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Abstract. We explore links between the thin concurrent games of Castellan, Clairam-
bault and Winskel, and the weighted relational models of linear logic studied by Laird,
Manzonetto, McCusker and Pagani. More precisely, we show that there is an interpretation-
preserving “collapse” functor from the former to the latter. On objects, the functor defines
for each game a set of possible execution states. Defining the action on morphisms is more
subtle, and this is the main contribution of the paper.

Given a strategy and an execution state, our functor needs to count the witnesses for this
state within the strategy. Strategies in thin concurrent games describe non-linear behaviour
explicitly, so in general each witness exists in countably many symmetric copies. The
challenge is to define the right notion of witnesses, factoring out this infinity while matching
the weighted relational model. Understanding how witnesses compose is particularly subtle
and requires a delve into the combinatorics of witnesses and their symmetries.

In its basic form, this functor connects thin concurrent games and a relational model
weighted by N ∪ {+∞}. We will additionally consider a generalised setting where both
models are weighted by elements of an arbitrary continuous semiring; this covers the prob-
abilistic case, among others. Witnesses now additionally carry a value from the semiring,
and our interpretation-preserving collapse functor extends to this setting.

1. Introduction

The relational model is one of the simplest model of linear logic. It naturally gives rise
to a model of higher-order programming often described as quantitative, because aspects
of computation such as the multiplicity of function calls are represented explicitly. The
model assigns to every type a set known as its web, whose elements are thought of as
(desequentialized) execution states, and to any term, a relation.

Relations are equivalently boolean-valued matrices, and a natural extension of the
model consists in considering more general coefficients. This idea was first explored by
Lamarche [Lam92] and developed in detail by Laird, Manzonetto, McCusker and Pagani
[LMMP13, Lai20]. Their construction gives a family of weighted relational models, in which
the interpretation of a term is a matrix assigning to each point of the web a weight, coming
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from a continuous semiringR, the resource semiring. This has an operational interpretation
for a program M : while the relational model only indicates whether a given state α can be
realized by an execution of M (i.e. do we have α ∈ JMK?), the weighted relational model
aggregates information about all executions that realize this state. In the simplest case,
R = N∪{+∞}, the model simply counts these executions. Using various semirings one can
adequately represent probabilistic evaluation, best and worst case time analysis, etc.

Another well-established quantitative model – or rather, family of models – is game
semantics [HO00, AJM00]. In game semantics, an execution is regarded as a play in a
two-player game between Player (playing for the program), and Opponent (playing for the
environment). Types are presented as games, whose rules specify the possible executions,
and terms as strategies describing the interactive behaviour of the program under any evalu-
ation context. The connections between game semantics and relational semantics have been
thoroughly studied [BDER97, Mel05, Bou09, Ong17]. In particular, the family of concur-
rent games [RW11, CCW19] inherit from Melliès’ asynchronous games [Mel05] a particularly
neat relationship with relational semantics. In this framework, both games and strategies
are event structures [Win86], and as such admit a canonical notion of state/position: the
configurations. As we will see, the web can be recovered as a subset of the configurations
of the game. Then, we can “collapse” a strategy into a relation, by recording which of
these configurations are reached, and forgetting the chronological history (see [Cla19] for a
recent account). In an affine setting, i.e. without replication, this collapse operation can
immediately be generalised to weighted relations with R = N∪{+∞}: if σ is a strategy on
a game A, and x is (a point of the web corresponding to) a configuration of A, the collapse
simply counts the distinct configurations of σ realizing x.

The difficulty arises in the non-affine setting, necessary for languages with duplication of
resources. For this, the mature extension of concurrent games is thin concurrent games with
symmetry [CCW19]. In thin concurrent games, infinite games arise from the construction
!A, which creates countably many copies of A labelled with natural numbers, called copy
indices. (This is similar to the situation in AJM games [AJM00].) Games are equipped with
sets of bijections called symmetries (so they are event structures with symmetry [Win07])
which specify authorized reindexings. Additionally strategies must act uniformly with re-
spect to these symmetries. The collapse to the relational model is relatively undisturbed by
symmetry: points of the web now correspond to a subset of symmetry classes of configura-
tions and, as before, we collapse a strategy to the set of symmetry classes it reaches (see e.g.
[CC21]). However the extension to the weighted relational model is no longer obvious. We
cannot simply count all concrete configurations of σ witnessing some symmetry class: there
are infinitely many. This prompts the central question of this paper: how can we count
configurations up to symmetry, in order to match coefficients of the weighted relational
model? In other words: what does the weighted relational model count?

An answer to this question is our main contribution. For a symmetry class of configu-
rations of the game, an apparent “obvious” solution is to consider the set of corresponding
symmetry classes of configurations of the strategy. Suprisingly, the induced coefficient is
wrong! Instead we are led to introduce a notion of positive witnesses for a given symmetry
class of configurations of the game. We will show that counting positive witnesses yields
an interpretation-preserving collapse to the relational model weighted by N ∪ {+∞}. In
proving this, the main challenge is functoriality of the collapse: whereas in the affine case,
witnesses in a composite τ ⊙σ cleanly correspond to pairs of witnesses in σ and τ , this fails
with symmetry, and is only salvaged via a proper account of symmetries on both sides.
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Finally, we also extend our results to any continuous semiring R with a condition called
integer division. We consider an extension of thin concurrent games where strategies carry
valuations in R, and show that this collapses into the R-weighted relational model.

Related work. To our knowledge, the first quantitative collapse from games to relations is
from probabilistic concurrent games to the relational model weighted by R+ = R∪{+∞} in
[CCPW18]. However, when working on an extension to a quantum language [CdV20], the
first author discovered an error in [CCPW18]: the paper uses symmetry classes as witnesses,
which —as we show here— is inadequate. The correct notion of witness and its validity
w.r.t. composition was established by the first author in an unpublished report [Cla20].
Here we complete this to a full interpretation-preserving functor and to the R-weighted
case. In particular, Theorem 6.15 for R = R+ corrects the collapse theorem of [CCPW18].

Outline. In Section 2 we recall the R-weighted relational model and the language of con-
cern for most of the paper, a non-deterministic PCF. In Section 3, we recall thin concur-
rent games and the corresponding interpretation of non-deterministic PCF. In Section 4
we address the main challenge of the paper, the definition of positive witnesses and their
compatibility with composition. In Section 5, we fix R = N∪{+∞}, show a number of prop-
erties ensuring that the interpretation is preserved, and prove our main result (Theorem
5.20). Finally, in Section 6 we generalize the result to an arbitrary R (Theorem 6.15).

2. The Weighted Relational Model and nPCF

Notations. If X is a set, we write Pf (X) for the finite subsets, and Mf (X) for finite
multisets. For x1, . . . , xn ∈ X, [x1, . . . , xn] ∈ Mf (X) is the corresponding multiset. We use
µ, ν ∈ Mf (X) to range over multisets; and write µ+ ν ∈ Mf (X) for the sum of multisets,
where x ∈ X has multiplicity the sum of its multiplicities in X and Y . If R = (|R|,+, ·, 0, 1)
is a semiring and x, y ∈ |R|, the Kronecker symbol δx,y means 1 if x = y, and 0 otherwise.
If X is a set, we write ♯X ∈ N ∪ {+∞} for its cardinality if X is finite, +∞ otherwise.

We assume some familiarity with categorical logic, in particular Seely categories [Mel09].

2.1. Continuous semirings. We first recall the construction of the R-weighted relational
model, where R is a continuous semiring of resources. Our presentation follows [LMMP13].

A complete partial order (cpo) is a poset (X,≤) with a bottom and such that any
directed subset D ⊆ X has a sup ∨D ∈ X. For a cpo X, F : X → X is continuous if it
is monotone and preserves all suprema of directed sets, i.e. F (

∨

D) =
∨

(F (D)). An n-ary
function Xn → X is continuous if it is continuous in each of its parameters.

Definition 2.1. A continuous semiring R is a semiring (|R|,+, ·, 0, 1) equipped with a
partial order ≤ such that (|R|,≤) is a cpo with 0 as bottom, and + and · are continuous.

We often denote the carrier set |R| just by R. The point of considering the ordered
structure on R, is that for any R and possibly infinite subset S ⊆ R, the indexed sum

∑

x∈S

x =
∨

F⊆fS

(

∑

x∈F

x

)

(2.1)
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is always defined as the supremum of all the partial sums.
We impose two further conditions on continuous semirings. As in [LMMP13], they

should be commutative: r · r′ = r′ · r for all r, r′ ∈ R. Additionally, they should have
integer division. If x ∈ R and n ∈ N is an integer, then one may define n ∗ x = x+ · · · + x
(with n occurrences of x). We say that R has integer division if for all n ≥ 1, for all
x, y ∈ R, if n ∗ x = n ∗ y then x = y. Unlike commutativity, this condition is not required
in [LMMP13]; nevertheless, all examples considered in [LMMP13] do have integer division.
From now on, we assume all continuous semirings satisfy these two conditions.

Our core example of a continuous semiring is the following:

Definition 2.2. We write N for the continuous semiring (|N |,+, ·, 0, 1) equipped with the
standard order on N extended with x ≤ +∞ for all x ∈ N . To ensure continuity we take +
to be the usual sum extended with (+∞)+x = x+(+∞) = +∞, and · to be multiplication
extended with +∞ · 0 = 0 ·+∞ = 0, and +∞ · x = x ·+∞ = +∞ for any x > 0.

As described in [LMMP13], N may be used to count operational reduction sequences
in a non-deterministic language. There are other examples [LMMP13], including the com-
pleted non-negative reals R+, which provide an adequate model for PCF with probabilistic
choice. (N has a canonical place among those examples, because it is an initial object in
the category of continuous semirings and structure-preserving continuous maps.)

2.2. Weighted relations. We fix a continuous semiring R and define the category R-Rel
of R-weighted relations. An R-relation from a set X to a set Y is simply a function

α : X × Y → R ,

also written α : X + //Y , regarded as a matrix with coefficients in R. We usually write αx,y
for the coefficient α(x, y) ∈ R. For α : X + //Y and β : Y + //Z and x ∈ X, z ∈ Z, we set

(β ◦ α)x,z =
∑

y∈Y

αx,y · βy,z (2.2)

for the coefficients of the composition β ◦ α : X + //Z. For X a set, the identity on X
has (idX)x,x′ = δx,x′ ; i.e. the diagonal matrix on X with only 1’s as diagonal coefficients.

Proposition 2.3. For any continuous semiring R, there is a category R-Rel with sets as
objects, and R-relations from X to Y as morphisms.

2.3. Categorical structure. R-Rel is a Seely category: it is symmetric monoidal closed
with finite products and a linear exponential comonad. We review this structure now. In
fact, although this is not true in general for Seely categories, R-Rel is compact closed.

2.3.1. Compact closed structure. The tensor X⊗Y of two setsX,Y , is simply their cartesian
product X × Y . The tensor of α1 : X1 + //Y1 and α2 : X2 + //Y2 has coefficients

(α1 ⊗ α2)(x1,x2),(y1,y2) = (α1)x1,y1 · (α2)x2,y2

for (x1, x2) ∈ X1 ⊗X2 and (y1, y2) ∈ Y1 ⊗ Y2, yielding α1 ⊗ α2 : X1 ⊗X2 + //Y1 ⊗ Y2.
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This operation yields a bifunctor −⊗− : R-Rel×R-Rel → R-Rel completed with

αX,Y,Z : (X ⊗ Y )⊗ Z + // X ⊗ (Y ⊗ Z)
λX : 1⊗X + // X
ρX : X ⊗ 1 + // X

sX,Y : X ⊗ Y + // Y ⊗X

defined as the obvious variants of the identity matrix, where 1 = {•} is a singleton set.
Those satisfy the necessary naturality and coherence properties, making R-Rel a symmetric
monoidal category. Furthermore, any set X has a dual X∗ defined simply as X itself, and

ηX : 1 + //X ×X , ǫX : X ×X + //1

turn R-Rel into a compact closed category. In particular, it follows that R-Rel is automati-
cally symmetric monoidal closed. For X and Y any two sets, this gives us a notion of linear
arrow X ⊸ Y , defined simply as X × Y . We also get a currying bijection for X,Y,Z:

Λ : R-Rel(X ⊗ Y,Z) ≃ R-Rel(X,Y ⊸ Z)

with, for any α : X ⊗ Y + //Z, Λ(α)x,(y,z) = α(x,y),z. We also get an evaluation morphism:
evX,Y : (X ⊸ Y )⊗X + //Y defined as having coefficients (evX,Y )((x,y),x′),y′) = δx,x′ · δy,y′ .

2.3.2. Cartesian structure. Furthermore, R-Rel is cartesian. First, the empty set ∅ is a
terminal object, also written ⊤. If X,Y are sets, we define X & Y as X + Y their tagged
disjoint union, defined as ({1}×X)⊎ ({2}×Y ). Note that here and from now on, we use
⊎ to denote the standard set-theoretic union, when it is known to be disjoint. We have

π1 : X & Y + //X , π2 : X & Y + //Y ,

the projections respectively defined as (π1)(i,x),y = 1 if i = 1 and x = y, and 0 otherwise
– π2 is defined symmetrically. For α : X + //Y and β : X + //Z, their pairing is

〈α, β〉 : X + //Y & Z ,

defined with 〈α, β〉(1,x),z = αx,z and 〈α, β〉(2,y),z = βy,z. This makes R-Rel a cartesian
category. One must keep in mind that R-Rel is not cartesian closed, as the closed structure
is with respect to the tensor ⊗ and not the cartesian product &.

2.3.3. Linear exponential comonad. We define a comonad ! on R-Rel. On objects the oper-
ation X 7→ !X constructs the free commutative comonoid: this is defined as !X = Mf (X).
The action on morphisms is determined by the universal property of !X, but we give an
explicit definition. For α : X + //Y , we set

(!α)µ,[y1,...,yn] =
∑

(x1,...,xn) ,s.t.
µ=[x1,...,xn]

∏

1≤i≤n

αxi,yi .

Note that !α only has nonzero coefficients for pairs of multisets of the same size. Like-
wise, we define ǫX : !X + //X, δX : !X + // !!X, mX,Y : !X ⊗ !Y + // !(X & Y ) with

(ǫX)µ,x = δµ,[x]

(δX)µ,[ν1,...,νn] = δµ,ν1+···+νn

(mX,Y )([x1,...,xn],[y1,...,yp]),µ = δµ,[(1,x1),...,(1,xn),(2,y1),...,(2,yp)]
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Γ ⊢ tt : B Γ ⊢ ff : B Γ ⊢ n : N Γ, x : A ⊢ x : A

Γ, x : A ⊢M : B

Γ ⊢ λxA.M : A→ B

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢M N : B

Γ ⊢M : B Γ ⊢ N1 : X Γ ⊢ N2 : X

Γ ⊢ ifM N1N2 : X

Γ ⊢M : N

Γ ⊢ succM : N

Γ ⊢M : N

Γ ⊢ predM : N

Γ ⊢M : N

Γ ⊢ iszeroM : B

Γ ⊢M : A→ A

Γ ⊢ YM : A

Figure 1: Typing rules for PCF

and m0 : 1 + // !⊤ is defined as 1 on its only point (•, [ ]). We have defined all the structure
of a Seely category [Mel09], and the necessary axioms can be verified. We obtain that the
Kleisli category R-Rel! is cartesian closed.

2.3.4. Recursion. For the interpretation of nPCF in R-Rel we must give structure for re-
cursion. First, for any sets X,Y , we order the homset R-Rel(X,Y ) pointwise, i.e.

α ≤ β ⇔ ∀x ∈ X, y ∈ Y, αx,y ≤R βx,y .

It is straightforward that this defines a cpo, with bottom ⊥ the zero matrix. All operations
on weighted relations involved in the Seely category structure (i.e. composition, tensor and
pairing) are continuous with respect to this order.

As all operations are continuous, we can define, for every set X, a continuous operator

F : R-Rel!(⊤, !(!X ⊸ X) ⊸ X) → R-Rel!(⊤, !(!X ⊸ X) ⊸ X)
α 7→ λf. f (α f)

where the λ-calculus notation is well-defined since R-Rel! is cartesian closed. We then define
YX ∈ R-Rel!(⊤, !(!X ⊸ X) ⊸ X) as usual with

YX =
∨

n∈N

Fn(⊥) ∈ R-Rel!(⊤, !(!X ⊸ X) ⊸ X) ,

and with a context Y , we set YY,X = YX ◦! eY where ◦! denotes Kleisli composition and
eY ∈ R-Rel!(Y,⊤) the terminal morphism, yielding YY,X ∈ R-Rel!(Y, !(!X ⊸ X) ⊸ X).

2.4. Interpretation of nPCF. Now, we define nPCF and its interpretation.

2.4.1. Non-deterministic PCF. The types of nPCF are given by the following grammar:

A,B ::= B | N | A→ B

where B and N are respectively types for booleans and natural numbers. We refer to B and
N as ground types, and use X,Y to range over those. Typed terms are defined via the
typing rules of Figure 1 – in this paper, all terms are well-typed. Contexts are lists of
typed variables x1 : A1, . . . , xn : An. Typing judgments have the form Γ ⊢M : A, where
Γ is a context and A is a type. In addition to the rules listed in Figure 1, the language has
an explicit exchange rule for permuting variable declarations in contexts. Conditionals are
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if : !(B& X& X) + // X

ifγ,v = 1 if γ = [(1, tt), (2, v)]
or γ = [(1, ff ), (3, v)],

ifγ,v = 0 otherwise.

pred : !N + // N

predγ,n = 1 if γ = [0] and n = 0,
or γ = [k + 1] and n = k,

predγ,n = 0 otherwise.

succ : !N + // N

succγ,n = 1 if γ = [k] and n = k + 1,
succγ,n = 0 otherwise.

iszero : !N + // B

iszeroγ,b = 1 if γ = [0] and b = tt,
or γ = [k + 1] and b = ff ,

iszeroγ,b = 0 otherwise.

Figure 2: Interpretation of basic PCF combinators

restricted to the base type, but as usual in call-by-name general conditionals can be defined
as syntactic sugar. Finally, nPCF also has a non-deterministic choice with typing rule:

Γ ⊢ coin : B

We omit the operational semantics [LMMP13], and only recall that we get for ⊢M : X
and value v : X a weight, defined as the number of distinct reduction sequences evaluating
M to v. We write M ⇓n v if there are exactly n reduction sequences from M to v.

2.4.2. Interpretation. We may now define the interpretation of nPCF in N -Rel!.
To every type A we associate a set LAM, its web, defined by LBM = {tt, ff} and LNM = N

the set of natural numbers, extended to all types via LA→ BM = !LAM ⊸ LBM. For contexts:

Lx1 : A1, . . . , xn : AnM = &1≤i≤nLAiM ,

and terms Γ ⊢ M : A are interpreted as morphisms LMM ∈ N -Rel!(LΓM, LAM). We omit the
standard definitions for the λ-calculus constructions. For PCF combinators, we set:

LΓ ⊢ v : XMγ,v′ = δγ,[] · δv,v′

LΓ ⊢ ifM N1N2 : XM = if ◦! 〈LMM, LN1M, LN2M〉

LΓ ⊢ predM : NM = pred ◦! LMM

LΓ ⊢ succM : NM = succ ◦! LMM

LΓ ⊢ iszeroM : BM = iszero ◦! LMM

LΓ ⊢ YM : AM = YLΓM,LAM LMM

with the weighted relations in Figure 2. Finally, we set LΓ ⊢ coin : BMγ,v = LttMγ,v + LffMγ,v,
so that LΓ ⊢ coin : BM : !LΓM + //LBM as required, concluding the interpretation of nPCF.

The reader is referred to [LMMP13] for the proof of the following adequacy property:

Theorem 2.4. For any ⊢M : X, for any value v : X and n ∈ N, M ⇓n v iff LMM[],v = n.

2.4.3. What does the N -weigthed relational model count? Theorem 2.4 shows that at ground
types, the N -weighted relational model counts the distinct reduction sequences to a value.
But for a general type A, a term ⊢ M : A, and x ∈ LAM, the meaning of the coefficient
LMMx ∈ N ⊎ {+∞} is more difficult to describe. Even at higher-order we expect it to be
related to the cardinality of some set of concrete witnesses: but which one?

In this paper we give one answer to this question, in terms of concurrent games.
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3. Concurrent game semantics of nPCF

Our games model of nPCF is based on thin concurrent games [CCW19], to which we add
an exhaustivity mechanism inspired by Melliès [Mel05]. Game semantics is naturally affine
and the purpose of exhaustivity is to ensure strict linearity, in order to establish a tighter
correspondence with R-Rel. As we will see, the two models can be related by a functor
preserving some of the Seely category structure.

3.1. Event structures with symmetry. We start with preliminaries on event structures
with symmetry [Win07], the mathematical structure on which thin concurrent games rest.

3.1.1. Event structures. Specifically, we use prime event structures with binary conflict:

Definition 3.1. An event structure (es) is a triple E = (|E|,≤E ,#E), where |E| is a
countable set of events, ≤E is a partial order called causal dependency and #E is an
irreflexive symmetric binary relation on |E| called conflict, satisfying:

finite causes: ∀e ∈ |E|, [e]E = {e′ ∈ |E| | e′ ≤E e} is finite,
conflict inheritance: ∀e1 #E e2, ∀e2 ≤E e

′
2, e1 #E e

′
2 .

We write e _E e
′ for immediate causality, i.e. e <E e

′ with no event in between. A
notion of critical importance for working with event structures is that of configurations:

Definition 3.2. A (finite) configuration of event structure E is a finite x ⊆ |E| which is

down-closed : ∀e ∈ x, ∀e′ ∈ |E|, e′ ≤E e =⇒ e′ ∈ x.
consistent : ∀e, e′ ∈ x, ¬(e #E e

′) .

We write C (E) for the set of finite configurations on E.

The set C (E) is naturally ordered by inclusion; it is the domain of configurations.
Configurations are typically ranged over by variables x, y, z. For x, y ∈ C (E), we write
x−⊂ y if x is immediately below y in the inclusion order, i.e. there is e ∈ |E| such that
e 6∈ x and y = x ∪ {e} – in that case, we also write x ⊢E e and say that x enables e.
Observe also that any x ∈ C (E) inherits a partial order ≤x, the restriction of ≤E to x× x.
We usually consider a configuration x ∈ C (E) as a partially ordered set.

Event structures are a so-called truly concurrent model: rather than presenting observ-
able execution traces, they list computational events along with their causal dependence
and independence. The causal order ≤E is “conjunctive”: for an event to occur, all its
dependencies must be met first. The conflict relation #E represents an irreconciliable non-
deterministic choice. Finally, configurations provide the adequate notion of state.

3.1.2. Symmetry. Plain event structures are not expressive enough for our purposes, notably
to handle repetitions in games. Instead, we use event structures with symmetry :

Definition 3.3. An isomorphism family on event structure E is a set S (E) of bijections
between configurations of E, satisfying the additional conditions:

groupoid: S (E) contains identity bijections; is closed under composition and inverse.
restriction: for all θ : x ≃ y ∈ S (E) and x ⊇ x′ ∈ C (E),

there is a (necessarily) unique θ ⊇ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.
extension: for all θ : x ≃ y ∈ S (E), x ⊆ x′ ∈ C (E),

there is a (not necessarily unique) θ ⊆ θ′ ∈ S (E) such that θ′ : x′ ≃ y′.
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The pair (E,S (E)) is called an event structure with symmetry (ess).

