot recover from very
poor asymptotic estimates. Also, conditional distributions involve model as-
sumptions on the distribution of the random effects, and their properties have
not been studied fully yet, especially in small samples.

For the residual errors €;5, we used the same correction in ¢cNP as in the
NP bootstrap, inflating the residuals so that their overall variability matches
the population estimate of the residual error. However, this is not entirely
satisfactory as the é;; are also affected by shrinkage, called e-shrinkage by
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Karlsson and Savic [22], and a global level correction incurs similar penalties
as for np-shrinkage. This could be the reason why cNP and the NP bootstraps
gave similar results for ¢. In the present study, the designs were homogenous in
terms of informativeness, but it would be interesting to evaluate the difference
between ¢cNP and NP, in unbalanced designs. A further extension to the ¢cNP
will be to compute the residual errors for the conditional samples drawn from
the individual conditional distribution of the parameters, and resampling from
these to reflect the individual residual variability.

Although the bootstrap is often branded as an approach to gain a good
understanding of the uncertainty in small samples, Broeker and Wicha have
shown that this is mostly wishful thinking as the performance in small datasets
is not good [24]. We confirm this here in the two scenarios Sin smanr and
SHill,smalls- With even lower number of subjects, especially in the sparse de-
sign, the bias on the parameter estimates for the asymptotic method was even
more apparent (data not shown) and the bootstrap approaches could not re-
cover from these poor estimates. With these scenarios the coverage for all
bootstraps was lower than 90%, and there was no clear trend in whether the
bootstraps under- or over-estimated the parameters and their SE, which is
a cautionary message for the usage of bootstrap in practice as from present
and previous work [15, 24] the conditions in which bootstrap performances are
adequate are not obvious. In our simulations, we found that the performance
of the bootstraps degrade as the informativeness of the design decrease. Tools
like PFIM [25] can be used to evaluate the design before running a bootstrap
approach, to assess whether a bootstrap procedure is appropriate.

A final point is the high computational effort incurred. Even the simplest
version, the case bootstrap, requires a large number of runs; its theoretical
shortcomings, such as the difference in information between bootstrapped
datasets in unbalanced designs, or the difficulty in handling covariate distribu-
tions when they enter a model, have caused other even more computationally
intensive bootstrap algorithms to be developed [9]. These bootstraps require
repeated model evaluations on top of the sampling step, making them some-
what slower. However, these approaches only need to be run for key models
such as the final model in an analysis. On top of this, an additional source of
uncertainty comes from the model itself, as a model is rarely an isolated object
but an element in model building; methods like model averaging or sensitivity
analyses should also be used to gain a full understanding of uncertainty [26].

Conclusion

Our new conditional residual bootstrap for NLMEM improved the cover-
age rate compared to the classical non-parametric residual bootstrap, proving
nearly as efficient as the parametric bootstrap, which in these simulations
where we used the true distributions for the parametric bootstrap can be
considered as a gold standard. The case bootstrap also performed well, and
all three bootstraps provided more appropriate estimates of the SE than the
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asymptotic method in sparse designs. The bootstrap estimates of the param-
eters and their SE showed bias in the presence of non-linearity and sparse
information, highlighting the importance of considering the entire bootstrap
distribution for uncertainty instead of using a normal approximation with
mean and standard deviation derived from the distribution.
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