We regard isomorphism families as proof-relevant equivalence relations: they convey the
information of which configurations are interchangeable, witnessed by an explicit bijection.

If E is an ess, we call the elements of S (E) symmetries. It is easy to prove that
symmetries are automatically order-isos [Win07]. We write θ : x ∼=E y to mean that θ : x ≃ y
is a bijection s.t. θ ∈ S (E) with x = dom(θ) and y = cod(θ). We also write x ∼=E y to
mean that there is a symmetry θ s.t. θ : x ∼=E y. This induces an equivalence relation
on configurations – we write C∼=(E) for the set of equivalence classes, called symmetry
classes, and use x, y, z ∈ C∼=(E) to range over them. Symmetry classes are always non-
empty sets of configurations, and the symmetry class of the empty configuration is always
a singleton {∅}. Abusing notation we write ∅ ∈ C∼=(E), which should cause no confusion.

In thin concurrent games, both games and strategies are certain ess.

3.2. Games. We introduce our games, and the corresponding constructions.

3.2.1. Definition. First, we recall thin concurrent games in the sense of [CCW19]:

Definition 3.4. A thin concurrent game (tcg) is an ess A = (|A|,≤A,#A) with iso-
morphism families S (A),S+(A),S−(A) s.t. S+(A) ⊆ S (A), S−(A) ⊆ S (A), and

polA : |A| → {−,+}

a polarity function preserved by symmetries, and additionally subject to the conditions:

orthogonality: for all θ ∈ S (A), if θ ∈ S+(A) ∩ S−(A), then θ = idx for some x ∈ C (A),
−-receptivity: if θ ∈ S−(A) and θ ⊆

− θ′ ∈ S (A), then θ′ ∈ S−(A),
+-receptivity: if θ ∈ S+(A) and θ ⊆

+ θ′ ∈ S (A), then θ′ ∈ S+(A),

where θ ⊆p θ′ means that θ ⊆ θ′ adding only (pairs of) events of polarity p.

We shall see examples in Section 3.2.2, accompanying the constructions. Intuitively,
negative events correspond to Opponent moves, i.e. actions of the execution environment,
while events with positive polarity are Player moves, i.e. actions of the program under study.
Symmetries correspond to changing the copy indices arising from !(−). Positive symmetries
reindex Player events, while negative symmetries reindex Opponent events.

For us in this paper, a game will be a tcg along with a payoff function:

Definition 3.5. A game is a tcg A = (|A|,≤A,#A,S (A),S+(A),S−(A),polA) with

κA : C (A) → {−1, 0,+1}

a payoff function satisfying the following conditions:

invariant: for all θ : x ∼=A y, we have κA(x) = κA(y),
representable: postponed until Section 4.2.2.

Writing min(A) for the minimal events of A, a −-game must additionally satisfy:

negative: for all a ∈ min(A), polA(a) = −,
initialized: κA(∅) ≥ 0 .

Finally, a −-game A is strict if κA(∅) = 1 and all its initial moves are in pairwise
conflict. It is well-opened if it is strict with exactly one initial move.
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q−

tt+ /o/o/o/o/o ff+

Figure 3: The −-game B

q−

0+ /o 1+ /o 2+ /o . . .

Figure 4: The −-game N

Contexts and types of nPCF will be represented as strict −-games, but more general
games will arise during the model construction.

The condition representable is not necessary to get a model of nPCF but only for the
collapse theorem. We shall only introduce and describe it later on, when it becomes relevant.
The payoff function κA assigns a value to each configuration. Configurations with payoff
0 are called complete: they correspond to terminated executions, which have reached an
adequate stopping point. Otherwise, κA assigns a responsibility for why a configuration is
non-complete. If κA(x) = −1 then Player is responsible, otherwise it is Opponent.

The payoff structure helps to manage the mismatch between game semantics, which are
inherently affine, and relational semantics, which are inherently linear. Using payoff we will
restrict to the strategies that behave linearly; then we can investigate the properties of our
collapse at the level of Seely categories. This can also be achieved with other techniques; for
example one make the weighted relational model affine by decomposing the comonad ! on
R-Rel as the composition !contr ◦ !weak of a comonad allowing weakening, and one allowing
arbitrary duplication. A similar construction appears in [Mel09, 8.10]. With either approach
we obtain a cartesian closed functor between the respective Kleisli categories for !.

From invariant, all configurations in a symmetry class x ∈ C∼=(A) have the same payoff,
so we may write κA(x) unambiguously. We now introduce constructions on games.

3.2.2. Basic games. Firstly we draw in Figures 3 and 4 the −-games corresponding to the
basic types B and N. The diagrams represent the event structures, read from top (the
minimum) to bottom (maximal events). Events are annotated with their polarity, and
the wiggly line indicates conflict – we adopt the convention that we only draw minimal
conflict, i.e. we omit it when it can be deduced via conflict inheritance. In Figure 4, all
positive events are assumed to be in pairwise conflict (this is not reflected in the diagram
for readability). The isomorphism families are not represented, but for these games they
are trivial and only comprise identity bijections between configurations. Finally, we have

κX(∅) = +1 , κX({q}) = −1 , κX({q, v}) = 0 ,

with X ∈ {B,N}. This covers all possible configurations on B and N.
Although there are more configurations on B and N than points in LBM and LNM, the

mismatch is resolved when considering complete configurations:

Lemma 3.6. Writing C 0(A) = {x ∈ C (A) | κA(x) = 0}, we have two bijections:

C 0(B) ≃ LBM
{q, b} 7→ b

C 0(N) ≃ LNM
{q, n} 7→ n .

So the web LXM corresponds to complete configurations of X. For affine or linear lan-
guages with no replication, this correspondence is preserved by all type constructors. But
in the presence of replication, one must consider complete symmetry classes instead:
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Lemma 3.7. Writing C 0
∼=(A) = {x ∈ C∼=(A) | κA(x) = 0}, we have two bijections:

sB : C 0
∼=(B) ≃ LBM sN : C 0

∼=(N) ≃ LNM .

This is not saying much: the symmetries on B and N are trivial, so symmetry classes
are in one-to-one correspondence with configurations. This will not always be the case.

3.2.3. Basic constructions on ess. We start with some constructions on plain ess.

Definition 3.8. Consider E1 and E2 two event structures with symmetry.
Then, we define their parallel composition E1 ‖ E2 as comprising the components:

events: |E1 ‖ E2| = {1} × |E1| ⊎ {2} × |E2|
causality: (i, e) ≤E1‖E2

(j, e′) ⇔ i = j & e ≤Ei
e′

conflict: (i, e) #E1‖E2
(j, e′) ⇔ i = j & e #Ei

e′ ,
symmetry: θ ∈ S (E1 ‖ E2) ⇔ ∃θ1 ∈ S (E1), θ2 ∈ S (E2), θ = θ1 ‖ θ2

where, if θi : xi ∼=Ei
yi, we set (θ1 ‖ θ2)(i, e) = (i, θi(e)).

Note that any configuration x ∈ C (E1 ‖ E2) decomposes uniquely as ({1}×x1)⊎({2}×
x2), which we also write x1 ‖ x2. This is compatible with symmetry: if θ : x1 ‖ x2 ∼=E1‖E2

y1 ‖ y2, then θ decomposes uniquely as θ1 ‖ θ2 with θi : xi ∼=Ei
yi. We may also observe

that any symmetry class x ∈ C∼=(E1 ‖ E2) has the form x1 ‖ x2, which is shorthand for
{x1 ‖ x2 | x1 ∈ x1, x2 ∈ x2} for x1 ∈ C∼=(E1) and x2 ∈ C∼=(E2).

We also use a variant of the above where components are in conflict:

Definition 3.9. Let E1 and E2 be two event structures with symmetry.
Then, we define their sum E1 + E2 as comprising the components:

events: |E1 ‖ E2| = {1} × |E1| ⊎ {2} × |E2|
causality: (i, e) ≤E1‖E2

(j, e′) ⇔ i = j & e ≤Ei
e′

conflict: (i, e) #E1‖E2
(j, e′) ⇔ i 6= j ∨ e #Ei

e′ ,
symmetry: θ ∈ S (E1 ‖ E2) ⇔ ∃θ1 ∈ S (E1), θ2 ∈ S (E2), θ = θ1 ‖ θ2 ,

where, necessarily, one of θ1 or θ2 must be empty.

Any non-empty x ∈ C (E1 + E2) may be written uniquely either as {1} × x1 for x1 ∈
C (E1), or as {2} × x2 for x2 ∈ C (E2). By convention, we write (1, x1) ∈ C (E1 + E2) for
the former and (2, x2) ∈ C (E1 + E2) for the latter. Likewise, non-empty symmetries on
E1 + E2 may be written uniquely either as (1, θ1) or as (2, θ2) for θi ∈ S (Ei), defined in
the obvious way. For x1 ∈ C∼=(E1), we also write (1, x1) ∈ C∼=(E1 & E2) as a shorthand for
{(1, x1) | x1 ∈ x1} and likewise for (2, x2) ∈ C∼=(E1&E2) for x2 ∈ C∼=(E2). Every non-empty
symmetry class on E1 & E2 may be written uniquely via one of these two shapes.

3.2.4. Basic constructions on games. Our first construction is the dual A⊥ of a game A.
We set A⊥ as the same ess as A, changing only the components relative to polarities: more
precisely, polA⊥ = −polA, S+(A

⊥) = S−(A), S−(A
⊥) = S+(A), and κA⊥ = −κA.

Parallel composition splits into tensor and par, which differ only in their payoff function:
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⊗ −1 0 +1
−1 −1 −1 −1
0 −1 0 +1
+1 −1 +1 +1

` −1 0 +1
−1 −1 −1 +1
0 −1 0 +1
+1 +1 +1 +1

Figure 5: Payoff for ⊗ and `

Definition 3.10. Consider two games A and B.
We define their tensor A⊗B as having ess A ‖ B, with the additional components:

polarities: polA⊗B(1, a) = polA(a)
polA⊗B(2, b) = polB(b)

positive symmetries: θA ‖ θB ∈ S+(A⊗B) ⇔ θA ∈ S+(A) & θB ∈ S+(B)
negative symmetries: θA ‖ θB ∈ S−(A⊗B) ⇔ θA ∈ S−(A) & θB ∈ S−(B)

payoff: κA⊗B(xA ‖ xB) = κA(xA)⊗ κB(xB)

where the binary operation ⊗ on {−1, 0,+1} is defined in Figure 5. We also define the par
A`B with the same components, except for κA`B(xA ‖ xB) = κA(xA)` κB(xB).

The tensor of two −-games is again a −-game. The par also preserves −-games, but we
will often use it on more general games: for −-games A and B we will eventually define a
strategy from A to B as a strategy on A⊥ `B. This is a game but not a −-game.

Analogously to Lemma 3.7, we have:

Lemma 3.11. Consider A and B any games. Then, we have

r⊗A,B : C (A⊗B) ≃ C (A)× C (B)

xA ‖ xB 7→ (xA, xB)

s⊗A,B : C 0
∼=(A⊗B) ≃ C 0

∼=(A)× C 0
∼=(B)

xA ‖ xB 7→ (xA, xB)

and likewise, s`A,B : C 0
∼=(A`B) ≃ C 0

∼=(A) × C 0
∼=(B) with the same function.

The proof is straightforward, and uses that in Figure 5, for either ⊗ and `, a con-
figuration xA ‖ xB has null payoff iff it has null payoff on both sides. This connects the
tensor product of games with that in the relational model, which is defined as the cartesian
product of sets. We move to another construction on games.

Definition 3.12. For two strict −-games A1 and A2, we define their with A1 & A2 as
having ess A1 +A2, with the additional components:

polarities: polA&B(1, a) = polA(a)
polA&B(2, b) = polB(b)

positive symmetries: (i, θ) ∈ S+(A1 &A2) ⇔ θ ∈ S+(Ai)
negative symmetries: (i, θ) ∈ S−(A1 &A2) ⇔ θ ∈ S−(Ai) ,

payoff: κA1&A2((i, x)) = κAi
(x) , (x 6= ∅)

κA1&A2(∅) = 1 ,

yielding a strict −-game.

As we will see, this construction gives a cartesian product in our forthcoming category
of strategies. It can also be applied to non-strict −-games, but then it is not a product:
if one of the Ai is not strict then the corresponding projection does not respect payoff
(in the sense of Definition 3.25), because we have set κA1&A2(∅) = 1. On the other hand



THE QUANTITATIVE COLLAPSE OF CONCURRENT GAMES WITH SYMMETRY 13

having κA1&A2(∅) = 0 breaks the correspondence with the relational model, since the empty
configuration does not correspond in a canonical way to one of the components.

On complete symmetry classes this matches the corresponding construction in R-Rel:

Lemma 3.13. Consider A and B any strict −-games. Then, we have

r&A,B : C 6=∅(A&B) ≃ C 6=∅(A) + C 6=∅(B)

s&A,B : C 0
∼=(A&B) ≃ C 0

∼=(A) + C 0
∼=(B) .

This generalizes directly to the n-ary case. The bijection follows our notation (i, x) for
symmetry classes of non-empty configurations. As discussed above, the bijection s&A,B relies
on strictness, which ensures that configurations with null payoff cannot be empty.

3.2.5. Arrow. Next we give the construction of a linear function space. The event structure
A⊸ B is easier to describe when B is well-opened, so we consider this case first.

Definition 3.14. Consider two games A and B, where B is well-opened and has unique
initial move b0. The linear function space A⊸ B has the following components:

events: |A⊸ B| = |A⊥ ‖ B|
causality: ≤A⊸B = ≤A⊥‖B ⊎ {((2, b0), (1, a)) | a ∈ |A|}
conflict: #A⊸B = #A⊥‖B

symmetries: S (A⊸ B) = {θ : x ∼=A⊥‖B y | x, y ∈ C (A⊸ B)}
polarities: polA⊸B = polA⊥‖B

positive symmetries: S+(A⊸ B) = {θ : x ∼=+
A⊥‖B

y | x, y ∈ C (A⊸ B)}

negative symmetries: S−(A⊸ B) = {θ : x ∼=−
A⊥‖B

y | x, y ∈ C (A⊸ B)}

payoff: κA⊸B(xA ‖ xB) = κA⊥(xA)` κB(xB) (xB 6= ∅)
κA⊸B(∅) = 1 .

This is a well-opened −-game.

Again, symmetry classes of A⊸ B relate with the corresponding construction in R-Rel:

Lemma 3.15. Consider two games A and B with B well-opened. Then, we have

r⊸A,B : C 6=∅(A⊸ B) ≃ C (A)× C 6=∅(B)

s⊸A,B : C 0
∼=(A⊸ B) ≃ C 0

∼=(A)× C 0
∼=(B)

Again, the bijection s⊸A,B relies on B being strict : if we had κB(∅) = 0, then there

would be no symmetry class on A⊸ B corresponding to a pair (xA, ∅) with xA non-empty.
It is easy to extend the construction of A ⊸ B to the case where B is strict but not

well-opened: in that case, B has a canonical form B ∼=
˘

b∈min(B)Bb with Bb well-opened,

for the obvious notion of isomorphism between games. This lets us set:

A⊸ B =
¯

b∈min(B)

A⊸ Bb ,

with in particular A⊸ ⊤ = ⊤ for ⊤ the empty game with κ⊤(∅) = 1. We retain:

Lemma 3.16. Consider two games A and B with B strict. Then, we have bijections

r⊸A,B : C 6=∅(A⊸ B) ≃ C (A)× C 6=∅(B)

s⊸A,B : C 0
∼=(A⊸ B) ≃ C 0

∼=(A)× C 0
∼=(B)
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Proof. Obtained by composition

C
6=∅(A⊸ B) ≃

∑

b∈min(B)

C
6=∅(A⊸ Bb)

≃
∑

b∈min(B)

C (A)× C
6=∅(Bb)

≃ C (A)× (
∑

b∈min(B)

C
6=∅(Bb))

≃ C (A)× C
6=∅(B)

using Lemmas 3.13 and 3.15, together with the distributivity of cartesian product over
disjoint union. The exact same reasoning applies to complete symmetry classes.

For xA ∈ C (A) and xB ∈ C 6=∅(B), we write xA ⊸ xB = (r⊸A,B)
−1(xA, xB) ∈ C 6=∅(A⊸

B), and likewise xA ⊸ xB ∈ C 0
∼=(A⊸ B) for xA ∈ C 0

∼=(A) and xB ∈ C 0
∼=(B).

3.2.6. Exponentials. We define !(−), which will eventually extend to a linear exponential
comonad. It is the only source of non-trivial symmetries in the games used for nPCF. For
a −-game A, !A is understood as an infinitary tensor of symmetric copies of A. The point
is to allow for duplication and weakening, and so in particular !A is not strict.

Definition 3.17. Consider A a −-game. Then, we define the bang !A with the components:

events: |!A| = N× |A|
causality: (i, a1) ≤!A (j, a2) ⇔ i = j ∧ a1 ≤A a2
conflict: (i, a1) #!A (j, a2) ⇔ i = j ∧ a1 #A a2

symmetries: θ ∈ S (!A) ⇔ ∃π : N ≃ N, ∃(θn)n∈N ∈ S (A)N

∀(i, a) ∈ dom(θ), θ(i, a) = (π(i), θi(a))
polarities: pol!A(i, a) = polA(a)

positive symmetries: θ ∈ S+(!A) ⇔ ∃(θn)n∈N ∈ S+(A)
N ,

∀(i, a) ∈ dom(θ), θ(i, a) = (i, θi(a))
negative symmetries: θ ∈ S−(!A) ⇔ ∃π : N ≃ N, ∃(θn)n∈N ∈ S−(A)

N ,
∀(i, a) ∈ dom(θ), θ(i, a) = (π(i), θi(a))

payoff: κ!A(‖i∈I xi) =
⊗

i∈I κA(xi) (I ⊆ N, ∀i ∈ I, xi 6= ∅)
κ!A(∅) = 0

where ‖i∈I xi =
⊎

i∈I{i} × xi. This yields a −-game !A.

The definition of payoff uses implicitely that the tensor operation on {−1, 0,+1} defined
in Figure 5 is associative. The −-game !A is non-strict by intention: Opponent is free to
open any number of copies, including zero.

Again, by considering symmetry classes we recover the matching construction inR-Rel.

Lemma 3.18. Consider A a −-game. Then, we have bijections

s!A : C 0
∼=(!A) ≃ Mf (C

0, 6=∅
∼= (A)) s!, 6=∅

A : C
0, 6=∅
∼= (!A) ≃ M6=∅

f (C 0, 6=∅
∼= (A))

with C
0, 6=∅
∼= (A) the non-empty complete classes, and M6=∅

f (X) the non-empty finite multisets.
In particular, if A is a strict −-game, the first bijection specializes to

s!A : C 0
∼=(!A) ≃ Mf (C

0
∼=(A)) .
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Proof. We prove the first bijection. We first define s!A on concrete configurations of !A:

s!A : C 0(!A) → Mf (C
0, 6=∅
∼= (A))

∅ 7→ []
‖i∈I xi 7→ [xi | i ∈ I] (∀i ∈ I, xi 6= ∅)

where xi denotes the symmetry class of xi. It is straightforward that if x ∼=!A y then

s!A(x) = s!A(y), so s
!
A lifts to s!A : C 0

∼=(!A) → Mf (C
0, 6=∅
∼= (A)), keeping the same notation.

Injective. Assume s!A(‖i∈I xi) = s!A(‖j∈J yj) with every xi and yj non-empty. We have

[xi | i ∈ I] = [yj | j ∈ J ] ,

meaning that there is a bijection π : I ≃ J such that for all i ∈ I, we have xi = yπ(i). In
turn, this means that for all i ∈ I, there is some θi : xi ∼=A yπ(i). Now, completing π to
π′ : N ≃ N arbitrarily yields θ : ‖i∈I xi ∼=!A ‖j∈J yj as required.

Surjective. Consider µ ∈ Mf (C
0, 6=∅
∼= (!A)). If µ = [], its pre-image is the empty complete

symmetry class. Otherwise, write µ = [xi | i ∈ I] with each xi non-empty. For i ∈ I, fix
some xi ∈ xi. W.l.o.g. we may assume I ⊆f N, so that ‖i∈I xi gives the required pre-image.

Clearly, s!A restricts to s!, 6=∅
A : C

0, 6=∅
∼= (!A) ≃ M6=∅

f (C 0, 6=∅
∼= (A)).

Note that unless A is strict, not all finite multisets in Mf (C
0
∼=(A)) correspond to a

complete symmetry class on !A. For instance [∅], or any [∅, . . . , ∅] do not.

3.2.7. Interpretation of types and arenas. We give the complete interpretation of types.
Types are interpreted as well-opened −-games: for base types we use the well-opened games
B and N defined in Section 3.2.2, and we set JA → BK = !JAK ⊸ JBK. Contexts are
interpreted as strict −-games, with Jx1 : A1, . . . , xn : AnK = &1≤i≤nJAiK.

Putting together Lemmas 3.7, 3.13, 3.15 and 3.18, we immediately get:

Lemma 3.19. For any type A and context Γ, there are bijections:

styA : LAM ≃ C 0
∼=(JAK) sctxΓ : Mf (LΓM) ≃ C 0

∼=(!JΓK) .

So the web of A may be regarded as the set of complete symmetry classes of JAK. The
games obtained as the interpretation of types have a particular shape:

Definition 3.20. An arena is a −-game A satisfying:

alternating: if a1 _A a2, polA(a1) 6= polA(a2),
forestial: if a1 ≤A a and a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1.

For any type A and context Γ, it is straightforward that the −-games JAK and JΓK are
arenas. Arenas do not quite characterize the games arising from the interpretation, but get
close enough for the purposes of this paper. More precisely, arenas guarantee that moves
have at most one causal immediate predecessor, hence recovering the notion of justifier
familiar from more traditional game semantics [CC21]. This will play a very minor role in
this paper: it is necessary for the deadlock-freeness property used in Section 4.1.1.

3.3. Strategies. Now that games are set, we introduce strategies used to interpret terms.
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3.3.1. Plain strategies. We start by recalling the notion of causal strategy in its formulation
in [CC21] – here, we only say strategy as it is the only sort of strategy we consider.

Definition 3.21. A prestrategy on game A comprises an ess (|σ|,≤σ ,#σ,S (σ)) with

∂ : |σ| → |A|

a function called the display map, subject to the following conditions:

rule-abiding: for all x ∈ C (σ), ∂(x) ∈ C (A),
locally injective: for all s1, s2 ∈ x ∈ C (σ), if ∂(s1) = ∂(s2) then s1 = s2,

symmetry-preserving: for all θ ∈ S (σ), ∂(θ) = {(∂(s1), ∂(s2)) | (s1, s2) ∈ θ} ∈ S (A),
∼-receptive: for all θ : x ∼=σ y, and extensions x ⊢σ s

−
1 , ∂(θ) ⊢S (A) (∂(s

−
1 ), a

−
2 ),

there is a unique s−2 ∈ |σ| s.t. θ ⊢S (σ) (s
−
1 , s

−
2 ) and ∂(s

−
2 ) = a−2 ,

thin: for all θ : x ∼=σ y, and extension x ⊢σ s
+
1 ,

there is a unique extension y ⊢σ s
+
2 such that θ ⊢S (σ) (s

+
1 , s

+
2 ).

Additionally, we say that σ is a strategy if it satisfies the further three conditions:

negative: for all s ∈ |σ|, if s is minimal then s is negative,
courteous: for all s1 _σ s2, if pol(s1) = + or pol(s2) = − then ∂(s1) _A ∂(s2),
receptive: for all x ∈ C (σ), for all ∂(x) ⊢A a

−,
there is a unique x ⊢σ s

− ∈ C (σ) such that ∂(s) = a,

We write σ : A to mean that σ is a strategy on game A.

We disambiguate some notations used in the definition. First, σ implicitly comes with
polarities, imported from A as polσ(s) = polA(∂(s)). We often tag events to indicate their
polarity as in s−, s+; the sign is not considered part of the variable name but conveys the
polarity information. We also used the enabling relation on isomorphism families, defined
by θ ⊢S (A) (a1, a2) iff (a1, a2) 6∈ θ and θ ∪ {(a1, a2)} ∈ S (A).

A strategy is a causal presentation, in one global object, of the entire computational
behaviour of a program on the interface with its execution environment. While the events
or moves in |σ| are not technically moves of the game, the display map ∂σ associates to
any move of σ the corresponding move in the game, and is subject to adequate conditions
ensuring compatibility with the structure. More precisely, conditions rule-abiding, locally
injective and symmetry-preserving together amount to ∂ being a map of event structures
with symmetry [Win07] – the adequate simulation maps between ess.

Conditions courteous and receptive are the usual conditions for concurrent strategies
[RW11, CCRW17], expressing that the strategy should be invariant under asynchronous de-
lay. The condition ∼-receptive forces strategies to consider as symmetric pairs of Opponent
events symmetric in the game, and hence to treat them uniformly. Finally, thin is a mini-
mality condition forcing strategies to pick one canonical representative up to symmetry for
positive moves. For further explanations and discussions on those conditions, see [CCW19].

As an illustration, we show a strategy in Figure 6. We take advantage of this to intro-
duce our convention for drawing strategies. Ignoring dotted lines, the diagram represents
the event structure (|σ|,≤σ ,#σ), via its immediate causality relation _. For convenience,
each node is labeled with the corresponding move in the game as observed through ∂σ –
as each move in the game originates in one of the ground types appearing in the type, we
attempt as much as possible to place moves in the diagram in the corresponding column.
The immediate causality in the game is conveyed through the dotted lines. The grey sub-
scripts correspond to the copy indices, i.e. the tags introduced in Definition 3.17 to address
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Figure 6: A strategy σ : !(!B ⊸ B) ⊸ B

the components of !A. For moves under several !, we write the copy indices in a sequence
ranging from the outermost to the innermost !. The representation is symbolic: the actual
strategy comprises branches as shown for all i, j, k ∈ N. Finally, the one component of σ
missing in this representation is the isomorphism family S (σ) which is too unwieldy to draw
– in this particular case it consists of all order-isomorphisms changing only copy indices.

Only a few strategies are definable via nPCF: for instance, in [CC21] the same strate-
gies are used to model a higher-order concurrent language with shared memory. One could,
with an adequate notion of innocence, characterize exactly those strategies definable through
nPCF – this is done in [Cas17]. For our present purposes this is not required; nevertheless
we have to add two further conditions for the collapse functor to exist.

3.3.2. Visible strategies. Visibility is a locality property for the control flow. First, we
define:

Definition 3.22. Consider E an event structure.
A grounded causal chain (gcc) in E is ρ = {ρ1, . . . , ρn} ⊆ |E| forming

ρ1 _E . . . _E ρn

a chain with ρ1 minimal with respect to ≤E. We write gcc(E) for the gccs in E.

If σ is forestial, then gcc(σ) comprises simply its finite branches. But in general, a gcc
ρ ∈ gcc(σ) is not down-closed; it may be seen as an individual thread, and σ may be regarded
as a collection of such threads with the information of their non-deterministic branchings,
as well as the points where they causally fork or merge. Visibility states that each thread
respects the local scope, i.e. it may not use resources introduced in another thread:

Definition 3.23. A strategy σ : A is visible if for all ρ ∈ gcc(σ), ∂σ(ρ) ∈ C (A).

In this paper, we require visibility as it restricts the behaviour of strategies just enough
so that their interactions never deadlock. Visibility is far from sufficient in the way of
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capturing the behaviour of nPCF terms – for those the causal structure is always forest-
shaped, which trivially entails visibility. We work with visibility rather than a forest-shaped
causality as it costs us nothing, and makes our collapse theorem slightly more general.

Much more information on visibility may be found in [CC21].

3.3.3. Exhaustive strategies. Exhaustivity is an elegant mechanism due to Melliès [Mel05].
As discussed previously, it ensures that strategies are linear rather than affine. It also
enforces a form of well-bracketing, forcing strategies to respect the call stack discipline.

First, we must define a notion of stopping state for a strategy.

Definition 3.24. Consider A a game, and σ : A a strategy. A configuration x ∈ C (σ) is
+-covered if for all m ∈ x, if m is maximal in x (with respect to ≤σ), then polσ(m) = +.

We write C+(σ) for the set of all +-covered configurations of σ.

In other words, a configuration is +-covered if no Opponent move is left unresponded.

Definition 3.25. Consider A a game, and σ : A a strategy. We set the condition:

exhaustive: for all x ∈ C+(σ), κA(∂σ(x)) ≥ 0.

For example, σ : B1 ⊸ B2 (indices for disambiguation) cannot reply on B2 without
evaluating its argument, as κB1⊸B2({q

−
2 , b

+
2 }) = κB⊥(∅) ` κB({q

−, b+}) = −1` 0 = −1.
In this paper we include all details of the compositionality of exhaustivity, which to the

best of our knowledge do not appear in any published source.

3.4. Composition of plain strategies. Postponing for now the stability under composi-
tion of visibility and exhaustivity, we recall the composition of plain strategies.

For games A and B, a strategy from A to B is a strategy on A⊥ ` B, also written
A ⊢ B. Fix from now on A,B and C, and σ : A ⊢ B, τ : B ⊢ C. We aim to define
τ ⊙ σ : A ⊢ C. The concrete definition of composition is covered at length elsewhere
[CCW19]; instead we give a characterization in terms of its states.

3.4.1. Synchronization. Given configurations xσ ∈ C (σ), xτ ∈ C (τ), by convention we write

∂σ(x
σ) = xσA ‖ xσB ∈ C (A ⊢ B) , ∂τ (x

τ ) = xτB ‖ xτC ∈ C (B ⊢ C) ,

for the corresponding projections to the game. In defining composition, the first stage is to
capture when such configurations xσ ∈ C (σ) and xτ ∈ C (τ) may successfully synchronise.

Definition 3.26. Consider two configurations xσ ∈ C (σ) and xτ ∈ C (τ). They are
causally compatible if (1) matching: xσB = xτB = xB; and (2) if the bijection

ϕxσ ,xτ : xσ ‖ xτC
∂σ‖xτC
≃ xσA ‖ xB ‖ xτC

xσA‖∂−1
τ

≃ xσA ‖ xτ ,

obtained by composition using local injectivity of ∂σ and ∂τ , is secured, i.e. the relation

(m,n) ⊳ (m′, n′) ⇔ m <σ‖C m
′ ∨ n <A‖τ n

′ ,

defined on (the graph of) ϕxσ ,xτ by importing causal constraints of σ and τ , is acyclic.

Securedness eliminates deadlocks: two matching xσ ∈ C (σ), xτ ∈ C (τ) agree on the
final state in B, but σ and τ may impose incompatible constraints making it unreachable.
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3.4.2. Plain composition. It turns out that up to an adequate isomorphism, there is a unique
strategy τ ⊙σ : A ⊢ C whose configurations are such synchronizations, in a way compatible
with symmetry. In order to state this we first disambiguate our notion of isomorphism.

Definition 3.27. Consider A a game, and σ, τ : A two strategies.
An isomorphism ϕ : σ ∼= τ is an invertible map of ess such that ∂τ ◦ ϕ = ∂σ.

Before we introduce composition, we extend two earlier notions from configurations
to symmetries. A symmetry θ ∈ S (σ) is +-covered if either of dom(θ) or cod(θ) is: as
symmetries are order-isomorphisms and preserve polarities, the difference is immaterial. We
write S +(σ) for the set of +-covered symmetries of σ. Likewise, θσ ∈ S (σ) and θτ ∈ S (τ)
are causally compatible if they are matching, i.e. ∂σθ

σ = θσA ‖ θσB and ∂τθ
τ = θτB ‖ θτC

with θσB = θτB ; and secured, i.e. either dom(θσ), dom(θτ ) or cod(θσ), cod(θτ ) are.
Now we state the following proposition, whose proof may be found in [CC21]:

Proposition 3.28. Consider σ : A ⊢ B and τ : B ⊢ C two strategies.
Then, there is a strategy τ ⊙σ : A ⊢ C, unique up to iso, such that there are order-isos:

(− ⊙−) : {(xτ , xσ) ∈ C+(τ)× C+(σ) | xσ and xτ causally compatible} ≃ C+(τ ⊙ σ)
(− ⊙−) : {(θτ , θσ) ∈ S +(τ)× S +(σ) | θσ and θτ causally compatible} ≃ S +(τ ⊙ σ)

commuting with dom, cod, and s.t. for θσ ∈ S +(σ) and θτ ∈ S +(τ) causally compatible,

∂τ⊙σ(θ
τ ⊙ θσ) = θσA ‖ θτC .

So τ ⊙σ is the unique (up to iso) strategy whose configurations correspond to matching
pairs for which the causal constraints imposed by σ and τ are compatible.

The idea of considering matching pairs of configurations brings us close to the compo-
sition of relations, spans, or profunctors. In general, however, the composition of strategies
is more restricted, because of causal compatibility. This is a well-known feature of game
semantics, which allows for the interpretation of more sophisticated language constructs.
But for the strategies of this paper, matching configurations are always causally compatible.
This follows from visibility, which we will exploit to prove that composition never deadlocks;
see Section 4.1.1. This is crucial for constructing a functor to the relational model.

3.4.3. Copycat. As we have defined a notion of composition, it is natural to introduce here
the accompanying identity, the copycat strategy. For any game A, the copycat strategy
ccA : A ⊢ A is an asynchronous forwarder: any Opponent move on either side enables (i.e.
is the unique causal dependency for) the corresponding event on the other side.

We only give the definition of copycat on arenas, as it is sufficient and slightly simpler:

Definition 3.29. For each arena A, the copycat strategy ccA : A ⊢ A comprises:

|ccA| = |A ⊢ A|
∂ccA(i, a) = (i, a)

(i, a) ≤ccA (j, a′) ⇔ a <A a
′; or a = a′, polA⊢A(i, a) = − and polA⊥‖A(j, a

′) = +

(i, a) #ccA (j, a′) ⇔ a #A a
′ ,

with symmetries those bijections of the form θ1 ‖ θ2 : x1 ‖ x2 ∼=ccA y1 ‖ y2 such that

θ1 : x1 ∼=A y1 , θ2 : x2 ∼=A y2 , and θ1 ∩ θ2 : x1 ∩ x2 ∼=A y1 ∩ y2 .

As for composition, we shall rely on a characterization of its +-covered configurations:
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Proposition 3.30. Consider A any arena. Then, we have:

C+(ccA) = {xA ‖ xA ∈ C (A ‖ A) | xA ∈ C (A)}
S +(ccA) = {θA ‖ θA ∈ S (A ‖ A) | θA ∈ S (A)} .

In +-covered configurations, any Opponent moves must have caused a Player move;
so they must all have been forwarded. This makes +-covered configurations completely
balanced; once again it hints at the link with relational semantics as through its +-covered
configurations, ccA matches the identity relation on configurations.

3.4.4. Congruence. Arenas and strategies up to isomorphism form a bicategory, where the
2-cells are given by a notion of maps between strategies: these are defined as maps of event
structures that commute with the display maps [CCW19]. For the purposes of semantics,
we usually consider strategies up to isomorphism, and this gives a category. Unfortunately
this category is not the right one: the requirement that isomorphisms commute with the
display map is too strict. For ! to satisfy the comonad laws, we require a more permissive
equivalence relation between strategies, which allows for the choice of copy indices to be
different in each strategy. Formally, this weaker notion of isomorphism is given by a map
of event structures which commutes with the display maps up to positive symmetry :

Definition 3.31. Consider σ, τ : A two causal strategies on arena A.
A positive isomorphism ϕ : σ ≈ τ is an isomorphism of ess satisfying

∂τ ◦ ϕ ∼+ ∂σ ,

i.e. for all x ∈ C (σ), {(∂σ(s), ∂τ ◦ϕ(s)) | s ∈ x} ∈ S+(A). If there is a positive iso ϕ : σ ≈ τ
we say σ and τ are positively isomorphic, and write σ ≈ τ .

This means that σ and τ are the same up to renaming of events. Intuitively this
renaming might cause a reindexing of positive events, but it must keep the copy indices
of negative events unchanged. Crucially, the induced notion of equivalence is preserved by
composition, i.e. it is a congruence.

Proposition 3.32. Consider σ, σ′ : A ⊢ B, τ, τ ′ : B ⊢ C s.t. σ ≈ σ′ and τ ≈ τ ′.
Then, we have τ ⊙ σ ≈ τ ′ ⊙ σ′.

The proof is fairly elaborate [CCW19]. Details are out of scope, however the main
argument is reviewed later as Proposition 4.4: from two configurations able to synchronize
up to symmetry, one can extract symmetric configurations synchronizing on the nose.

3.5. Composition of visible and exhaustive strategies. The fact that visible strategies
compose is detailed in [CC21], and we do not repeat the details here. Note that for any arena
A, the copycat strategy ccA : A ⊢ A is visible, and for arenas A, B and C and strategies
σ : A ⊢ B and τ : B ⊢ C, if σ and τ are visible then so is τ ⊙ σ. We emphasize that these
results apply to arenas but not to arbitrary games; in particular, the proof exploits that
every event has a unique immediate predecessor in the game [CC21].

The compositionality of exhaustivity does not appear anywhere in the literature, so we
include the details, straightforward as they are. We start with copycat.

Proposition 3.33. For any arena A, ccA : A ⊢ A is exhaustive.

Proof. By Lemma 3.30, +-covered configurations of copycat are xA ‖ xA ∈ C+(ccA) for
xA ∈ C (A). But then κA⊢A(xA ‖ xA) = (−κA(xA))` κA(xA), always non-negative.
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We now prove that exhaustive strategies are stable under composition.

Proposition 3.34. Consider A,B and C games, and σ : A ⊢ B, τ : B ⊢ C exhaustive.
Then, τ ⊙ σ : A ⊢ C is exhaustive.

Proof. By Proposition 3.28, any +-covered configuration of τ ⊙ σ has the form xτ ⊙ xσ ∈
C+(τ ⊙ σ) for xσ ∈ C+(σ) and xτ ∈ C+(τ) causally compatible. We write projections as:

∂σx
σ = xA ‖ xB , ∂τx

τ = xB ‖ xC

and ∂τ⊙σ(x
τ ⊙ xσ) = xA ‖ xC . If κA(xA) = −1 or κC(xC) = 1, then κA⊢C(xA ‖ xC) = 1

and we are done. Hence, assume κA(xA) ≥ 0 and κC(xC) ≥ 0. If κA(xA) = 1, then we
must have κB(xB) = 1 as well since κA⊢B(xA ‖ xB) ≥ 0 since σ is exhaustive. But then,
with the same reasoning by exhaustivity of τ , κC(xC) = 1, contradiction. Symmetrically,
if κC(xC) = −1 we may deduce that κA(xA) = −1, contradiction. The only case left has
κA(xA) = 0 and κC(xC) = 0, so that κA⊢C(xA ‖ xC) = 0 as needed.

3.6. Categorical structure. We now outline the categorical structure of our model, as
required for nPCF, exploiting the various constructions on games introduced in 3.2. Due to
the 2-dimensional nature of the model (isomorphisms between strategies play an important
role), there are subtleties in the presentation of this structure, which we explain now.

Strategies on thin concurrent games form a bicategory, where associativity and unit
laws for composition hold only up to iso. Above we introduced a weaker notion, positive
isomorphism, which is useful for considering strategies up to a choice of copy indices. This
gives rise to another bicategory with the same objects and morphisms, but more 2-cells.

A natural step could be to present the categorical structure at this level (as in [Paq20]).
This is mathematically important but technical, because many additional coherence laws
involving 2-cells must be verified. For this paper this is not necessary as any 2-dimensional
structure disappears in the collapse to R-Rel. Thus we compromise and define a model
consisting of objects (arenas), morphisms (exhaustive, visible strategies), and an equivalence
relation on each hom-set (≈), such that the laws for composition hold up to ≈. In other
words, we record which strategies are positively isomorphic, but forget the isos.

We call this a ∼-category. There is a general theory of these, in which the usual
coherence laws for morphisms hold only up to equivalence1. In particular there are canonical
notions of (∼-)functor, (∼-)comonad, monoidal ∼-category, and so on, which we use below.

3.6.1. ∼-categories. We start by defining ∼-categories:

Definition 3.35. A (small) ∼-category C consists in a set of objects C0; for each A,B, a
set of morphisms C(A,B) with an equivalence relation ∼; a composition operation

(− ◦ −) : C(B,C)× C(A,B) → C(A,C)

for all A,B,C ∈ C0; an identity morphism idA ∈ C(A,A) for all A ∈ C0, subject to:

associativity: for all f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D), (h ◦ g) ◦ f ∼ h ◦ (g ◦ f),
identity: for all f ∈ C(A,B), idB ◦ f ∼ f ◦ idA ∼ f ,

congruence: for all f ∼ f ′ ∈ C(A,B), g ∼ g′ ∈ C(B,C), g′ ◦ f ′ ∼ g ◦ f .

1We note that a ∼-category is an enriched bicategory [GS16], where the enrichment is over a 2-category
of sets with equivalence relations, equivalence-preserving maps, and equivalence between maps, with the
latter defined pointwise. This gives a formal justification for our definitions.
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In particular, the development above already gives us our main ∼-category of interest:

Proposition 3.36. There is Strat, a ∼-category with arenas as objects; morphisms from A
to B the exhaustive, visible strategies on A ⊢ B; and equivalence relation ≈.

Proof. The required structure was provided above; it remains to prove that associativity of
composition and neutrality of copycat hold up to ≈. In other words, we must provide

ασ,τ,δ : (δ ⊙ τ)⊙ σ ≈ δ ⊙ (τ ⊙ σ)
λσ : ccB ⊙ σ ≈ σ
ρσ : σ ⊙ ccA ≈ σ ,

for all σ : A ⊢ B, τ : B ⊢ C and δ : C ⊢ D. On +-covered configurations, they are:

ασ,τ,δ : C+((δ ⊙ τ)⊙ σ) ∼= C+(δ ⊙ (τ ⊙ σ))
(xδ ⊙ xτ )⊙ xσ 7→ xδ ⊙ (xτ ⊙ xσ)

λσ : C+(ccB ⊙ σ) ∼= C+(σ)
(xB ‖ xB)⊙ xσ 7→ xσ

and symmetrically for ρσ; using Propositions 3.28 and 3.30. In fact, these bijections be-
tween configurations are sufficient to define the required isomorphisms of strategies (pro-
vided one checks that they are order-isomorphisms, compatible with symmetry, and that
they commute with display maps) – see [CC21]. In this paper, we only need the above
characterization of their action on configurations. Congruence is Proposition 3.32.

Functors between ∼-categories must preserve∼, and preserve composition and identities
up to∼. Of course, any∼-category quotients to a category whose morphisms are equivalence
classes. But it is preferable to refrain from quotienting: this way, the interpretation yields a
concrete strategy rather than an equivalence class. This is particularly relevant for recursion
which involves an complete partial order on concrete strategies, whereas it is unknown if
positive isomorphism classes satisfy the adequate completeness properties. Note that this
subtlety is present in all game semantics involving explicit copy indices, including in AJM
games [AJM00], though it is usually handled implicitly.

3.6.2. Relative Seely categories. Following Section 3.2.4, some constructions are only avail-
able for strict games: A&B is only defined when A and B are strict (Definition 3.12), and
A ⊸ B is only defined when B is strict (Definition 3.14). As we explain in more details
below, this means that some of the Seely category structure in Strat only exists relative to
the inclusion functor Strats →֒ Strat, where Strats is the full sub-∼-category of strict arenas.
We introduce a notion of relative Seely category, which generalises Seely categories, in which
some constructions (& and ⊸) are only available for a sub-family of objects.

Additionally, while ! is always available in Strat (there is a comonad ! : Strat → Strat),
the collapse of Section 6 only preserves ! on strict arenas. So to precisely capture the
logical content of this collapse operation, it makes sense to consider ! as a relative comonad
Strats →֒ Strat, in the sense of [ACU10]. The axioms for relative Seely categories ensure
that the induced Kleisli category (with objects are the strict ones), is cartesian closed.

Relative Seely categories model the fragment of Intuitionistic Linear Logic with

S, T ::= ⊤ | S & T | A⊸ S

A,B ::= 1 | A⊗B | S | !S

as formulas, separated into strict S, T and general A,B formulas. This corresponds to the
logical structure preserved by our collapse; note that this covers all formulas involved in
Girard’s call-by-name translation for nPCF types.
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In the following we make use of the standard notions of relative adjunctions and relative
comonads. For the reader unfamiliar with these, the definition also contains explicit data.
For full details see Appendix A.1.

Definition 3.37. A relative Seely category is a symmetric monoidal category (C,⊗, 1)
equipped with a full subcategory Cs together with the following data and axioms:

• Cs has finite products (&,⊤) preserved by the inclusion functor J : Cs →֒ C.
• For every B ∈ C there is a functor B ⊸ − : Cs → Cs, such that there is a natural bijection

Λ(−) : C(A⊗B,S) ≃ C(A,B ⊸ S).

for every A ∈ C and S ∈ Cs. In other words, the functors

−⊗B : C → C J(B ⊸ −) : Cs → C

form a J-relative adjunction −⊗B ⊣J J(− ⊸ B).
• There is a J-relative comonad ! : Cs → C. Concretely we have, for every S ∈ Cs, an object
!S ∈ C and a morphism ǫS : !S → S, and for every σ : !S → T , a promotion σ† : !S → !T ,
subject to three axioms [ACU10].

• The functor ! : Cs → C is symmetric strong monoidal (Cs,&,⊤) → (C,⊗, 1), so there are

m0 : 1 → !⊤ mS,T : !S ⊗ !T → !(S & T )

isos for S, T ∈ Cs, natural in S, T and satisfying the axioms for Seely categories [Mel09].

Note that whenever Cs = C this is precisely a Seely category in the usual sense; in
particular any Seely category is canonically a relative Seely category.

For any relative Seely category, the Kleisli category associated with the relative comonad
! is cartesian closed. This category, denoted C!, has objects those of Cs, and C!(S, T ) =
C(!S, T ). The proof is essentially as for Seely categories; details are in Appendix A.2.

Lemma 3.38. For a relative Seely category C, the Kleisli category C! is cartesian closed
with finite products given as in Cs, and function space S ⇒ T = !S ⊸ T .

For Strat these definitions must be taken in ∼-categorical form, this is what we do next.
The generalisation is very straightforward, but we give the main definitions along the way.

3.6.3. Symmetric monoidal structure. We first extend the symmetric monoidal structure.
Symmetric monoidal ∼-categories are defined as expected; where the usual data re-

quired to preserve ∼ and satisfy laws up to ∼. For ∼-categories C and D, their product
C×D has objects C0×D0, morphisms (A,B) → (C,D) the pairs (f, g) ∈ C(A,C)×D(B,D),
with obvious identity and compositions, and (f, g) ∼ (f ′, g′) if f ∼ f ′ and g ∼ g′.

Definition 3.39. A symmetric monoidal ∼-category is a ∼-category C equipped with
an object 1 ∈ C0, a ∼-functor

(−⊗−) : C × C → C,

and, for all A,B,C ∈ C0, morphisms

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)
λA : 1⊗A → A
ρA : A⊗ 1 → A

sA,B : A⊗B → B ⊗A

invertible up to ∼, and such that the usual naturality and coherence conditions for a sym-
metric monoidal category [ML13] hold up to ∼.
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For Strat, on arenas the tensor is an instance of the tensor of games given in Definition
3.10. The unit 1 is the empty arena where the empty configuration has payoff 0. This
operation extends to a tensor product of strategies, defined using parallel composition of
event structures. Rather than giving the concrete construction we state a characterization
in terms of +-covered configurations:

Proposition 3.40. Consider A,B,C,D arenas, and σ : A ⊢ B, τ : C ⊢ D strategies.
Then, there is a strategy σ ⊗ τ : A⊗ C ⊢ B ⊗D, unique up to iso, s.t. there are

(−⊗−) : C+(σ)× C+(τ) ≃ C+(σ ⊗ τ)
(−⊗−) : S +(σ)× S +(τ) ≃ S +(σ ⊗ τ)

order-isos commuting with dom, cod, and s.t. for all θσ ∈ S +(σ) and θτ ∈ S +(τ),

∂σ⊗τ (θ
σ ⊗ θτ ) = (θσA ‖ θτC) ‖ (θσB ‖ θτD) .

This is clear from the construction of the tensor in [CCW19] with uniqueness coming
from Lemma 4.11 of [CC21]. Bifunctoriality up to isomorphism is proved in [CCW19].
The components of the symmetric monoidal structure are also given in [CCW19]; they are
immediate variants of the copycat strategy of Definition 3.29. They also satisfy obvious
characterizations of their +-covered configurations, with for instance for the associator:

((xA ‖ xB) ‖ xC) ‖ (xA ‖ (xB ‖ xC)) ∈ C
+(αA,B,C)

for xA ∈ C (A), xB ∈ C (B) and xC ∈ C (C) and C+(αA,B,C) containing exactly those, and
similarly for λA, ρA and sA,B. For this paper, the only new things to check are that the
structural isomorphisms are exhaustive, and that the tensor preserves exhaustivity. The
former is straightforward via characterization of configurations; we detail the latter.

Proposition 3.41. If σ : A ⊢ B and τ : C ⊢ D are exhaustive, so is σ⊗ τ : A⊗C ⊢ B⊗D.

Proof. Consider xσ⊗xτ ∈ C+(σ⊗ τ), i.e. xσ ∈ C+(σ) and xτ ∈ C+(τ). If κA(x
σ
A) = −1 or

κC(x
τ
C) = −1, then we are done; thus assume κA(x

σ
A) ≥ 0 and κC(x

τ
C) ≥ 0. If κB⊗D(x

σ
B ‖

xτD) = 1 then we are done; thus assume κB⊗D(x
σ
B ‖ xτD) ≤ 0. If κB⊗D(x

σ
B ‖ xτD) = −1,

then κB(x
σ
B) = −1 or κD(x

τ
D) = −1, say the former. Since σ is exhaustive and xσ ∈ C+(σ),

we have κA(x
σ
A) = −1, contradiction – and likewise, κD(x

τ
D) = −1 yields a contradiction.

So, κB⊗D(x
σ
B ‖ xτD) = 0, i.e. κB(x

σ
B) = 0 and κD(x

τ
D) = 0. Finally, assume κA(x

σ
A) = 1.

Then, by exhaustivity of σ, κB(x
σ
B) = 1 as well, contradiction. So κA(x

σ
A) = 0, and likewise

κC(x
τ
C) = 0. Summing up, the overall payoff of ∂σ⊗τ (x

σ ⊗ xτ ) is 0, as required.

Overall, we have completed the symmetric monoidal structure of Strat:

Proposition 3.42. Equipped with the above, Strat is a symmetric monoidal ∼-category.

3.6.4. Closed structure. The (relative) closed structure is easily derived, using the linear
function space construction of Section 3.2.5. For A,B,C arenas with C strict, the currying
bijection Λ(−) : Strat(A ⊗ B,C) → Strat(A,B ⊸ C) leaves the ess unchanged and only

affects the display map: for σ : A⊗B → C and xσ ∈ C 6=∅(σ) with ∂σ(x
σ) = (xσA ‖ xσB) ‖ x

σ
C ,

∂Λ(σ)(x
σ) = xσA ‖ (xσB ⊸ xσC)

using the notation introduced in Section 3.2.5.
The evaluation morphism evB,C : (B ⊸ C)⊗B → C is a copycat-like strategy having

((xB ⊸ xC) ‖ xB) ‖ xC ∈ C
+(evB,C)
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as +-covered non-empty configurations, for any xB ∈ C (B) and xC ∈ C 6=∅(C).

3.6.5. Cartesian products. We now introduce the cartesian structure.

Definition 3.43. A ∼-category C has binary products if for any A,B ∈ C, there exists
an object A&B ∈ C, and projections πA ∈ C(A&B,A) and πB ∈ C(A&B,B), such that
for every Γ ∈ C, σ ∈ C(Γ, A), and τ ∈ C(Γ, B), there exists 〈σ, τ〉, unique up to ∼, such that

σ ∼ πA ◦ 〈σ, τ〉 τ ∼ πB ◦ 〈σ, τ〉.

An object ⊤ ∈ C is terminal if for any Γ ∈ C there is eΓ ∈ C(Γ,⊤), unique up to ∼.

We prove that Strats has binary products and a terminal object (so it has all finite
products), and these are preserved by the inclusion functor Strats →֒ Strat.

Clearly, the arena ⊤ with no events and κ⊤(∅) = 1 is strict, and terminal in Strat. For
any A and B strict arenas, their product is given by the construction A & B of Definition
3.12. We give a characterisation of the pairing construction 〈−,=〉.

Proposition 3.44. For arenas Γ, A,B, with A,B strict, and strategies σ : Γ ⊢ A, τ : Γ ⊢ B,
there is a strategy 〈σ, τ〉 : Γ ⊢ A&B, unique up to iso, s.t. there are order-isos:

C+(σ) + C+(τ) ≃ C+(〈σ, τ〉)
S +(σ) + S +(τ) ≃ S +(〈σ, τ〉)

commuting with dom, cod, and such that for all θσ ∈ S +(σ) and θτ ∈ S +(τ), we have

∂〈σ,τ〉(injσ(θ
σ)) = θσΓ ‖ (θσA ‖ ∅) , ∂〈σ,τ〉(injτ (θ

τ )) = θτΓ ‖ (∅ ‖ θτB)

writing injσ : C+(σ) → C+(〈σ, τ〉) and injτ : C+(τ) → C+(〈σ, τ〉) for the induced injections.

This result and the universal property of Definition 3.43 follow easily from the construc-
tion of the cartesian product of arenas given in [CC21]. Projections are the obvious copycat
strategies, with +-covered configurations

(xA ‖ ∅) ‖ xA ∈ C
+(πA) , (∅ ‖ xB) ‖ xB ∈ C

+(πB)

for xA ∈ C (A), xB ∈ C (B). Their exhaustivity is easy; note however that this uses the fact
that A and B are strict. We detail the proof that pairing preserves exhaustivity:

Proposition 3.45. Consider Γ, A,B arenas with A,B strict, and σ : Γ ⊢ A, τ : Γ ⊢ B.
If σ and τ are exhaustive, then so is 〈σ, τ〉 : Γ ⊢ A&B.

Proof. Consider a +-covered configuration of 〈σ, τ〉, say for instance injσ(x
σ) ∈ C+(〈σ, τ〉)

for xσ ∈ C+(σ); with ∂〈σ,τ〉injσ(x
σ) = xσΓ ‖ (xσA ‖ ∅) ‖ xσA. If κA&B(x

σ
A ‖ ∅) = 1, then we

are done; assume κA&B(x
σ
A ‖ ∅) ≤ 0. Likewise, assume κΓ(x

σ
Γ) ≥ 0. If κΓ(x

σ
Γ) = 1, then we

must have κA(x
σ
A) = 1 as well since σ is exhaustive – but this implies κA&B(x

σ
A ‖ ∅) = 1 as

well, contradiction. Likewise, if κA&B(x
σ
A ‖ ∅) = −1, then κA(x

σ
A) = −1 and so κΓ(x

σ
Γ) = −1

since σ is exhaustive, contradiction. The only case left has κΓ(x
σ
Γ) = 0 and κA&B(x

σ
A ‖ ∅) =

0, so the display of injτ (x
σ) has payoff 0. The symmetric reasoning applies to +-covered

configurations of the form injτ (x
τ ) for xτ ∈ C+(τ), which concludes the proof.

In summary, we have the following:

Proposition 3.46. The full sub-∼-category Strats of strict arenas has finite products, pre-
served by the inclusion functor Strats →֒ Strat.
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3.6.6. Exponential. We define a ∼-comonad ! : Strat → Strat. By a general result [ACU10]
the restriction of ! to the sub-∼-category Strats gives a relative comonad ! : Strats → Strat,
and below we will show that this satisfies the axioms of Definition 3.37.

For an object A ∈ Strat, !A is given by Definition 3.17. Following the same pattern as
for the other structure we introduce the functorial action of ! as follows:

Proposition 3.47. Consider A,B arenas, and σ : A ⊢ B a strategy.
Then there is a strategy !σ : !A ⊢ !B where the ess is obtained as in Definition 3.17

(without the clauses on positive and negative symmetries); there is an order-iso

[−] : Fam
(

C
+, 6=∅(σ)

)

≃ C
+(!σ)

with Fam(X) the set of families of elements of X indexed by finite subsets of N, and where

C+, 6=∅(σ) denotes the set of non-empty +-covered configurations of σ. Moreover,

∂!σ
([

(xi)i∈I
])

= (‖i∈I x
i
A) ‖ (‖i∈I x

i
B)

where for all i ∈ I, ∂σ(x
i) = xiA ‖ xiB.

The proof is direct from the definition of !σ (see [CC21]). Though the symmetries
of !σ may also be described in a similar style (as for earlier operations), we refrain from
doing so as it is slightly more heavy notationally: indeed, whereas for tensor and pairing the
symmetries are constructed exactly as for configurations, in !σ symmetries span components
as they may freely exchange copy indices as stated in Definition 3.17.

The ∼-comonad structure of ! is given by natural transformations ǫA : !A → A and
δA : !A → !!A whose components are, as usual, relabeled copycat strategies, characterized
by the shape of their +-covered configurations:

(

‖〈i,j〉∈N x
i,j
A

)

‖
(

‖i∈N‖j∈N x
i,j
A

)

∈ C+(δA)

{0} × xA ‖ xA ∈ C+(ǫA)

whenever these sets are finite, xA, x
i,j
A ∈ C (A), and using a fixed bijection 〈−,−〉 : N2 ≃ N.

It is routine that these are exhaustive – for ǫA, the case of the empty set uses condition
initialized. We must also prove that the functorial operation preserves exhaustivity:

Proposition 3.48. Consider A,B arenas, and σ : A ⊢ B a strategy.
If σ is exhaustive, then so is !σ : !A ⊢ !B.

Proof. Consider [(xi)i∈I ] ∈ C+(!σ), where I ⊆f N and xi ∈ C+, 6=∅(σ) for all i ∈ I. We have

∂!σ
([

(xi)i∈I
])

= (‖i∈I x
i
A) ‖ (‖i∈I x

i
B)

where ∂σ(x
i) = xiA ‖ xiB ∈ C (A ⊢ B). If κ!B(‖i∈I x

i
B) = 1 then we are done, so assume

κ!B(‖i∈I x
i
B) ≤ 0. Symmetrically, assume κ!A(‖i∈I x

i
A) ≥ 0. If κ!B(‖i∈I x

i
B) = −1, then

there must be some i0 ∈ N such that κB(x
i0
B) = −1. But because σ is exhaustive, this implies

that κA(x
i0
A) = −1 as well; but then κ!A(‖i∈I x

i
A) = −1, contradiction. So, κ!B(‖i∈I x

i
B) = 0,

which entails that for all i ∈ I, κB(x
i
B) = 0 (note that as xi ∈ C+, 6=∅(σ), all xiB are non-

empty). Now, if κ!A(‖i∈I x
i
A) = 1, then there must be some i0 ∈ I such that κA(x

i0
A) = 1.

But as σ is exhaustive, this entails that κB(x
i0
B) = 1 as well, contradiction.

The functor ! preserves ≈ and satisfies all necessary axioms up to ≈ [CC21], so that:
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if : !(B & X & X) ⊢ X
q−

q+
0

tt−0
q+
1
v−1

v+

if : !(B & X & X) ⊢ X
q−

q+
0

ff−0
q+
1
v−1

v+

succ : !N ⊢ N
q−

q+
0
n−0

(n+ 1)+

iszero : !N ⊢ B
q−

q+
0

0−0
tt+

iszero : !N ⊢ B
q−

q+
0

(n+ 1)−0
ff+

pred : !N ⊢ N
q−

q+
0

0−0
0+

pred : !N ⊢ N
q−

q+
0

(n+ 1)−0
n+

Figure 7: Strategies for basic PCF combinators

JifM N1N2K = if ⊙! 〈JMK, JN1K, JN2K〉

JsuccMK = succ⊙! JMK

JpredMK = pred⊙! JMK

JiszeroMK = iszero⊙! JMK

Figure 8: Interpretation of basic combinators

B

q−

❇{{� ✂
✂✂ ⑤��#

❁❁
❁

tt+ /o/o/o/o ff+

Figure 9: Interpretation of coin

Lemma 3.49. The functor ! : Strat → Strat is a ∼-comonad, which restricts to a J-relative
comonad Strats → Strat, for J the inclusion functor.

Finally we have, for strict B,C, a strategy mB,C : !B⊗ !C → !(B&C) characterized by

(

(

‖i∈N x
i
B

)

‖
(

‖j∈N x
j
C

))

‖

(
⊎

j∈N{2j + 1} × (∅ ‖ xjC)

⊎
⊎

i∈N{2i} × (xiB ‖ ∅)

)

∈ C+(mB,C)

for xiB ∈ C (B), xjC ∈ C (C). Likewise, the strategy m0 : !⊤ → 1 with only the empty
configuration. The axioms can be verified, and we finally obtain:

Proposition 3.50. The ∼-category Strat, equipped with the full sub-∼-category Strats of
strict arenas, and all components outlined above, is a relative Seely ∼-category.

In particular, the Kleisli ∼-category Strat!, with objects strict arenas, is cartesian closed.

3.7. Interpretation of nPCF. Combinators of the simply-typed λ-calculus are handled in
the standard way following the cartesian closed structure of Strat! [LS88], the only structure
left to finalize the interpretation is the interpretation of nPCF primitives, and recursion.

3.7.1. Base types and primitives. The arenas for the base types are given in Section 3.2.2.
For the PCF primitives, the constants Γ ⊢ tt, ff : B and Γ ⊢ n : N are interpreted

by the obvious strategies which reply accordingly to the initial move. Conditionals along
with the primitives iszero,pred, and succ are interpreted following the clauses of Figure
8, using the strategies shown in Figure 7 – note that we omit arrows to avoid clutter.
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3.7.2. Recursion. The fixpoint combinator is defined as the least upper bound of its finite
approximants, leveraging completeness properties of the following partial order:

Definition 3.51. Consider A a game, and σ, τ : A strategies.
We write σ E τ if C (σ) ⊆ C (τ) – so in particular |σ| ⊆ |τ |, and additionally:

(1) for all s1, s2 ∈ |σ|, s1 ≤σ s2 iff s1 ≤τ s2,
(2) for all s1, s2 ∈ |σ|, s1 #σ s2 iff s1 #τ s2,
(3) for all x, y ∈ C (σ) and bijection θ : x ≃ y, we have θ ∈ S (σ) iff θ ∈ S (τ),
(4) for all s ∈ |σ|, ∂σ(s) = ∂τ (s),

i.e. all components compatible with the inclusion.

Strategies on A, ordered by E, form a directed complete partial order, with respect to
which all operations on strategies are easily shown to be continuous. We have:

Proposition 3.52. Consider A a game, and D a directed set of strategies on A. Then:

C
+(∨D) =

⋃

σ∈D

C
+(σ) , S

+(∨D) =
⋃

σ∈D

S
+(σ) .

Moreover, if every σ ∈ D is exhaustive, then so is ∨D : A.

The supremum also preserves visibility; so for any A,B the homset Strat(A,B) is a
dcpo. Before defining the recursion operator via the usual fixpoint formula, we must deal
with the minor inconvenience that the dcpo of strategies on A does not have a least element:
strategies minimal for E still have – by receptivity – events matching the minimal events of
A, but they are free to name those arbitrarily. We solve this as in [CCW19]: we choose one
minimal ⊥A : A. For any σ : A, we pick an isomorphic σ ∼= σ♭ : A s.t. ⊥A E σ♭, obtained
by renaming minimal events. We write DA for the pointed dcpo of strategies above ⊥A.

As all operations on strategies examined so far are continuous, for any arena A we have

F : D!⊤⊢(A→A)→A → D!⊤⊢(A→A)→A

σ 7→ (λfA→A. f (σ f))♭ ,

written in λ-calculus syntax relying on the constructions on strategies corresponding to the
cartesian closed structure of Strat!, continuous. By Kleene’s fixpoint theorem

YA =
∨

n∈N

Fn(⊥) ∈ Strat!(⊤, (A→ A) → A)

is a least fixpoint of F . Finally, in the presence of a context Γ, we set YΓ,A = YA⊙! eΓ where
eΓ ∈ Strat!(Γ,⊤) is the terminal morphism, yielding YΓ,A ∈ Strat!(Γ, !(!A⊸ A) ⊸ A).

This concludes the interpretation of nPCF in Strat. From [CC21], it is adequate with
respect to may-convergence – however this statement will play no role here. Most of the rest
of the paper will study the collapse of Strat (and its interpretation of nPCF) onto N -Rel.

3.8. Collapsing Strat to N -Rel. Back to the question asked in Section 2.4.3: what does
the N -weighted relational model count, on arbitrary higher-order types?

We shall answer this by providing a collapse interpretation-preserving functor, written

∫(−) : Strat → N -Rel .

At first this seems simple: recall from Lemma 3.19 that for any type A, there is styA :
LAM ≃ C 0

∼=(JAK) a bijection through which we regard LAM – the web of A, as it is usually
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called – as the set of symmetry classes of null payoff of JAK. Given σ : A and xA ∈ C 0
∼=(JAK),

we must associate a weight (∫(σ))xA ∈ N ∪ {+∞}. It seems natural for this weight to be

(∫(σ))xA = ♯ (witσ(xA))

the cardinality of an adequately chosen set of witnesses of xA. On ground types this seems
rather clear: for instance, considering ⊢M : B defined as M = if coin tt tt, we have

JMK =
q−

❅zz� ��
�

⑦��$
❃❃❃

tt+ /o/o/o/o tt+

LMMtt = 2
LMMff = 0

so one may guess that wit(xA) = {xσ ∈ C (σ) | ∂σ(x
σ) ∈ xA} – however, this is inadequate

beyond ground types: if xσ ∈ C (σ) includes any copyable Opponent move, then xσ au-
tomatically has countably many symmetric copies prompted by copies of that Opponent
move, displayed to the same configuration of the game up to symmetry. So this notion of
witnesses is useless save in the most simple cases, as it makes no account of symmetry.

So what is the right set of witnesses up to symmetry? How to count configurations of
a strategy up to symmetry? This question, the crux of the paper, is investigated next.

4. Witnesses and Composition

To set up our collapse, the most challenging proof obligation – by far – is preservation of
composition. Here we present the right definition of collapse, along with the proof that
it preserves composition. But rather than arriving there directly, we take a more indirect
route, showing some of the subtleties constraining the solution.

4.1. Finding the Right Witnesses. A fitting starting point for this discussion is to recall

(β ◦ α)x,z =
∑

y∈Y

αx,y · βy,z (4.1)

the composition of α ∈ N -Rel(X,Y ) and β ∈ N -Rel(Y,Z), which we must relate to the
composition of strategies. As explained above, for σ ∈ Strat(A,B) and xA ∈ C 0

∼=(A), xB ∈
C 0
∼=(B), we expect (∫(σ))xA,xB to be the cardinality of a well-chosen set witσ(xA, xB) of

witnesses for xA ‖ xB ∈ C 0
∼=(A ⊢ B). Thus, (4.1) strongly hints at a bijection

witτ⊙σ(xA, xC) ≃
∑

xB∈C 0
∼=(B)

witσ(xA, xB)× witτ (xB , xC) (4.2)

for all σ ∈ Strat(A,B), τ ∈ Strat(B,C), xA ∈ C 0
∼=(A) and xC ∈ C 0

∼=(C).

4.1.1. Witnesses without symmetry. Let us start by ignoring symmetry, and first count
witnesses for plain complete configurations xA ∈ C 0(A). It seems natural to define:

witσ(xA, xB) = {xσ ∈ C
+(σ) | ∂σ(x

σ) = xA ‖ xB} .

for all σ ∈ Strat(A,B), xA ∈ C 0(A) and xB ∈ C 0(B).
Working with +-covered configurations seems reasonable, as Proposition 3.28 entails:

(−⊙−) : {(xτ , xσ) ∈ C
+(τ)× C

+(σ) | xσ and xτ causally compatible} ≃ C
+(τ ⊙ σ)

preserving the display maps for all σ : A ⊢ B and τ : B ⊢ C, which seems close to (4.2).
The two obstacles to (4.2) are that: (1) this bijection has an additional requirement that
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synchronized xσ ∈ C+(σ) and xτ ∈ C+(τ) should be causally compatible – a constraint
which does not appear in (4.2); and (2) we must be sure that for all xσ ∈ C+(σ) and
xτ ∈ C+(τ) synchronizable, if xA ∈ C 0(A) and xC ∈ C 0(C), then xσB = xτB ∈ C 0(B).

For (1), we invoke the “deadlock-free lemma” from [CC21]:

Lemma 4.1. Consider A,B,C arenas, σ : A ⊢ B and τ : B ⊢ C visible strategies, xσ ∈
C (σ) and xτ ∈ C (τ) with a symmetry θ : xσB

∼=B xτB. Then, the composite bijection

ϕ : xσ ‖ xτC
∂σ‖xτC
≃ xσA ‖ xσB ‖ xτC

xσ
A
‖θ‖xτ

C
≃ xσA ‖ xτB ‖ xτC

xσ
A
‖∂−1

τ

≃ xσA ‖ xτ ,

is secured, in the sense that the relation ⊳, defined on the graph of ϕ with

(l, r) ⊳ (l′, r′)

whenever l (<σ‖<C) l
′ or r (<A‖<τ ) r

′, is acyclic2.

The quite subtle proof is out of the scope of the paper, the interested reader is referred
to [CC21]. It is one of the main properties of visibility that composition never deadlocks, so
that when dealing with visible strategies, the causally compatible requirement of Proposition
3.28 is redundant – the lemma above also covers the case of synchronization through a
symmetry θ, which will be necessary later on in the paper.

Next, for (2), we prove the following property:

Lemma 4.2. Consider games A,B and C; and exhaustive σ : A ⊢ B and τ : B ⊢ C.
For all xσ ∈ C+(σ) and xτ ∈ C+(τ), if κA(x

σ
A) = 0 and κC(x

τ
C) = 0, then κB(xB) = 0.

Proof. Seeking a contradiction, assume κB(xB) = 1. Then κB⊢C (xB ‖ xτC) = −1, contradict-
ing that τ is exhaustive. Symmetrically, κB(xB) = −1 contradicts that σ is exhaustive.

From these two statements, we may now deduce as claimed:

Corollary 4.3. Consider A,B,C arenas, σ ∈ Strat(A,B), τ ∈ Strat(B,C). Then, we have

witτ⊙σ(xA, xC) ≃
∑

xB∈C 0(B)

witσ(xA, xB)× witτ (xB , xC) (4.3)

for all xA ∈ C 0(A) and xC ∈ C 0(B).

Proof. We construct the bijection by building functions in both directions.
Take y ∈ witτ⊙σ(xA, xC), i.e. y ∈ C+(τ ⊙ σ) s.t. ∂τ⊙σ(y) = xA ‖ xC . By Proposition

3.28, y = xτ ⊙ xσ s.t. xσ ∈ C+(σ) and xτ ∈ C+(τ) are causally compatible, and with

∂σ(x
σ) = xA ‖ xB ∂τ (x

τ ) = xB ‖ xC

for some xB ∈ C (B). But by Lemma 4.2 we have κB(xB) = 0, so we return (xB , x
σ, xτ ).

Now, take xB ∈ C 0(B), xσ ∈ witσ(xA, xB) and x
τ ∈ witτ (xB , xC). By Lemma 4.1, xσ

and xτ are causally compatible, so xτ ⊙ xσ ∈ C+(τ ⊙ σ) s.t. ∂τ⊙σ(x
τ ⊙ xσ) = xA ‖ xC .

That these constructions are inverses of one another follows from Proposition 3.28.

This is a good starting point, which we must now extend to deal with symmetry.

2For θ an identity, this exactly means that xσ and x
τ satisfy the secured condition of Definition 3.26.
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4.1.2. Witnesses as symmetry classes. How shall we extend (4.3) to account for symmetry?
Since points of the web correspond to symmetry classes of configurations of the game, it

would seem sensible for witnesses to be symmetry classes of configurations of the strategy:

wit
∼=
σ (xA, xB) = {xσ ∈ C

+
∼= (σ) | ∂σ(x

σ) = xσA ‖ xσB}

for σ : A ⊢ B, xA ∈ C 0
∼=(A) and xB ∈ C 0

∼=(B); where C
+
∼= (σ) is the set of symmetry classes

of +-covered configurations of σ; and where ∂σ(x
σ) ∈ S (A ⊢ B) is well-defined since ∂σ

preserves symmetry. With this definition, are we able to extend the bijection (4.3)?
Consider first y ∈ wit

∼=
τ⊙σ(xA, xC). Take any representative xτ ⊙ xσ ∈ y. The configu-

rations xσ and xτ synchronize in xσB = xτB = xB , with symmetry class xB ∈ C 0
∼=(B). So

taking xσ and xτ the respective symmetry classes of xσ and xτ , we obtain

xB ∈ C
0
∼=(B) , xσ ∈ wit

∼=
σ (xA, xB) , xτ ∈ wit

∼=
τ (xB , xC)

as required. From the characterization of the symmetries of composition in Proposition
3.28, one deduces that this does not depend on the choice of the representative xτ ⊙xσ ∈ y.

What about the other direction? Consider now xσ ∈ wit
∼=
σ (xA, xB) and xτ ∈ wit

∼=
τ (xB , xC)

for some xB ∈ C 0
∼=(B), and pick representatives xσ ∈ xσ and xτ ∈ xτ . Displaying them as

∂σ(x
σ) = xσA ‖ xσB ∂τ (x

τ ) = xτB ‖ xτC ,

we must compute their synchronization. But we may not have xσB = xτB , indeed we only
know that xσB, x

τ
B ∈ xB so that there must be some θ : xσB

∼=B xτB . Fortunately, thin
concurrent games come with tools to compute such synchronizations up to symmetry – in
particular, at the heart of the proof of Proposition 3.32 is the following property:

Proposition 4.4. Consider σ : A ⊢ B and τ : B ⊢ C two strategies.
For xσ ∈ C+(σ), xτ ∈ C+(τ) and θ : xσB

∼=B xτB s.t. the composite bijection is secured:

xσ ‖ xτC
∂σ‖C
≃ xσA ‖ xσB ‖ xτC

A‖θ‖C
∼= xσA ‖ xτB ‖ xτC

A‖∂−1
τ

≃ xσA ‖ xτ ,

then there are (necessarily unique) yσ ∈ C+(σ) and yτ ∈ C+(τ) causally compatible, and

ϕσ : xσ ∼=σ y
σ , ϕτ : xτ ∼=τ y

τ ,

such that we have ϕσA ∈ S−(A), ϕ
τ
C ∈ S+(C), and ϕτB ◦ θ = ϕσB.

See Appendix A.3. Intuitively, we play S (σ) and S (τ) against each other. By ∼-
receptivity and extension they adjust their copy indices interactively until they reach an
agreement, i.e. pairs of configurations matching on the nose.

In the situation at hand the securedness assumption is automatic by Lemma 4.1, so
that we get indeed xσ ∼=σ y

σ and xτ ∼=τ y
τ matching on the nose, synchronizing to

yτ ∈ yσ ∈ C
+(τ ⊙ σ)

whose symmetry class yields y ∈ wit
∼=
τ⊙σ(xA, xC) as needed.

Having given constructions in both directions, it might seem that we are essentially done,
with a version of (4.2) essentially following the case without symmetry. But remember that
above we started from witnesses xσ ∈ wit

∼=
σ (xA, xB) and xτ ∈ wit

∼=
τ (xB , xC), for which we

first chose representatives xσ ∈ C+(σ), xτ ∈ C+(τ) and a symmetry θ : xσB
∼=B xτB. So one

should not overlook the proof obligation that the construction is invariant under the choice
of these representatives. Unfortunately, the symmetry class y ∈ wit

∼=
τ⊙σ(xA, xC) does depend

on the choice of xσ, xτ , and θ – indeed, this was the error made in [CCPW18].
In fact, (4.2) does not hold for this notion of witness.
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Figure 10: Composition of σ and τ

Example 4.5. Consider the arena α with one event q−, κα(∅) = 1 and κα({q
−}) = 0, and

σ : !(!α ⊸ α) ⊢ !α⊸ α , τ : !(!α⊸ α)

two strategies as pictured in Figure 10. Their assignment of copy indices uses functions

f : N → N , g : N → N , h : N → N , k : N2 → N ,

whose precise identity has no impact on the discussion. We are interested in their com-
position, which unfolds as in Figure 10, yielding four pairwise conflicting, non-symmetric
positive moves. Enriching nPCF with a type α with no constant, the substitution

(λxα. f (f x)) [(λyα. if coin y y)/f ]

gives a perfect syntactic counterpart to the composition in Figure 10. Because there are
two calls to the non-deterministic choice, this reduces to λxα. x, but in four different ways.
Observe that in the copy indices of each positive move of τ ⊙ σ, one can read back the way
the two non-deterministic choices were resolved: the upper row corresponds to the first call
yielding q+

i,f(i), the leftmost column to the second call yielding q+
i,f(i), and so on.

From the composition, τ ⊙ σ has four witnesses for

(

q−

q+

)

∈ C 0
∼=(!α⊸ α), while

♯wit
∼=
σ

(

q− q−

q+ q+
,
q−

q+

)

= 1 , ♯wit
∼=
τ

(

q− q−

q+ q+

)

= 3 ,

as σ and τ cannot synchronize on any other symmetry class, this contradicts (4.2).
Indeed, up to symmetry, there are exactly three configurations of τ corresponding to

two calls: (1) both choices may be resolved with qi,f(i); (2) both choices may be resolved
with qi,g(i); and (3) we may have one of each. The point is that there is a symmetry





q−
i q−

j

q+
i,f(i) q+

j,g(j)




∼=!(!α⊸α)





q−
j q−

i

q+
j,f(j) q+

i,g(i)



 (4.4)

swapping the two calls, even though they do give rise to separate configurations in τ ⊙ σ.

So, symmetry classes of +-covered configurations are not the right witness: they count
only once symmetry classes that should intuitively weight more, as they admit endo-symmetries
that may affect the result. Indeed one can correct this accounting by appropriately weight-
ing groups of endo-symmetries of symmetry classes – see Appendix C.1. This suggests links
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Figure 11: Witnesses for non-canonical representatives

with generalized species of structures [FGHW08]; but our original question regarding what
concrete objects the weighted relational model counts remains open.

4.1.3. Concrete witnesses. We now provide an alternative, more concrete notion of witness.
Intuitively, we must find a refinement of symmetry still letting us consider strategies

up to their specific choice of copy indices, but nevertheless keeping the two configurations
of (4.4) separate. Concretely, one may observe that the swap of (4.4) is only possible
if Opponent changes their copy indices, exchanging i and j. Here we use a fundamental
property of our setting: being thin concurrent games (Definition 3.4), arenas have sets of
positive and negative symmetries S+(A) and S−(A); so we may consider configurations of
strategies up to positive symmetry only. This has a very strong consequence:

Lemma 4.6. Consider A a game, σ : A a strategy on A, and θ ∈ S (σ).
If ∂σ(θ) ∈ S+(A), then, x = y and θ = idx.

Proof. A quite direct consequence of thin, which prevents Player from imposing symmetries
not prompted by a prior Opponent exchange. See Lemma 3.28 in [CCW19].

In other words, sub-groupoids of S (σ) mapping to positive symmetries of the game are
all reduced to identities. Consider now fixed, for any arena A, the choice of a representative
xA ∈ xA for any xA ∈ C 0

∼=(A). This invites the definition of positive witnesses:

wit+σ (xA, xB) = {xσ ∈ C
+(σ) | xσA

∼=−
A xA & xσB

∼=+
B xB} , (4.5)

for xA ∈ C 0
∼=(A) and xB ∈ C 0

∼=(B), which will indeed turn out to be the right one. Notice the

pleasant fact that this ranges over actual configurations of σ rather than symmetry classes3.

4.2. Representability. We introduce our last technical ingredient, representability.

4.2.1. Canonical representatives. The definition of wit+ in (4.5) includes a significant sub-
tlety: the dependency on the choice of the representatives xA ∈ xA, xB ∈ xB. Unfortunately,
not only the set wit+σ (xA, xB) depends on the choice of xA and xB , but even its cardinality :

Example 4.7. Consider A = !(!α⊸ α), B = !α⊸ α, xA =

(

q− q−

q+ q+

)

and xB =

(

q−

q+

)

.

We show in Figures 11 and 12 the sets wit+σ (xA, xB) for σ : A the left hand side strategy
in Figure 10, with the choice of representatives as shown. Up to positive symmetry, Player
is free to associate q+

0 to either minimal event of xA. But as the symmetry is positive,

3An early sign that wit
+ is better behaved is that unlike wit

∼=, it does not depend on the choice of the
symmetry for σ – recall from Section A.1.2 in [CCW19] that the symmetry is not unique.
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Figure 12: Witnesses for canonical representatives

the copy index of the subsequent Opponent move is forced by xA and this association. For
Figure 12 the two choices make no difference as the bottom events of xA have the same index
0. In contrast, in Figure 11 these indices differ, and so yield distinct concrete witnesses.

To explain this mismatch, it is helpful to explicitly factor in the positive symmetries by

∼+-witσ(xA, xB) = {(θA, x
σ , θB) | x

σ ∈ C
+(σ), θA : xA

∼=−
Ax

σ
A, θB : xσB

∼=+
B xB} (4.6)

the set of ∼+-witnesses, allowing us to prove the following property:

Proposition 4.8. Consider A,B arenas, σ : A ⊢ B, and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B).

Then, the cardinality of ∼+-wit
+
σ (xA, xB) does not depend on xA ∈ xA and xB ∈ xB.

Proof. See Appendix A.5.

For instance, in Figure 11, each positive witness admits exactly one pair of symmetries
making it a ∼+-witness, whereas for Figure 12, the unique witness yields two ∼+-witnesses.

So which of Figure 11 and 12 is right, if any? Letting the weighted relational model
be the judge, Figure 12 is better: indeed σ is the strategy of a pure λ-term to which the
weighted relational model associates only weights 0 and 1. Tracking down the pathological
behaviour in Figure 11, the crux of the issue is the inability, in the representative xA from
Figure 11, to exchange the minimal moves while staying in xA. The only negative symmetry

q−
0 q−

1

q+
0,0 q+

1,1

∼=−
A

q−
1 q−

0

q+
1,0 q+

0,1

(signified here by moves having the same position in the diagram) with domain xA exchang-
ing q−

0 and q−
1 has codomain distinct from xA, intuitively causing the extra witness. In

contrast, the analogous swap is an endosymmetry of the representative xA for Figure 12.
The next definition aims to capture the representatives for which wit+ is well-behaved:

Definition 4.9. Consider A a game, and x ∈ C (A).
We say that x is canonical iff any θ : x ∼=A x factors uniquely as

x
θ−

∼=−
A x

θ+

∼=+
A x ,

with in particular x in the middle.

This definition extends a basic property of thin concurrent games:

Lemma 4.10. Consider A a thin concurrent game, and θ : x ∼=A y any symmetry.
Then, there exist unique z ∈ C (A), θ− : x ∼=A z and θ+ : z ∼=A y such that θ = θ+ ◦ θ−.

Proof. See Lemma 3.19 in [CCW19].



THE QUANTITATIVE COLLAPSE OF CONCURRENT GAMES WITH SYMMETRY 35

xA⊥ = xA

x ‖ y
A⊗B

= xA ‖ xB

(1, x)
A&B

= (1, xA)

(2, x)
A&B

= (2, xB)

x ‖ y
A`B

= xA ` xB

x ⊸ y
A⊸B

= xA ⊸ y
B

Figure 13: Representation functions for symmetry-free game constructions

Likewise, any θ : x ∼=A y factors uniquely as θ−◦θ+ for some θ− ∈ S−(A), θ
+ ∈ S+(A).

The representative xA of Figure 12 is canonical, while that of Figure 11 is not. In our
collapse, we will need to ensure that we compute witnesses only on canonical representatives.

4.2.2. Representability. This asks two questions: (1) does there always exist a canonical
representative for any symmetry class?; and (2) is the cardinality of witnesses now invariant
under the choice of a canonical representative?

For (1), for tcgs as in Definition 3.4 or games as in Definition 3.5, the answer is no – see
Appendix B. For arenas as in Definition 3.20, we do not know. Likewise, though it is not
hard to prove (2) for games arising from PCF types, we do not have an answer in general.
So we must instead ask games to carry an explicit choice of canonical representatives:

Definition 4.11. A game A is representable when it comes equipped with a function

(−)
A
: C

0
∼=(A) → C

0(A)

such that for all xA ∈ C 0
∼=(A), xA ∈ xA is canonical.

This provides the condition left missing in Definition 3.5; but leaves us with the proof
obligation of constructing the representation function for all game constructions. For basic
games 1,⊤,B,N, α which have trivial symmetry, the representation function is obvious. For
the game constructions only propagating symmetry (i.e. dual, tensor, par, with, and linear
arrow), we set the representation function as specified in Figure 13 – it is direct that it
preserves canonicity. Most importantly, for the bang construction, we set

[x1, . . . , xn]
!A

=‖1≤i≤n xiA ∈ C
0(!A)

relying on Lemma 3.18, assuming chosen a sequential writing [x1, . . . , xn] for every multiset.
This definition indeed always yield a canonical representative:

Lemma 4.12. Consider A a representable −-game.
Then !A, equipped with the function above, is representable.

Proof. We must show that for all x = [x1, . . . , xn] ∈ C 0
∼=(!A), x!A is canonical. Consider

θ : ‖1≤i≤n xiA
∼=!A ‖1≤i≤n xiA

any symmetry. By definition, there is π : N ≃ N a permutation, and a family (θi)i∈N ∈
S (A)N s.t. for all (i, a) ∈ x!A, we have θ(i, a) = (π(i), θi(a)). But then, we have θi : x

i
A
∼=A

x
π(i)
A which means that xi = xπ(i), so that xiA = x

π(i)
A – hence θi is an endo-symmetry.

Now, we use that xiA is canonical, which entails that θi factors as

xiA

θ−i
∼=−
A xiA

θ+i
∼=+
A xiA

using which we may finally factor θ as θ+ ◦θ− where θ+(i, a) = (i, θ+
π−1(i)

(a)) and θ−(i, a) =

(π(i), θ−i (a)) – it is direct by definition that θ+ : x!A
∼=+

!A x!A and θ− : x!A
∼=−

!A x!A.
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From now on, all games come equipped with a representation. As stated above, not
every tcg admits a representation (see Appendix B for a counter-example). However, non-
representable games seem to lie outside of the interpretation of any reasonable type.

4.3. Preservation of Composition. For A,B arenas and σ : A ⊢ B, we may finally set:

(∫(σ))xA,xB = ♯wit+σ (xA, xB) , (4.7)

for any xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B), and where wit+σ (xA, xB) is defined as in (4.5) using the
canonical representatives. Our aim is to prove the following equality:

(∫(τ ⊙ σ))xA,xC =
∑

xB∈C 0
∼=(B)

(∫(σ))xA,xB × (∫(τ))xB ,xC ,

and the natural route seems to be by setting up a bijection

wit+τ⊙σ(xA, xC) ≃
∑

xB∈C 0
∼=(B)

wit+σ (xA, xB)× wit+τ (xB , xC) . (4.8)

However, while it must hold, there does not seem to be any simple way of constructing
this bijection explicitly. We use an indirect route, considering witnesses with symmetry.

4.3.1. Interaction witnesses with symmetry. In (4.8) above, going from right to left is prob-
lematic as we get triples (xB , x

σ, xτ ) where, in general, there is no reason to have xσB = xτB.

We do have xσB
∼=+
B xB and xB

∼=−
B xτB , but with no specified symmetries.

So to approach (4.8), we shall start by studying synchronizable pairs of

(θ−A , x
σ, θ+B) ∈ ∼+-witσ(xA, xB) , (Ω−

B, x
τ ,Ω+

C) ∈ ∼+-witτ (xB , xC) ,

witnesses with symmetry as in (4.6). So we have xσ ∈ C+(σ), xτ ∈ C+(τ) and symmetries

xA xσA
θ−
Aoo xσB

θ+
B // xB xτB

Ω−
Boo xτC

Ω+
C // xC

allowing us to synchronize xσ and xτ using Proposition 4.4.
We shall compare those with witnesses in the composition, starting by defining:

Definition 4.13. Consider A,B and C arenas; σ ∈ Strat(A,B) and τ ∈ Strat(B,C) strate-
gies; and xA ∈ C 0

∼=(A), xB ∈ C 0
∼=(B) and xC ∈ C 0

∼=(C).
The interaction witnesses on xA, xB , xC is the set of all xτ ⊙ xσ ∈ C+(τ ⊙ σ) s.t.

xσA
∼=−
A xA , xσB = xτB ∈ xB , xτC

∼=+
C xB ,

we write wit+σ,τ (xA, xB , xC) for this set. Likewise, the ∼+-interaction witnesses comprise

θ−A : xσA
∼=−
A xA , xτ ⊙ xσ ∈ C

+(τ ⊙ σ) , θ+C : xτC
∼=+
C xC ,

with xσB = xτB ∈ xB . We write ∼+-witσ,τ (xA, xB , xC) for this set.

Note that we obviously have, for any xA ∈ C 0
∼=(A) and xC ∈ C 0

∼=(C)

wit+τ⊙σ(xA, xC) ≃
∑

xB∈C 0
∼=(B)

wit+σ,τ (xA, xB , xC) (4.9)

as interaction witnesses are exactly witnesses of the composition with a specified symmetry
class xB ∈ C 0

∼=(B) in the middle. To establish (4.8), we shall now study a connection between
∼+-interaction witnesses and synchronizable pairs of ∼+-witnesses.
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4.3.2. Synchronization up to symmetry. The property we shall prove is a quantitative elab-
oration on Proposition 4.4, so we start with an explicit reformulation of Proposition 4.4.

Lemma 4.14. Consider A,B,C arenas, σ ∈ Strat(A,B) and τ ∈ Strat(B,C).
Then, for any xA ∈ C 0

∼=(A), xB ∈ C 0
∼=(B) and xC ∈ C 0

∼=(C), for any pair of ∼+-witnesses

(θ−A , x
σ , θ+B) ∈ ∼+-wit

+
σ (xA, xB) , (Ω−

B , x
τ ,Ω+

C) ∈ ∼+-wit
+
τ (xB , xC) ,

there are unique ωσ : xσ ∼=σ y
σ, ντ : xτ ∼=τ y

τ , ΘB : xB
∼=B yB and ∼+-interaction witness

(ψ−
A , y

τ ⊙ yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC)

with yσB = yτB = yB, such that the following diagrams commute:

xσAθ−
A

vv♥♥♥♥
♥♥

ωσ
A

��

xσB
θ+
B //

ωσ
B

��

xB

ΘB

��

xτB

ντ
B

��

Ω−
Boo xτC Ω+

C

((◗◗
◗◗◗

◗

ντ
C

��
xA xC

yσAψ−
A

hhPPPPPP
yσB yB yτB yτC ψ+

C

66♥♥♥♥♥♥

Proof. Existence. First, by Lemma 4.1, the bijection induced by (Ω−
B)

−1 ◦ θ+B : xσB
∼=B xτB

is secured. Thus we can apply Proposition 4.4, yielding yτ ⊙ yσ ∈ C+(τ ⊙ σ) along with

ωσ : yσ ∼=σ x
σ , ντ : yτ ∼=τ y

τ ,

such that ντB ◦ ((Ω−
B)

−1 ◦ θ+B) = ωσB. Furthermore we may set ψ−
A = θ−A ◦ (ωσA)

−1 and

ψ+
C = Ω+

C ◦ (ντC)
−1 – overall, the following diagrams commute

xσAθ−
A

vv♥♥♥♥
♥♥

ωσ
A

��

xσB
θ+
B //

ωσ
B

��

xB xτB

ντ
B

��

//
(Ω−

B
)−1

xτC Ω+
C

((◗◗
◗◗◗

◗

ντ
C

��
xA xC

yσAψ−
A

hhPPPPPP
yσB yB yτB yτC ψ+

C

66♥♥♥♥♥♥

which we complete by setting ΘB : xB → yB as either path around the center diagram.
Uniqueness. First, yτ ⊙ yσ ∈ C+(τ ⊙ σ), ωσ, ντ are unique by the uniqueness clause in

Proposition 4.4. It follows that ψ−
A and ψ+

C and ΘB are determined by the diagram.

In particular, to (θ−A , x
σ, θ+B) ∈ ∼+-wit

+
σ (xA, xB) and (Ω−

B, x
τ ,Ω+

C) ∈ ∼+-wit
+
τ (xB , xC) we

have associated a ∼+-interaction witness (ψ−
A , y

τ⊙yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC). Counting-

wise, it seems ∼+-interaction witnesses have fewer degrees of liberty than pairs of ∼+-
witnesses as the latter have no symmetry on B; in the lemma above this is mitigated by
the fact that the construction also extracts ΘB . The next step is to reverse this: from

(ψ−
A , y

τ ⊙ yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC)

and ΘB : xB
∼=B yB, we must make ΘB act on yσ and yτ to recover the original xσ and xτ .

4.3.3. Negative symmetries acting on strategies. In thin concurrent games, strategies can
always adjust their copy indices to match a change in Opponent’s copy indices:

Lemma 4.15. Consider A a game, σ : A a strategy, xσ ∈ C (σ) and θ− : xσA
∼=−
A yA.

Then, there are unique ϕ : xσ ∼=σ y
σ and θ+ : yA ∼=+

A y
σ
A such that

∂σϕ = θ+ ◦ θ− : xσA
∼=A y

σ
A .
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Proof. See Lemma B.4 in [CCW19].

Opponent changes their copy indices by applying the negative symmetry θ− : xσA
∼=−
A yA,

and Player adapts by applying the unique ϕ : xσ ∼=σ y
σ. The resulting configuration yσA

might not be equal to yA, but it is positively symmetric, reflecting Player’s adjusted indices.

4.3.4. Symmetries acting on ∼+-interaction witnesses. We use this to reverse Lemma 4.14.

Lemma 4.16. Consider A,B,C arenas, σ ∈ Strat(A,B) and τ ∈ Strat(B,C).
Then, for any xA ∈ C 0

∼=(A), xB ∈ C 0
∼=(B) and xC ∈ C 0

∼=(C), ∼+-interaction witness

(ψ−
A , y

τ ⊙ yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC)

with yσB = yτB = yB, any ΘB : xB
∼=B yB, there are unique ωσ : xσ ∼=σ y

σ, ντ : xτ ∼=τ y
τ and

(θ−A , x
σ , θ+B) ∈ ∼+-wit

+
σ (xA, xB) , (Ω−

B , x
τ ,Ω+

C) ∈ ∼+-wit
+
τ (xB , xC) ,

a pair of ∼+-witnesses, such that the following diagram commutes:

xσAθ−
A

ww♣♣♣
♣♣♣

ωσ
A

��

xσB
θ+
B //

ωσ
B

��

xB

ΘB

��

xτB

ντ
B

��

Ω−
Boo xτC Ω+

C

''◆◆
◆◆◆

◆

ντ
C

��
xA xC

yσA
ψ−
A

gg◆◆◆◆◆◆
yσB yB yτB yτC

ψ+
C

77♣♣♣♣♣♣

Proof. The first step is to factor Θ−1
B in two ways, as in the diagram

z1B
Φ+

B // xB z2B
Ψ−

Boo

xA xC

yσA
ψ−
A

gg◆◆◆◆◆◆
yσB yB

Φ−
B

^^❂❂❂❂❂❂❂❂❂
Θ−1

B

OO

Ψ+
B

@@✁✁✁✁✁✁✁✁✁
yτB yτC

ψ+
C

77♣♣♣♣♣♣

following Lemma 4.10. By Lemma 4.15 we can make Φ−
B act on xσ. This yields

λ−A : xσA
∼=−
A y

σ
A , ωσ : xσ ∼=σ y

σ , ∆+
B : xσB

∼=+
B z1B ,

unique such that the following diagram commutes:

xσAλ−
A

xxrrr
rrr

ωσ
A

��

xσB

ωσ
B

��

∆+
B // z1B

Φ+
B // xB z2B

Ψ−
Boo

xA yσA
ψ−
A

oo

▼▼▼
▼▼▼

▼▼▼
▼▼▼

xC

yσA yσB yB

Φ−
B

]]❀❀❀❀❀❀❀❀❀❀
Θ−1

B

OO

Ψ+
B

AA✄✄✄✄✄✄✄✄✄✄
yτB yτC

ψ+
C

88qqqqqq

leaving in grey the irrelevant parts of the full diagram for context. Setting θ−A = ψ−
A ◦ λ−A

and θ+B = Φ+
B ◦∆+

B , we have found data making the following diagram commute:

xσAθ−
A

zz✉✉
✉✉

ωσ
A

��

xσB

ωσ
B

��

θ+
B // xB

ΘB

��

z2B
Ψ−

Boo

xA xC

yσA
ψ−
A

dd❏❏❏❏
yσB yB

Ψ+
B

CC✞✞✞✞✞✞✞✞
yτC yτC

ψ+
C

::tttt
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We shall now prove uniqueness of this data. Assume that we have other symmetries
γ−A : uσA

∼=−
A xA, ̟

σ : uσ ∼=S y
σ and γ+B : uσB

∼=+
B xB making the following diagram commute:

uσAγ−
A

yyrrr
r

̟σ
A

��

uσB

̟σ
B

��

γ+
B // xB

ΘB

��

z2B
Ψ−

Boo

xA xC

yσAψ−
A

ff▼▼▼▼
yσB yB

Ψ+
B

AA☎☎☎☎☎☎☎
yτC yτC ψ+

C

88rrrr

Then, it follows that the following diagram also commutes:

uσA(ψ−
A
)−1◦γ−

A

ww♦♦♦
♦♦♦

̟σ
A

��

uσB

̟σ
B

��

(Φ+
B
)−1◦γ+

B // z1B
Φ+

B // xB z2B
Ψ−

Boo

xA yσA
ψ−
A

oo

❖❖❖
❖❖❖

❖❖❖
❖❖❖

xC

yσA yσB yB

Φ−
B

__❄❄❄❄❄❄❄❄❄
Θ−1

B

OO

Ψ+
B

??⑧⑧⑧⑧⑧⑧⑧⑧⑧
yτB yτC

ψ+
C

77♦♦♦♦♦♦

By uniqueness for Lemma 4.15, it follows that uσ = xσ, ωσ = ̟σ, λ−A = (ψ−
A)

−1 ◦ γ−A
so γ−A = θ−A , and (Φ+

B)
−1 ◦ γ+B = ∆+

B so γ+B = θ+B . Altogether, we have proved that there are

θ−A : xσA
∼=σ xA , ωσ : xσ ∼=σ y

σ , θ+B : xσB
∼=+
B xB ,

unique making the following diagram commute:

xσAθ−
A

yyrrr
r

ωσ
A

��

xσB

ωσ
B

��

θ+
B // xB

ΘB

��

z2B
Ψ−

Boo

xA xC

yσAψ−
A

ff▼▼▼▼
yσB yB

Ψ+
B

AA☎☎☎☎☎☎☎
yτC yτC ψ+

C

88rrrr

The lemma follows by performing the exact same reasoning on the right hand side.

4.3.5. The interaction bijection. If B is a game and xB ∈ C 0
∼=(B), let us write S (xB) for

the set of endosymmetries on xB , i.e. symmetries θB : xB
∼=B xB. We shall use the fact

that for any x, y ∈ xB , there are exactly as many symmetries x ∼=B y as in S (xB). Indeed
let us fix, for any x ∈ xB , a symmetry κx : x ∼=B xB. For any x, y ∈ xB , we then have

(−)[x, y] : S (xB) → S (B)(x, y)
θ 7→ κ−1

y ◦ θ ◦ κx

writing S (B)(x, y) for the set of all θ : x ∼=B y. It is elementary that this is a bijection.
Using this, we finally have, for any A,B,C games and σ ∈ Strat(A,B), τ ∈ Strat(B,C):

Corollary 4.17. Fix xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B) and xC ∈ C 0
∼=(C). Then, there is a bijection

Υ : ∼+-witσ(xA, xB)×∼+-witτ (xB, xC) ≃ ∼+-witσ,τ (xA, xB , xC)× S (xB)

such that for any Υ(xσ, xτ ) = (yτ ⊙ yσ,Θ), we have xσ ∼=σ y
σ and xτ ∼=τ y

τ .

Proof. Given (θ−A , x
σ, θ+B) ∈ ∼+-witσ(xA, xB) and (Ω−

B, x
τ ,Ω+

C) ∈ ∼+-witτ (xB , xC), we get

(ψ−
A , y

τ ⊙ yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC)

and ΘB : xB
∼=B yB by Lemma 4.14; so we set Υ((θ−A , x

σ, θ+B), (Ω
−
B , x

τ ,Ω+
C)) as:

((ψ−
A , y

τ ⊙ yσ, ψ+
C ), (κyB ◦ΘB)) .
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Reciprocally, given (ψ−
A , y

τ ⊙ yσ, ψ+
C ) ∈ ∼+-witσ,τ (xA, xB , xC) and ΞB ∈ S (xB), we set

ΘB = κ−1
yB

◦ ΞB and apply Lemma 4.16 to get back two ∼+-witnesses:

(θ−A , x
σ, θ+B) ∈ ∼+-witσ(xA, xB)

(Ω−
B, x

τ ,Ω+
C) ∈ ∼+-witτ (xB , xC)

That these constructions are inverses of each other is an immediate consequence from
the uniquess properties in Lemmas 4.14 and 4.16.

4.3.6. Preservation of composition. Extending earlier notations, for any xA ∈ C 0
∼=(A), we

write S+(xA) for the group of positive endo-symmetries on xA, and likewise for S−(xA). As
for general symmetries, if x, y ∈ xA s.t. x ∼=+

A xA and y ∼=+
A xA, then there is a bijection

(−)[x, y] : S+(xA) ≃ S+(A)(x, y)
θ+ 7→ (κ+y )

−1 ◦ θ+ ◦ κ+x

for S+(A)(x, y) the set of θ
+ : x ∼=+

A y; and having chosen a positive symmetry κ+x : x ∼=+
A xA

for all x positively symmetric to xA – the same hold for negative symmetries. Thus:

Lemma 4.18. Consider strategies σ ∈ Strat(A,B), τ ∈ Strat(B,C), and symmetry classes
xA ∈ C 0

∼=(A), xB ∈ C 0
∼=(B) and xC ∈ C 0

∼=(C). Then we have bijections

Ψ : ∼+-witσ(xA, xB) ≃ S−(xA)× S+(xB)× wit+σ (xA, xB)
Ξ : ∼+-witσ,τ (xA, xB , xC) ≃ S−(xA)× S+(xC)× wit+σ,τ (xA, xB , xC)

s.t. for all (θ−A , x
σ, θ+B) ∈ ∼+-witσ(xA, xB), writing Ψ(θ−A , x

σ, θ+B) = (ψ−
A , ψ

+
B , y

σ), xσ = yσ;

and likewise, writing Ξ(θ−A , x
τ ⊙ xσ, θ+C ) = (ψ−

A , ψ
+
C , y

τ ⊙ yσ), then xσ = yσ and xτ = yτ .

Proof. To (θ−A , x
σ , θ+B) ∈ ∼+-witσ(xA, xB), simply associate

Ψ(θ−A , x
σ, θ+B) = (θ−A ◦ (κ−xσ

A
)−1, θ+B ◦ (κ+xσ

B
)−1, xσ) ∈ S−(xA)× S+(xB)× wit+σ (xA, xB) ,

it is straightforward that this is a bijection. The proof for Ξ is the same.

We now compose these bijections, to obtain:

Lemma 4.19. Consider strategies σ ∈ Strat(A,B), τ ∈ Strat(B,C), and symmetry classes
xA ∈ C 0

∼=(A), xB ∈ C 0
∼=(B) and xC ∈ C 0

∼=(C). Then we have a bijection:

Φ : S−(xA)× S (xB)× S+(xC)× wit+σ,τ (xA, xB , xC)
≃ S−(xA)× S (xB)× S+(xC)× wit+σ (xA, xB)× wit+τ (xB , xC)

such that writing Φ(θ−A , θB , θ
+
C , x

τ ⊙ xσ) = (ϕ−
A, ϕB , ϕ

+
C , y

σ, yτ ), xσ ∼=σ y
σ and xτ ∼=τ y

τ .

Proof. The bijection is obtained through the following composition:

S−(xA)× S (xB)× S+(xC)× wit+σ,τ (xA, xB , xC)

≃ S (xB)×∼+-witσ,τ (xA, xB , xC)

≃ ∼+-witσ(xA, xB)×∼+-witτ (xB , xC)

≃ S−(xA)× wit+σ (xA, xB)× S+(xB)× S−(xB)× wit+τ (xB , xC)× S+(xC)

≃ S−(xB)× S (xB)× S+(xC)× wit+σ (xA, xB)× wit+τ (xB , xC) .

using Ξ in Lemma 4.18, then Υ−1 in Corollary 4.17, then Ψ from Lemma 4.18 for σ and
τ , and finally the bijection S (xB) ≃ S+(xB)× S−(xB) coming from the canonicity of xB.
That Φ preserves symmetry classes in σ and τ is an immediate verification.
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From Φ, it immediately follows for xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B) and xC ∈ C 0
∼=(C) we have

♯wit+σ,τ (xA, xB , xC) = ♯wit+σ (xA, xB)× ♯wit+τ (xB , xC) , (4.10)

however there is no clear way to realize the corresponding bijection directly, without invoking
symmetries. Of course the bijection must exist for cardinality reasons, but then it may not
preserve symmetry classes in σ and τ – which is necessary for the quantitative generalization
in Section 6. Nevertheless, (4.10) allows us to conclude the core result of the paper:

Corollary 4.20. Consider σ ∈ Strat(A,B) and τ ∈ Strat(B,C). Then,

∫(τ ⊙ σ)xA,xC =
∑

xB∈C 0
∼=(B)

∫(σ)xA,xB × ∫(τ)xB ,xC

for all xA ∈ C 0
∼=(A) and xC ∈ C 0

∼=(C).

Proof. We perform the following direct computation, using (4.9) and (4.10).

♯wit+τ⊙σ(xA, xC) =
∑

xB∈C 0
∼=(B)

♯wit+σ,τ (xA, xB , xB)

=
∑

xB∈C 0
∼=(B)

♯wit+σ (xA, xB)× wit+τ (xB, xC) .

5. Preservation of the Interpretation

Now that preservation of composition is clear, we deal with the rest of the interpretation.

5.1. Structure-preserving functors. We first set up the categorical machinery.

5.1.1. Cartesian closed functors. We start with cartesian closed functors, the appropriate
notion of morphisms between cartesian closed categories, preserving the interpretation of
the simply-typed λ-calculus. This can be straightforwardly adaptated to ∼-categories.

Definition 5.1. Let C,D be cartesian closed ∼-categories. A ∼-functor

F : C → D

is cartesian closed if it comes equipped with for any A,B ∈ C0, maps

k⊤ : ⊤ → F⊤
k&A,B : FA& FB → F (A&B)

k⇒A,B : FA⇒ FB → F (A⇒ B)

invertible up to ∼; and such that the following diagrams commute up to ∼:

FA

FA& FB
k&A,B //

π2 %%❑
❑❑

❑❑
❑❑

❑❑
❑

π1

99ssssssssss
F (A&B)

F (π2)yysss
ss
ss
ss

F (π1)
ee❑❑❑❑❑❑❑❑❑❑

FB

F (A⇒ B) & FA
k&A⇒B,A // F ((A ⇒ B) &A)

F (evA,B)

��
(FA⇒ FB) & FA

k⇒A,B&FA

OO

evFA,FB

// FB
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We use notions of cartesian closed categories with explicit structure, which must be
preserved up to isomorphism. It is not necessary to require that t& and t⇒ are natural
(up to ∼); this automatically follows. Likewise, preservation of projections and evaluation
suffice to ensure that pairing and currying are also preserved.

In fact, cartesian closed ∼-functors ensure preservation up to isomorphism of the inter-
pretation of the simply-typed λ-calculus, in the following sense: assume chosen

kα : JαKD → F (JαKC)

an isomorphism for any base type α. Then, by induction on types one can form isos

ktyA : JAKD → F (JAKC)
kctxΓ : JΓKD → F (JΓKD)

in D for every type A and context Γ; it is then a lengthy exercise to prove that

JΓKD
JMKD //

kctxΓ

��
∼

JAKC

kty
A

��
F (JΓKC)

F (JMKC)
// F (JAKC)

for every simply-typed λ-term Γ ⊢M : A; i.e. F preserves the interpretation up to iso.

5.1.2. Relative Seely ∼-functors.

Definition 5.2. Let C,D be relative Seely ∼-categories. A relative Seely (∼-)functor
C → D is a functor F : C → D which restricts to F : Cs → Ds, equipped with:

• For every A,B ∈ C, morphisms

t⊗A,B : FA⊗ FB → F (A⊗B)

t1 : 1 → F1;

making (F, t⊗, t1) a symmetric monoidal functor (C,⊗, 1) → (D,⊗, 1);
• for every S, T ∈ Cs, morphisms

t&S,T : FS & FT → F (S & T )

t⊤ : ⊤ → F⊤;

• For every A ∈ C and S ∈ Cs, a morphism

t⊸A,S : FA⊸ FS → F (A⊸ S);

• For every S ∈ Cs, a morphism

t!S : !FS → F !S;

all of which are invertible up to ∼ and satisfy the coherence axioms of Figure 14 up to ∼,
such that for every S, T ∈ Cs and f : !S → T , the diagram

!FS !FT

F !S F (!T )

t!S

(Ff◦t!S)
†

t!T

F (f†)

(5.1)

commutes up to ∼.
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FS

FS & FT
t&S,T //

π2 %%❏❏
❏❏

❏❏
❏❏

❏❏

π1

99tttttttttt
F (S & T )

F (π2)yytt
tt
tt
tt
t

F (π1)
ee❏❏❏❏❏❏❏❏❏❏

FT

F (A⊸ S)⊗ FA
t⊗
A⊸S,A // F ((A⊸ S)⊗A)

F (evA,S)

��
(FA⊸ FS)⊗ FA

t⊸A,S⊗FA

OO

evFA,FS

// FS

!FA
t!
A //

ǫFA ##❋
❋❋

❋❋
❋❋

❋ F !A

FǫA{{①①
①①
①①
①①

FA

!FS ⊗ !FT
mFS,FT //

t!S⊗t
!
T

��

!(FS & FT )
!t&S,T // !F (S & T )

t!
S&T

��
F !S ⊗ F !T

t⊗!S,!T

// F (!S ⊗ !T )
F (mS,T )

// F !(S & T )

!⊤
!t⊤ // !F⊤

t!⊤

��
1

m0 ::tttttt

t1
$$❏

❏❏
❏❏

F1
Fm0

// F !⊤

Figure 14: Coherence diagrams for relative Seely functors

In this paper, we only use the following property of relative Seely functors:

Proposition 5.3. A relative Seely ∼-functor F : C → D induces a cartesian closed ∼-
functor F! : C! → D! defined by F!(S) = F (S) for all S ∈ C!,

F!(f) = (Ff) ◦ t!S ∈ D!(FS,FT )

for all f ∈ C!(S, T ), and equipped with the following structural isomorphims:

k⊤ = t⊤ ◦ ǫ⊤ ∈ D!(⊤, F⊤)
k&S,T = t&S,T ◦ ǫFS&FT ∈ D!(FS & FT,F (S & T ))

k⇒S,T = t⊸FS,T ◦ ((t!S)
−1 ⊸ FT ) ◦ ǫFS⇒FT ∈ D!(FS ⇒ FT,F (S ⇒ T )).

Proof. A lengthy but direct diagram chase.

This sets most of the proof obligations for proving soundness of the collapse from Strat

to N -Rel: we must show that ∫(−) yields a relative Seely ∼-functor from Strat to N -Rel.

5.2. A symmetric monoidal ∼-functor. We define the functor ∫(−) and equip it with
relative Seely structure, starting with symmetric monoidal structure.

5.2.1. A ∼-functor. As expected, on arenas we set ∫(A) = C 0
∼=(A). From Corollary 4.20, we

already have an operation preserving composition

∫(−) : Strat → N -Rel.

To get a ∼-functor, it remains to check that ∫(−) preserves identities and ∼.

Proposition 5.4. Consider A an arena, and xA, yA ∈ C 0
∼=(A). Then, ∫(ccA)xA,yA = δxA,yA.

Proof. First, assume xA 6= yA and, seeking a contradiction, consider zA ‖ zA ∈ wit+ccA(xA, yA),
relying on Proposition 3.30 for the shape of +-covered configurations. So there are

θ−A : zA ∼=−
A xA , θ+A : zA ∼=+

A y
A
,

and so xA
∼=A y

A
by composition, contradiction.
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Next we must show that for all xA ∈ C 0
∼=(A), wit

+
ccA

(xA, xA) has exactly one element.

First, it is immediate by Proposition 3.30 that xA ‖ xA ∈ wit+ccA(xA, xA). For uniqueness,

consider xA ‖ xA ∈ wit+ccA(xA, xA). By definition of ∼+-witnesses, there are symmetries

θ−A : xA ∼=−
A xA , θ+A : xA ∼=+

A xA ,

but because xA is canonical this entails that xA = xA.

Next we prove that ∫(−) preserves ∼. As in the target category the equivalence relation
∼ is the identity, this amounts to ∫(−) being invariant under ≈.

Proposition 5.5. Consider A,B arenas, and σ, τ ∈ Strat(A,B) such that σ ≈ τ .
Then, for all xA ∈ C 0

∼=(A) and xB ∈ C 0
∼=(B), ∫(σ)xA,xB = ∫(τ)xA,xB .

Proof. By Definition 3.31, there is a positive isomorphism ϕ : σ ≈ τ . Recall that this means

{(∂σ(s), ∂τ ◦ ϕ(s)) | s ∈ x} ∈ S+(A ⊢ B)

for all x ∈ C (σ), with ϕ an isomorphism of ess – we write ψxA ‖ ψxB for this symmetry,

satisfying by construction ψxA : xσA
∼=−
A y

τ
A and ψxB : xσB

∼=+
B yτB writing yτ = ϕxσ ∈ C+(τ).

Now, for xA ∈ C 0
∼=(A) and xB ∈ C 0

∼=(B), we construct a bijection

ϕ : wit+σ (xA, xB) ≃ wit+τ (xA, xB)
xσ 7→ ϕ(xσ) .

Indeed, consider xσ ∈ wit+σ (xA, xB). By definition, there are θ−A : xσA
∼=−
A xA and

θ+B : xσB
∼=+
B xB . Now, ϕ(xσ) ∈ C+(τ) as ϕ is an order-isomorphism preserving polarities.

Furthermore, we have θ−A ◦ (ψxA)
−1 : yτA

∼=−
A xA and θ+B ◦ (ψxB) : yτB

∼=+
B xB ; which entails

yτ ∈ wit+τ (xA, xB) as required. By the symmetrical reasoning ϕ−1 sends wit+τ (xA, xB) to
wit+σ (xA, xB) and they are clearly mutual inverses, which concludes the proof.

5.2.2. Preservation of monoidal structure. Next, ∫(−) is a symmetric monoidal ∼-functor.
For A,B any arenas, we provide the components:

t⊗A,B : ∫(A)× ∫(B)
N -Rel
−→ ∫(A⊗B)

t1 : 1
N -Rel
−→ ∫(1)

defined by (t⊗A,B)(xA,xB),y = δy,xA‖xB for every xA ∈ C 0
∼=(A) and xB ∈ C 0

∼=(B); and (t1)•,∅ = 1.

Proposition 5.6. We have (∫(−), t⊗, t1) a symmetric monoidal ∼-functor.

Proof. The crux is the naturality of t⊗, corresponding to the fact that the tensor operation
on morphisms for Strat and N -Rel agree, i.e. the following diagram commutes in N -Rel

∫(A)× ∫(B)
t⊗
A,B //

∫(σ)⊗∫(τ)
��

∫(A⊗B)

∫(σ⊗τ)
��

∫(A′)× ∫(B′)
t⊗
A′,B′

// ∫(A′ ⊗B′)

for all A,B,A′, B′ arenas, and σ ∈ Strat(A,A′), τ ∈ Strat(B,B′). To prove this, we invoke
the characterizing property of the tensor of strategies in Proposition 3.40 – we have

(−⊗−) : C+(σ)× C+(τ) ≃ C+(σ ⊗ τ)
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such that ∂σ⊗τ (x
σ⊗xτ ) = (xσA ‖ xτB) ‖ (xσA′ ‖ xτB′) for all xσ ∈ C+(σ) and xτ ∈ C+(τ). For

all xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B), yA′ ∈ C 0
∼=(A

′) and yB′ ∈ C 0
∼=(B

′), this immediately restricts to

(− ⊗−) : wit+σ (xA, yA′)× wit+τ (xB , yB′) → wit+σ⊗τ (xA ‖ xB, yA′ ‖ yB′) .

Via this bijection, both paths around the diagram compute to the quantity:

♯(wit+σ (xA, yA′)× wit+τ (xB , yB′))

for all (xA, xB) ∈ ∫(A)× ∫(B) and yA′ ‖ yB′ ∈ ∫(A⊗B); as required.
The further coherence conditions, expressing that the associators, unitors and symme-

tries agree in both categories, are all immediate verifications relying on the characterization
of the +-covered configurations of the corresponding strategies.

5.3. A relative Seely ∼-functor. Next we study the preservation of the modality !(−),
which is the most challenging. Then we will deal with ⊸ and &.

5.3.1. Preservation of the action of ! on morphisms. Inspecting the requirements for relative
Seely functors (Definition 5.2) we must first show that ∫(−) preserves strict objects; this is
immediate since every object is strict in N -Rel. We must then exhibit t!C : !∫(C) → ∫(!C)
for every strict C, and show commutation of the diagram (5.1) up to ∼. However, both in
Strat and R-Rel, the relative comonad ! is in fact a proper comonad; this means that we
have a concrete presentation of promotion: for every f : !C → D, f † = !f ◦ δC . Thus the
diagram (5.1) amounts to the following, for every f : !C → D with C,D strict:

!FC
δC //

t!C ��❃
❃❃

❃❃
❃❃

!!FC
!t!C // !F !C

!Ff // !FD

t!
D����

��
��
�

F !C
FδC

// F !!C
F !f

// F !D

(5.2)

For this, we will need to understand how the functorial action of ! in Strat relates to
that of ! in N -Rel. We study this now, before giving the definition of the maps t!C .

The comparison is subtle and it seems a good idea to first recall the definition in N -Rel:

(!α)µ,[y1,...,yn] =
∑

(x1,...,xn) s.t.
µ=[x1,...,xn]

∏

1≤i≤n

αxi,yi (5.3)

for any weighted relation α : X + //Y . Something tricky is going on here. It looks like we
are summing over all permutations of {1, . . . , n}, but no: permutations that lead to the
same tuple are counted only once (and the rest of the term is invariant under permutations
yielding the same tuple). We must understand how this arises in game semantics.

We recall the game semantical definition that we must match against (5.3). Consider
A,B arenas, σ ∈ Strat(A,B), xA ∈ C 0

∼=(!A) and yB ∈ C 0
∼=(!B), respectively with

x!A = ‖6=∅
1≤i≤p x

i
A , y

!B
= ‖6=∅

1≤i≤n yi
B

where, and from now on, we label these parallel compositions with “6= ∅” to emphasize that
each component is non-empty. By definition, ∫(!σ)x!A,y!B = ♯wit+!σ(x!A, y!B), where we have

wit+!σ(x!A, y!B) ≃
∑

x∈Sym−
A
(x!A)

∑

y∈Sym+
B
(y

!B
)

wit!σ(x, y)
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with Sym−
A(x!A) = {x ∈ C (!A) | x ∼=−

!A x!A} and Sym+
B(y!B) = {y ∈ C (!B) | y ∼=+

!B y
!B
}.

Our task is to link this sum to (5.3), which will require us to gradually decompose
further its elements. First the sum over all y ∈ Sym+

!B(y!B) may be described very simply:

Lemma 5.7. There is a bijection:

Sym+
!B(y!B) ≃

∏

1≤i≤n Sym
+
B(y

i
B
)

‖6=∅
1≤i≤n y

i
B 7→ (y1B , . . . , y

n
B)

Proof. Obvious by definition of positive symmetries of !B in Definition 3.17.

In contrast, the set Sym−
!A(x!A) is much wilder, as negative symmetries on A are free to

change copy indices at will. Yet, the data of some x ∼=−
!A x!A may be witnessed by distinct

symmetries; in fact even the action of the symmetry on copy indices is not uniquely defined.
To help reason on Sym−

!A(x!A) we need more structure. For x ∈ Sym−
!A(x!A), we write

x = ‖6=∅
k∈Kx

xkA

where xkA ∈ C (A) for k ∈ Kx. We choose, for each x ∈ Sym−
!A(x!A) a bijection πx : Kx ≃

{1, . . . , p} such that for all k ∈ Kx, x
k
A
∼=−
A x

πx(k)
A . If π is a permutation on {1, . . . , p}, we say

it is an isotropy of x!A if for all 1 ≤ i ≤ p we have xiA
∼=A x

π(i)
A , i.e. xiA = x

π(i)
A . Isotropies

of x!A form a group m(x!A), the isotropy group of x!A. Now, we prove:

Lemma 5.8. We have the following bijection:

m(x!A)× Sym−
!A(x!A) ≃

∑

K⊆fN

∑

π:K≃{1,...,p}

∏

k∈K Sym−
A(x

π(k)
A )

(ϑ, x) 7→ (Kx, ϑ ◦ πx, (x
k
A)k∈Kx

)

Proof. We first check that this map is well-defined. Consider ϑ ∈ m(x!A) and x ∼=−
A x!A.

We must show that for all k ∈ Kx, we have xkA
∼=−
A x

ϑ◦πx(k)
A . We know that xkA

∼=−
A x

πx(k)
A .

Moreover, by definition of m(x!A), we have x
πx(k)
A = x

ϑ◦πx(k)
A ; so xkA

∼=−
A x

ϑ◦πx(k)
A .

We define its inverse. To K ⊆f N, π : K ≃ {1, . . . , p}, and (xkA)k∈K , we associate

(π ◦ π−1
x , x) ∈ m(x!A)× Sym−

!A(x!A)

where x = ‖6=∅
k∈K xkA

∼=−
A x!A as required. It is clear that the two are inverses.

Relying on this bijection, we may start the following computation:

m(x!A)× wit+!σ(x!A, y!B) ≃
∑

ϑ∈m(x!A)

∑

(

‖6=∅
k∈K

xk
A

)

∈Sym−
!A(x!A)

∑

y∈Sym+
!B

wit!σ(‖
6=∅
k∈K xkA, y)

≃
∑

K⊆fN

∑

π:K≃{1,...,p}

∑

(xk
A
)k∈K

∑

(yi
B
)1≤i≤n

wit!σ

(

‖6=∅
k∈K xkA, ‖

6=∅
1≤i≤n y

i
B

)

where (xkA)k∈K ranges over Πk∈KSym
−
A(x

π(k)
A ) and (yiB)1≤i≤n over Π1≤i≤nSym

+
B(y

i
B
).

Now, let us recall that Proposition 3.47 gives us an order-iso

[−] : Fam
(

C
+, 6=∅(σ)

)

≃ C
+(!σ)

with Fam(X) the set of families of elements of X indexed by finite subsets of N, such that

∂!σ
([

(xi)i∈I
])

= (‖i∈I x
i
A) ‖ (‖i∈I x

i
B)
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where for all i ∈ I, ∂σ(x
i) = xiA ‖ xiB . In particular, this entails that the set above can be

non-empty only if K ⊆ {1, . . . , n}; so it is in bijection with

≃
∑

K⊆{1,...,n}

∑

π:K≃{1,...,p}

∑

(xk
A
)k∈K

∑

(yi
B
)1≤i≤n

wit!σ

(

‖6=∅
k∈K xkA, ‖

6=∅
1≤i≤n y

i
B

)

(5.4)

To simplify the sum further we shall need the next lemma. It is a variant of Lemma
5.8, but also dealing with the fact that we might have fewer non-empty configurations on
A than on B, and introducing a sum over sequences of symmetry classes akin to (5.3).

Lemma 5.9. We have the following bijection:
∑

K⊆{1,...,n}

∑

π:K≃{1,...,p}

∏

k∈K

Sym−
A(x

π(k)
A ) ≃

∑

(z1
A

,...,zn
A

) s.t.

x!A
∼=A ‖1≤i≤nz

i
A

∑

ϑ∈m(x!A)

∏

1≤i≤n

Sym−
A(z

i
A)

Proof. As for (5.3), the sum on the right hand side ranges over all tuples. Fix in advance, for
all −→z = (z1A, . . . , z

n
A) such that x!A

∼=A ‖1≤i≤n ziA, an injection κ−→z : {1, . . . , p} → {1, . . . , n}

s.t. for all 1 ≤ i ≤ p, xiA
∼=A z

κ−→z (i)
A . Necessarily, ziA is empty for all i 6∈ cod(κ−→z ).

Given K ⊆ {1, . . . , n}, π : K ≃ {1, . . . , p} and (xkA)k∈K , we set −→z = (z1A, . . . , z
n
A) with

ziA =

{

x
π(i)
A if i ∈ K
∅ otherwise

,

by construction we have x!A
∼=A ‖1≤i≤n ziA. We set ϑ = π ◦ κ−→z ∈ m(x!A). Finally, we set

xiA =

{

xiA if i ∈ K
∅ otherwise

;

if i 6∈ K, xiA = ziA = ∅; if i ∈ K, xiA
∼=−
A x

π(i)
A by hypothesis and ziA = x

π(i)
A by construction.

Reciprocally, consider −→z = (z1A, . . . , z
n
A), ϑ ∈ m(x!A) and (xiA)1≤i≤n. We set K as the

subset of all k ∈ {1, . . . , n} such that zkA is non-empty. We set the bijection

π : K ≃ {1, . . . , p}
k 7→ ϑ ◦ κ−1

−→z

which is well-defined as K is exactly the codomain of κ−→z . For every k ∈ K, we set (xkA)k∈K
simply as the restriction of the family (xiA)1≤i≤n to K – and we do indeed have

xkK
∼=−
A zkA

∼=−
A x

κ−1
−→
z
(k)

A
∼=−
A x

ϑ◦κ−1
−→
z
(k)

A = x
π(k)
A .

Finally, it is a direct verification that these constructions are inverses.

We start again computing from (5.4). Substituting the bijection of the lemma above:

≃
∑

K⊆{1,...,n}

∑

π:K≃{1,...,p}

∑

(xk
A
)k∈K

∑

(yi
B
)1≤i≤n

wit!σ

(

‖6=∅
k∈K xkA, ‖

6=∅
1≤i≤n y

i
B

)

≃
∑

ϑ∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A
∼=A ‖1≤i≤nz

i
A

∑

(xi
A
)1≤i≤n

∑

(yi
B
)1≤i≤n

wit!σ

(

‖1≤i≤n x
i
A, ‖

6=∅
1≤i≤n y

i
B

)

where now (xiA)1≤i≤n ranges over
∏

1≤i≤n Sym
−
A(z

i
A) and (yiB)1≤i≤n over

∏

1≤i≤n Sym
+
B(y

i
B
).
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Some of the xiA may now be empty, but both parallel compositions range over the same
indices. Thanks to this we may apply Proposition 3.47, which directly yields:

≃
∑

ϑ∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A
∼=A ‖1≤i≤nz

i
A

∑

(xi
A
)1≤i≤n

∑

(yi
B
)1≤i≤n

∏

1≤i≤n

witσ(x
i
A, y

i
B)

We may now complete the computation, with:

≃
∑

ϑ∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A
∼=A ‖1≤i≤nz

i
A

∏

1≤i≤n

∑

xi
A
∼=−

A
zi
A

∑

yi
B
∼=+

B
xi
B

witσ(x
i
A, y

i
B)

≃
∑

ϑ∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A
∼=A ‖1≤i≤nz

i
A

∏

1≤i≤n

wit+σ (z
i
A, y

i
B) ,

which concludes the construction of the following bijection:

Lemma 5.10. For A,B arenas, strategy σ ∈ Strat(A,B), and symmetry classes x!A ∈
C 0
∼=(!A), y!B ∈ C 0

∼=(!B) with y!B = [y1B , . . . , y
n
B ] with each yiB non-empty, we have a bijection

U :
∑

π∈m(x!A)

wit+!σ(x!A, y!B) ≃
∑

̟∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

wit+σ (z
i
A, y

i
B)

such that for all K(π, x!σ) = (̟, ((z1A, . . . , z
n
A), (x

i)1≤i≤n)), we have x!σ = [(xi)1≤i≤n].

Proof. Note x!A
∼=A ‖1≤i≤n ziA iff x!A = [ziA | ziA 6= ∅] by Lemma 3.18 – complete symmetry

classes of !A match finite multisets of non-empty complete symmetry classes of A.

We may finally deduce the desired equality:

Corollary 5.11. For A,B arenas, strategy σ ∈ Strat(A,B), and symmetry classes x!A ∈
C 0
∼=(!A), y!B ∈ C 0

∼=(!B) with y!B = [y1B , . . . , y
n
B ] and each yiB non-empty, we have:

♯wit+!σ(x!A, y!B) =
∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

♯wit+σ (z
i
A, y

i
B) (5.5)

Proof. By Lemma 5.10, taking the cardinalities we have the equality:

♯m(x!A)× ♯wit+!σ(x!A, y!B) = ♯m(x!A)×
∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

♯wit+σ (z
i
A, y

i
B)

from which the result follows by dividing by ♯m(x!A) (which we can do as it is finite).

As for composition, we must pad the desired identity with further symmetry groups in
order to realize it. The equation (5.5) is very much like (5.4), and we will use this result to
show that ∫(−) has the appropriate preservation properties for !. First we explain why only
the relative comonad structure is preserved, and not the full comonad structure.
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5.3.2. Non-preservation of the comonad !. For C a strict arena, we define

t!C : !∫(C) → ∫(!C)

where (t!C)µ,x!C = δµ,s!
C
(x!C), via the bijection of Lemma 3.18. For strict C,D, we deduce

from Corollary 5.11 that for σ ∈ Strat(C,D), the following diagram commutes in N -Rel:

!∫(C)
t!
C //

!∫(σ) ��

∫(!C)
∫(!σ)��

!∫(D)
t!
D

// ∫(!D)

So t! is a natural transformation ! ◦ ∫ → ∫ ◦ ! : Strats → N -Rel. However, having this
for strict C and D is not sufficient, because the construction of the Kleisli category relies
crucially on promotion. We must therefore consider strategies of the form σ : !C → D,
where of course here !C is not strict and the property above does not directly apply.

The issue is that there is a difference between !∫(A) = Mf (∫(A)) and ∫(!A) for A
non-strict: the latter has only one empty configuration, whereas the former distinguishes
between elements [∅, . . . , ∅] containing n occurrences of ∅, for every n.

Consequently, the naturality square above fails for any reasonable extension of t!A to
non-strict A. For instance, considering σ ∈ Strat(1,B) that immediately answers tt,

(!∫(σ))∅n,ttp = δn,p

where ∅n, ttp are the obvious multisets. In other words, the relational model remembers
how many times σ “does not call” its argument. In contrast, we have ∫(!σ)∅,ttp = 1 for all

p ∈ N – C 0
∼=(!1) is a singleton set. Fortunately, this mismatch disappears for promotion.

5.3.3. Preservation of promotion. We verify the necessary diagram (5.2).

Proposition 5.12. Consider C,D strict arenas, and σ ∈ Strat(!C,D).
Then, promotion is preserved, i.e. the following diagram commutes in N -Rel:

Mf (C
0
∼=(C))

δC //

t!C
((❘❘❘

❘
Mf (Mf (C

0
∼=(C)))

!t!C // Mf (C
0
∼=(!C))

!∫(σ) // Mf (C
0
∼=(D))

t!D
vv❧❧❧❧

C 0
∼=(!C)

∫(δC)
// C 0

∼=(!!C)
∫(!σ)

// C 0
∼=(!D)

Proof. For µ ∈ Mf (C
0
∼=(C)) and y!D ∈ C 0

∼=(!D), the upper-right path evaluates to:
∑

(x1
!C

,...,xn
!C

) s.t.

x1!C+···+xn!C=µ

∏

1≤i≤n

∫(σ)xi!C ,yiD
(5.6)

writing y!D = [y1D, . . . , y
n
D], inlining s

!
D and s!C . This is by (5.3) and direct computation.

For the other path, first note that for any x!C ∈ C 0
∼=(!C) and y!!C ∈ C 0

∼=(!!C) we have

∫(δC)x!C ,y!!C = δx!C ,y1!C+···+yn!C

where y!!C = [y1!C , . . . , y
n
!C ] with each yi!C non-empty – this is proved by a direct elaboration

of Proposition 5.4. Relying on this and Corollary 5.11, the bottom-left path evaluates to
∑

(x1
!C

,...,xn
!C

)s.t.
∑

[xi!C |xi!C 6=∅]=µ

∏

1≤i≤n

∫(σ)xi!C ,y
i
D
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which is almost (5.6), except for the side-condition. But fortunately,
∑

[xi!C | 1 ≤ i ≤ n] =
∑

[xi!C | xi!C 6= ∅] as the empty symmetry class corresponds to the empty multiset.

We see that the mismatch causing the failure of naturality disappears with the promo-
tion, as the junk enumeration of multisets in the relational model is erased by the sum.

5.3.4. A relative Seely ∼-functor. To wrap up, we introduce the missing components

t⊤ : ∅ → ∫(⊤)
t&C,D : ∫(C) + ∫(D) → ∫(C &D)

t⊸A,C : ∫(A)× ∫(C) → ∫(A⊸ C)

for A,B,C,D arenas with C,D strict, defined by t⊤ with empty domain, and

(t&C,D)x,x = δx,s&
C,D

(x) (t⊸A,C)x,x = δx,s⊸
A,C

(x) .

The missing five coherence diagrams of Figure 14 are direct, from an analysis of the sym-
metry classes reached by the component strategies. As for copycat in Proposition 5.4, this
follows from the description of the +-covered configurations of projections in Section 3.6.5,
dereliction and monoidality in Section 3.6.6, and evaluation in Section 3.6.4. Altogether:

Corollary 5.13. We have a relative Seely ∼-functor ∫(−) : Strat → N -Rel.

So by Proposition 5.3 we have a cartesian closed ∼-functor ∫!(−) : Strat! → N -Rel!.

5.4. Preservation of the Interpretation. The above covers the simply-typed λ-calculus;
it remains to address constants and primitives, and recursion.

5.4.1. Mediating isomorphisms. By Proposition 5.3, we have isos in N -Rel! for A,B strict

k⊤ : ⊤ → ∫(⊤)
k&A,B : ∫(A) & ∫(B) → ∫(A&B)

k⇒A,B : !∫(A) ⊸ ∫(B) → ∫(A⇒ B)

with A ⇒ B = !A ⊸ B. To these, for ground X we add kX : LXM → ∫(JXK) defined as
tX ◦ ǫLXM, with t

X ∈ N -Rel(LXM, ∫(JXK)) set as (tX)x,x = δx,sX(x) with s
X from Lemma 3.7.

We generalize these mediating isos to all types, by defining isomorphisms kctxΓ : LΓM →

∫(JΓK) and ktyA : LAM → ∫(JAK) in N -Rel! inductively, as follows:

kctx[] = k⊤ : ⊤ → ∫(⊤)

kctxΓ,x:A = k&JΓK,JAK ⊙! (k
ctx
Γ &! k

ty
A ) : LΓ, x : AM → ∫(JΓ, x : AK)

ktyA→B = k⇒JAK,JBK ⊙! ((k
ty
A )

−1 ⇒ ktyB ) : LA→ BM → ∫(JA→ BK)

where &! is the functorial action of the cartesian product in N -Rel!.
These isos may be described more directly in the linear category N -Rel. First we set:

tctx[] = t⊤ : ⊤ → ∫(⊤)

tctxΓ,x:A = t&Γ,A ⊙ (tctxΓ & ttyA) : LΓ, x : AM → ∫(JΓ, x : AK)

t!ctxΓ = t!JΓK ⊙ !(tctxΓ ) : !LΓM → ∫(!JΓK)

ttyA→B = t⊸!JAK,JBK ⊙ ((t!tyA )−1 ⊸ ttyB) : JA→ BK → ∫(JA→ BK)

t!tyA = t!JAK ⊙ !(ttyA) : !LAM → ∫(!JAK)
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LΓM
LvM //

kctxΓ ��

LXM

k
ty
X��

∫(JΓK)
∫!(JvK)

// ∫(JXK)

LBM & LXM & LXM
if //

k ��

LXM

kX��
∫(B&X&X)

∫!(if)
// ∫(JXK)

LNM
succ //

kN ��

LNM

kN��
∫(N)

∫!(succ)
// ∫(N)

LNM
pred //

kN ��

LNM

kN��
∫(N)

∫!(pred)
// ∫(N)

LNM
iszero //

kN ��

LBM

kB��
∫(N)

∫!(iszero)
// ∫(B)

LΓM
LcoinM //

kctxΓ ��

LBM

kB��
∫(JΓK)

∫!(JcoinK)
// ∫(B)

Figure 15: Preservation of basic primitives

and then we may prove the following lemma:

Lemma 5.14. For any context Γ and type A, we have kctxΓ = tctxΓ ◦ ǫJΓK and ktyA = ttyA ◦ ǫJAK.

Proof. A direct diagram chase.

Finally, we also give the following concrete characterization of the linear mediating isos:

Lemma 5.15. For Γ a context, A a type, γ ∈ Mf (LΓM), x!Γ ∈ C 0
∼=(!Γ), a ∈ LAM, xA ∈ C 0

∼=(A),

(t!ctxΓ )γ,x!Γ = δsctxΓ (γ),x!Γ (ttyA)a,xA = δsty
A
(a),xA

.

Proof. A direct computation.

We must prove that the two interpretations match up to these mediating isos. For
constants and primitives this is the following lemma, which holds by immediate inspection:

Lemma 5.16. The diagrams of Figure 15 commute in N -Rel!, for any context Γ, ground
type X, and with k : LBM & LXM & LXM → ∫(B&X&X) the obvious isomorphism.

5.4.2. Recursion. Preservation of the recursion combinator boils down to:

Proposition 5.17. Consider A,B arenas. Then, the collapse function is continuous:

∫(−) : Strat(A,B) → N -Rel(∫(A), ∫(B))

Proof. Consider directed D ⊆ Strat(A,B), and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B). We have

wit+∨D(xA, xB) =
⋃

σ∈D

wit+σ (xA, xB)

directly by Proposition 3.52. But additionally, we have

Pf (wit
+
∨D(xA, xB)) =

⋃

σ∈D

Pf (wit
+
σ (xA, xB)) . (5.7)

Indeed, if X ⊆f wit+∨D(xA, xB) then there is a finite Y ⊆f D such that

X ⊆
⋃

σ∈Y

wit+σ (xA, xB) ,
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but as D is directed, there is some τ ∈ D such that for all σ ∈ Y , we have σ E τ . It
immediately follows that X ⊆ wit+τ (xA, xB) as well. Reciprocally, if X ⊆f wit+σ (xA, xB) for

some σ ∈ D, then clearly X ⊆f wit+∨D(xA, xB) as well since σ E ∨D.
From there, we can calculate:

∫(∨D)xA,xB =
∨

X⊆fwit
+
∨D

(xA,xB)

♯X =
∨

σ∈D

∨

X⊆fwit
+
σ (xA,xB)

♯X =
∨

σ∈D

∫(σ)xA,xB

using the definition of ∫σ(xA, xB) as a limit of finite sums.

From there, it is easy to deduce preservation of the recursion combinator:

Proposition 5.18. Consider Γ a context and A a type. Then, the diagram

LΓM
YLΓM,LAM //

kctxΓ ��

L(A→ A) → AM
k
ty

(A→A)→A��
∫(JΓK)

∫!(YJΓK,JAK)
// ∫(J(A→ A) → AK)

commutes in N -Rel!.

Proof. First, the following diagram commutes in N -Rel! for all n ∈ N:

⊤
Yn

LAM //

k⊤ ��

L(A→ A) → AM
kty
(A→A)→A��

∫(⊤)
∫!(Y

n
JAK

)
// ∫(J(A→ A) → AK)

as follows directly by induction on n, by direct application of the preservation of the carte-
sian closed structure. By Proposition 5.17, we may take the supremum and get that

⊤
YLAM //

k⊤ ��

L(A→ A) → AM
kty
(A→A)→A��

∫(⊤)
∫!(YJAK)

// ∫(J(A→ A) → AK)

commutes in N -Rel!. The proposition follows by preservation of the terminal object.

5.4.3. Preservation of the interpretation. Finally, we may conclude our main theorem.

Theorem 5.19. Consider Γ ⊢M : A any term of nPCF. Then,

LΓM
LMM

//

kctxΓ ��

LAM
k
ty
A��

∫(JΓK)
∫!(JMK)

// ∫(JAK)

commutes in N -Rel!.

Proof. By induction on the typing derivation Γ ⊢ M : A. The combinators of the simply-
typed λ-calculus follow by preservation of the cartesian closed structure. For constants, it
follows from Lemma 5.16. For if ,pred, succ, iszero and coin, it follows from Lemma 5.16
and the preservation of the cartesian structure. Recursion is by Proposition 5.18.
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A direct reformulation of this theorem is the following:

Theorem 5.20. Consider any term Γ ⊢M : A of nPCF, and γ ∈ LΓM, a ∈ LAM. Then,

LMMγ,a = ♯wit+JMK(s
ctx
Γ (γ), styA(a)) .

Proof. By Theorem 5.19, we have

LΓM
LMM

//

kctxΓ ��

LAM
k
ty
A��

∫(JΓK)
∫!(JMK)

// ∫(JAK)

in N -Rel!. Simplifying Kleisli composition and using Lemma 5.14, we have

Mf (LΓM)
LMM

//

!(tctxΓ )
��

LAM

t
ty
A��

!∫(JΓK)
t!
JΓK

// ∫(!JΓK)
∫JMK

// ∫(JAK)

in N -Rel; but by definition of t!ctxΓ , this amounts exactly to

Mf (LΓM)
LMM

//

t!ctxΓ ��

LAM

tty
A��

∫(!JΓK)
∫JMK

// ∫(JAK)

in N -Rel. The theorem follows by Lemma 5.15 and direct computation.

This answers our original question: at higher-order types, the weighted relational model
counts witnesses in the concurrent game semantics, up to positive symmetry.

6. Collapse of R-weighted strategies

In this last technical section, we show how all the results above generalize to the collapse
of strategies whose configurations are labelled with elements of a continuous semiring R.

6.1. R-strategies. We build a relative Seely ∼-category R-Strat, for any R.

6.1.1. Basic definition. As for Strat, the objects of R-Strat are all arenas. We define:

Definition 6.1. Consider A a game. An R-strategy on A is a strategy σ : A, with

Vσ : C
+(σ) → R

a valuation, invariant under symmetry : for all x ∼=σ y, Vσ(x) = Vσ(y).

For instance, using R = R+, we may adjoin to the strategy coin : B a valuation
V : C+(coin) → R+ with V ({q−, tt+}) = V ({q−, ff+}) = 1

2 ; representing a fair coin toss.
For A andB arenas, the homsetR-Strat(A,B) comprises visible, exhaustive R-strategies

on A ⊢ B – visibility and exhaustivity are undisturbed by the presence of the valuation.
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6.1.2. Basic strategies and operations. For any arena A and any xA ‖ xA ∈ C+(ccA), we set

VccA(xA ‖ xA) = 1 ,

as by Proposition 3.30 all +-covered configurations of copycat have this form. All copycat
strategies involved in the relative Seely ∼-category structure are made into R-strategies
similarly, by setting their valuation to be 1 everywhere – this covers associators, unitors,
projections, evaluation, dereliction, digging, and Seely isomorphisms. All operations on
strategies involved in the relative Seely category structure are lifted to R-strategies with:

Vτ⊙σ(x
τ ⊙ xσ) = Vσ(x

σ) · Vτ (x
τ )

Vσ⊗τ (x
σ ⊗ xτ ) = Vσ(x

σ) · Vτ (x
τ )

V〈σ,τ〉(injσ(x
σ)) = Vσ(x

σ)

V〈σ,τ〉(injτ (x
τ )) = Vτ (x

τ )
V!(σ)([(x

i)i∈I ]) =
∏

i∈I(Vσ(x
i))

leveraging the characterizations of +-covered configurations for these operations, respec-
tively found in Propositions 3.28, 3.40, 3.44, and 3.47. In the last case,

∏

denotes the
iterated product (·) of R. One must ensure that the resulting valuation is invariant under
symmetry, which is immediate (in the last case, using that the product · is commutative).

Likewise, the partial order E is extended to R-strategies by setting σ E τ if it holds for
the underlying strategies, and Vσ(x) = Vτ (x) for all x ∈ C+(σ). It is clear that E retains
the same completeness properties, and that all operations on R-strategies are continuous.

In particular, for any strict arenas Γ and A, we may define the recursion combinator

YΓ,A ∈ R-Strat!(Γ, !(!A ⊸ A) ⊸ A)

exactly as in Section 2.3.4 – the same strategy, with valuation again set to 1 everywhere.

6.1.3. Positive isomorphisms. Finally, we must adapt the equivalence relation on strategies.

Definition 6.2. Consider A a game, and σ, τ : A two R-strategies.
A positive isomorphism ϕ : σ ≈ τ is a positive isomorphism between the underlying

strategies, such that for all x ∈ C+(σ), we have Vτ (ϕ(x)) = Vσ(x).

We say that σ, τ : A are positively isomorphic, written σ ≈ τ , if there exists a positive
isomorphism ϕ : σ ≈ τ . We must ensure that this valuation-aware equivalence relation is
still preserved under all operations on strategies – it is evident for all, save composition.

For composition, we need more information on how positive isos are propagated:

Proposition 6.3. Let σ, σ′ ∈ Strat(A,B); τ, τ ′ ∈ Strat(B,C); ϕ : σ ≈ σ′, ψ : τ ≈ τ ′.
Then, there exists a positive isomorphism ψ ⊙ ϕ : τ ⊙ σ ≈ τ ′ ⊙ σ′ such that for all

xτ ⊙ xσ ∈ C+(τ ⊙ σ), writing yτ
′
⊙ yσ

′
= (ψ ⊙ ϕ)(xτ ⊙ xσ) ∈ C+(τ ′ ⊙ σ′), we have

ϕ(xσ) ∼=σ′ y
σ′ , ψ(xτ ) ∼=τ ′ y

τ ′ .

See Appendix A.4 for the proof. From that, we may deduce:

Proposition 6.4. Let σ, σ′ ∈ R-Strat(A,B); τ, τ ′ ∈ R-Strat(B,C); ϕ : σ ≈ σ′, ψ : τ ≈ τ ′.
Then, ψ ⊙ ϕ : τ ⊙ σ ≈ τ ′ ⊙ σ′ is a positive iso between R-strategies.

Proof. For xτ ⊙ xσ ∈ C+(τ ⊙ σ), writing yτ
′
⊙ yσ

′
= (ψ ⊙ ϕ)(xτ ⊙ xσ), we calculate

Vτ ′⊙σ′((ψ ⊙ ϕ)(xτ ⊙ xσ)) = Vσ′(y
σ′) · Vτ ′(y

τ ′)

= Vσ′(ϕ(x
σ)) · Vτ ′(ψ(x

τ ))

= Vσ(x
σ) · Vτ (y

τ )

= Vτ⊙σ(x
τ ⊙ xσ) ,
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where Vσ′(y
σ′) = Vσ′(ϕ(x

σ)) as yσ
′ ∼=σ′ ϕ(x

σ) and likewise for τ .

Corollary 6.5. There is a relative Seely ∼-category R-Strat.

Proof. It remains to establish the required positive isomorphisms, i.e. to show that the
corresponding positive isomorphisms for Strat preserve valuations. As an illustration, recall
from Proposition 3.36 that associativity is realized with the positive isomorphism

ασ,τ,δ : (δ ⊙ τ)⊙ σ ≈ δ ⊙ (τ ⊙ σ)

such that ασ,τ,δ((x
δ ⊙ xτ )⊙ xσ) = xδ ⊙ (xτ ⊙ xσ) for all (xδ ⊙ xτ )⊙ xσ ∈ C+(δ ⊙ (τ ⊙ σ)).

Clearly, this preserves valuations by associativity of ·. Other cases are similar.

6.1.4. Interpretation of R-PCF. All basic strategies for nPCF primitives have valuation
set to 1 everywhere, completing the interpretation of nPCF. But valuations remain trivial:

Proposition 6.6. Consider Γ ⊢M : A a term of nPCF.
Then, for all x ∈ C+(JMK), we have VJMK(x) = 1.

This is obvious: all basic strategies have all valuations 1, and the operations on strate-
gies only involve the product · of R, never the sum. To explain that, recall that in R-Rel
the sum serves to aggregate weights for all executions made distinct by non-deterministic
choices. But R-Strat maintains explicit branching information, and each witness represents
only one individual execution – so it makes sense that coefficients should remain 1.

So as to better illustrate the model of R-strategies, we add a new primitive:

Γ ⊢M : A

Γ ⊢ r ·M : A

for all r ∈ R – we refer to R-PCF for the enriched language. There is a matching operation:

Definition 6.7. Consider A a game, and σ : A a R-strategy.
We set r · σ : A with strategy σ and valuation Vr·σ(x) = r · Vσ(x) for all x ∈ C+(σ).

Altogether, this yields an interpretation of R-PCF into R-Strat!, sending a term Γ ⊢
M : A to JMK ∈ R-Strat!(JΓK, JAK). We must also set the interpretation of R-PCF in
R-Rel, set with the exact same clauses as for the interpretation in N -Rel, except for:

LΓ ⊢ r ·M : AMµ,a = r · LΓ ⊢M : AMµ,a .

This completes the interpretation of any Γ ⊢ M : A as LMM ∈ R-Rel!(LΓM, LAM), which
we must now compare with JMK ∈ R-Strat!(JΓK, JAK).

6.2. A relative Seely ∼-functor. Next, we show how Corollary 5.13 extends in the pres-
ence of quantitative valuations. With the earlier developments of this paper this is mostly
a formality: as all earlier compatibility results are realized by explicit bijections between
sets of witnesses, we must only exploit that these bijections preserve valuations.

First, we define the quantitative collapse as follows. For any σ ∈ R-Strat(A,B), we set:

∫(σ)xA,yB =
∑

x∈wit+σ (xA,xB)

Vσ(x) (6.1)
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for all xA ∈ C 0
∼=(A) and xB ∈ C 0

∼=(B). It is a clear generalization of (4.7), with all witnesses
weighted according to their valuation. It is a conservative extension of (4.7): for strategies
arising from terms without r · −, by Proposition 6.6 it is equivalent to (4.7).

6.2.1. Composition. First, we show that (6.1) is compatible with composition. Fortunately,
it suffices to exploit the bijections introduced in Section 4.3, along with integer division:

Proposition 6.8. For σ ∈ R-Strat(A,B), τ ∈ R-Strat(B,C), xA ∈ C 0
∼=(A), xC ∈ C 0

∼=(C):

∫(τ ⊙ σ)xA,xC =
∑

xB∈C 0
∼=(B)

∫(σ)xA,xB · ∫(τ)xB ,xC .

Proof. Let us first fix some xB ∈ C 0
∼=(B). We then perform the computation in R:

(♯S−(xA)) ∗ (♯S (xB)) ∗ (♯S+(xC)) ∗
∑

xτ⊙xσ∈wit+σ,τ (xA,xB,xC)

Vτ⊙σ(x
τ ⊙ xσ)

=
∑

θ−
A
∈S−(xA)

∑

θB∈S (xB)

∑

θ+
C
∈S+(xC)

∑

xτ⊙xσ∈wit+σ,τ (xA,xB,xC)

Vσ(x
σ) · Vτ (x

τ )

=
∑

ϕ−
A
∈S−(xA)

∑

ϕB∈S (xB)

∑

ϕ+
C
∈S+(xC)

∑

yσ∈wit+σ (xA,xB)

∑

yτ∈wit+τ (xB ,xC)

Vσ(y
σ) · Vτ (y

τ )

= (♯S−(xA)) ∗ (♯S (xB)) ∗ (♯S+(xC)) ∗









∑

yσ∈wit+σ (xA,xB)

Vσ(y
σ)



 ·





∑

yτ∈wit+τ (xB ,xC)

Vτ (y
τ )









= (♯S−(xA)) ∗ (♯S (xB)) ∗ (♯S+(xC)) ∗ (∫(σ)xA,xB · ∫(τ)xB ,xC)

using the definition of integer multiplication in R and of the valuation of τ ⊙ σ; then
substituting by Φ of Lemma 4.19 and using that the valuation is invariant under symmetry;
and using distributivity of · over + in R and the definition of integer multiplication.

Now, since R satisfies integer division, we may deduce the equality in R:
∑

xτ⊙xσ∈wit+σ,τ (xA,xB,xC)

Vτ⊙σ(x
τ ⊙ xσ) = ∫(σ)xA,xB · ∫(τ)xB ,xC ,

by dividing each side by (♯S−(xA)), (♯S (xB)), (♯S+(xC)). By (4.9), summing both sides
over all xB ∈ C 0

∼=(B) concludes the proof of the desired equation.

We do not know if integer division is really needed. One could avoid it by extracting
from the bijection Φ in Lemma 4.19 a direct bijection preserving symmetry classes

wit+σ,τ (xA, xB , xC) ≃ wit+σ (xA, xB)× wit+τ (xB , xC) ,

but it is not immediately clear how to do that. Assuming integer division does not remove
any interesting example of continuous semiring; so we did not push this. We obtain:

Proposition 6.9. The operation ∫(−) : R-Strat → R-Rel is a ∼-functor.

Proof. It remains to prove that ∫(−) preserves the identities and the equivalence relation.
For identities the proof of Proposition 5.4 applies, using that valuations for ccA are 1.

For the equivalence relation, given σ, τ ∈ R-Strat(A,B) and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B),
given ϕ : σ ≈ τ we proved in Proposition 5.5 that ϕ specializes to a bijection

ϕ : wit+σ (xA, xB) ≃ wit+τ (xA, xB) ,
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but as ϕ is now required to preserve valuations, we have ∫(σ)xA,xB = ∫(τ)xA,xB as needed.

6.2.2. Preservation of symmetric monoidal structure. For the tensor, it is straightforward:

Proposition 6.10. The operation ∫(−) is a symmetric monoidal ∼-functor.

Proof. The structural isomorphisms involved are the R-weighted relations defined with the
same formulas as in Section 5.2.2. All coherence laws follow. For naturality of t⊗A,B, we
build on the proof of Proposition 5.6 by noting that the bijection

(− ⊗−) : wit+σ (xA, yA′)× wit+τ (xB , yB′) → wit+σ⊗τ (xA ‖ xB , yA′ ‖ yB′)

is such that Vσ⊗τ (x
σ⊗xτ ) = Vσ(x

σ) ·Vτ (x
τ ) by definition of the valuation for tensor. From

this, the naturality of t⊗A,B follows by an immediate calculation.

6.2.3. Preservation of promotion. As expected, for C a strict arena we set t!C as the R-
weighted relation defined with the same formula as in Section 5.3.2. We prove:

Proposition 6.11. For A,B arenas, strategy σ ∈ Strat(A,B), and symmetry classes x!A ∈
C 0
∼=(!A), y!B ∈ C 0

∼=(!B) with y!B = [y1B , . . . , y
n
B ] with each yiB non-empty, we have:

∫(!σ)x!A,y!B =
∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

∫(σ)zi
A
,yi

B

Proof. We perform the computation:

♯m(x!A) ∗ ∫(!σ)x!A,y!B =
∑

π∈m(x!A)

∑

x!σ∈wit+!σ(x!A,y!B)

V!σ(x
!σ)

=
∑

̟∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∑

(xi)∈Π1≤i≤nwit
+
σ (zi

A
,yi

B
)

V!σ([(x
i)1≤i≤n])

=
∑

̟∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∑

(xi)∈Π1≤i≤nwit
+
σ (zi

A
,yi

B
)

∏

1≤i≤n

Vσ(x
i)

=
∑

̟∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

∑

xi∈wit+σ (zi
A
,yi

B
)

Vσ(x
i)

=
∑

̟∈m(x!A)

∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

∫(σ)zi
A
,yi

B

= ♯m(x!A) ∗
∑

(z1
A

,...,zn
A

) s.t.

x!A=[zi
A
|zi

A
6=∅]

∏

1≤i≤n

∫(σ)zi
A
,yi

B

using the definition of integer multiplication; the bijection U in Lemma 5.10; the definition
of the valuation for !σ; distributivity of · over sum; definition of ∫(σ); and again definition
of integer multiplication. Finally, the desired equality follows by integer division.
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From this, it follows – with the same proof – that promotion is preserved as in Propo-
sition 5.12. As for composition, it is not clear whether one can avoid integer division here.

From this point, we can conclude the preservation of the relative Seely structure.

Corollary 6.12. We have a relative Seely ∼-functor ∫(−) : R-Strat → R-Rel.

Proof. It remains to define t⊤, t&C,D and t⊸A,C for A,C,D arenas with C,D strict – those are
defined with the same formulas as in Section 5.3.4. The coherence laws follow likewise.

6.3. Preservation of the Interpretation. While Corollary 6.12 does the heavy lifting,
there remain a few things to check. First, preservation of recursion boils down to:

Proposition 6.13. Consider A,B arenas. Then, the collapse function is continuous:

∫(−) : R-Strat(A,B) → R-Rel(∫(A), ∫(B))

Proof. Consider directed D ⊆ R-Strat(A,B), and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B). We compute:

∫(∨D)xA,xB =
∑

xσ∈wit+∨D
(xA,xB)

Vσ(x
σ)

=
∨

X⊆fwit
+
∨D

(xA,xB)

∑

xσ∈X

Vσ(x
σ)

=
∨

σ∈D

∨

Y⊆fwit
+
σ (xA,xB)

∑

xσ∈Y

Vσ(x
σ)

which is ∨σ∈D∫(σ)xA,xB by definition – we used the definition of infinite sums, and (5.7).

It follows that the recursion combinator is preserved, with the same proof as Proposition
5.18. Likewise, all the diagrams in Figure 15 immediately hold. Finally, the interpretations
of r · − trivially agree with each other as well. To conclude, we have:

Theorem 6.14. Consider Γ ⊢M : A any term of R-PCF. Then,

LΓM
LMM

//

kctxΓ ��

LAM

k
ty
A��

∫(JΓK)
∫!(JMK)

// ∫(JAK)

commutes in R-Rel!.

Proof. As for Theorem 5.19 with the ingredients introduced in this section.

As in the earlier case, we also provide a more concrete statement:

Theorem 6.15. Consider any term Γ ⊢M : A of R-PCF, and γ ∈ LΓM, a ∈ LAM. Then,

LMMγ,a =
∑

x∈wit+
JMK

(sctxΓ (γ),sty
A
(a))

VJMK(x) .

Proof. Direct from Theorem 6.14, with the same proof as for Theorem 5.20.
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From this, one obtains game semantics for various continuous semirings, inheriting
adequacy properties from [LMMP13]. Details are out of scope of the paper.

The weighted relational model is inherently infinite, because the sum (2.2) involved in
the composition of weighted relations has no reason to be finite. This infinitary nature is
sometimes criticized; for instance probabilistic coherence spaces [EPT11] consist in enriching
the weighted relational model with a biorthogonality construction ensuring (among other
things) that all coefficients remain finite. So it is noteworthy that no infinity arises in
R-Strat: the construction unfolds just fine with only a plain semiring – or in fact, only a
monoid (|R|, ·, 1)! Indeed, as it stands, the sum only arises when collapsing to R-Rel.

7. Conclusion

As a rough approximation, there are essentially two families of denotational models in
the legacy of linear logic: on the one hand the web-based semantics such as relational
models, coherence spaces and their weighted counterparts, arising from Girard’s quantitative
semantics [Gir88]; and on the other hand the interactive semantics drawing inspiration,
among others, from Girard’s geometry of interaction [Gir89]. The two families are great for
different things: the former family has had impressive achievements in modeling quantitative
aspects of programming, with notably the recent full abstraction result for probabilistic
PCF due to Ehrhard, Pagani and Tasson [EPT18]; while the latter has proved particularly
powerful in capturing effectful programming languages [MT16]. It is certainly puzzling that
these families, though sharing such a close genesis, have remained almost separated!

We believe the results presented here are an important step towards bringing these two
families together, aiming towards a unified landscape of quantitative denotational models of
programming languages. We proved this for PCF, but there is no doubt that this extends
to other languages or evaluation strategies – in fact, the first author and de Visme proved a
similar collapse theorem for the (call-by-value) quantum λ-calculus [CdV20] (this relies on
some of the constructions of this paper, first appearing in an unpublished technical report
by the first author [Cla20]). Of course, much remains to be done: notably, we would like
to understand better the links between thin concurrent games and generalized species of
structure [FGHW08]. Much of the present development is also reminiscent of issues related
to rigid resource terms and the Taylor development of λ-terms [OA20].
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Appendix A. Postponed Proofs and Constructions

A.1. Theory of relative adjunctions and comonads. We first recall the basic theory of
relative adjunctions, and relative comonads. These are defined with respect to any functor
J : C → D, but we only give the special case where C is a full subcategory of D, and
J : C →֒ D is the inclusion functor. The general definitions can be found in e.g. [ACU10].

Relative adjunctions. If F : C → B and G : B → D, we say that F is a J-relative left
adjoint to G if for every C ∈ C and B ∈ B there is a natural bijection

B(F (C), B) ∼= D(C,G(B)).

We say that F is a J-relative right adjoint to G if for all C ∈ C and B ∈ B there is

B(B,F (C)) ∼= D(G(B), C).

a natural bijection These two situations are respectively pictured as the diagrams below:

B

C D
⊣

GF

B

C D
⊢

GF (A.1)

Note that this definition is asymmetric: if F is a right adjoint to G relative to J , then
it does not make sense to say that G is a J-left adjoint to F .

Relative comonads. A J-relative comonad consists of: (1) for every C ∈ C, an object
!C ∈ D; (2) for every C ∈ C, a morphism ǫC : !C → C; and (3) for every B,C ∈ C and
f : !B → C, a morphism f † : !B → !C, such that for A,B,C ∈ C,

(1) if f : !B → C, then f = ǫC ◦ f †,

(2) ǫ†C = id!C ,
(3) if f : !A→ B and g : !B → C, then (g ◦ f †)† = g† ◦ f †.

The axioms ensure that ! can be extended to a functor, sending f : B → C to (f ◦ ǫB)
†.
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The Kleisli category of a J-relative comonad. The relationship between adjunctions
and comonads extends to the J-relative setting. For F and G as in the right-hand diagram
in (A.1), their composite GF is a relative comonad. Conversely, any relative comonad has
an associated Kleisli category C! which can be used to construct a relative adjunction: it
has objects those of C, and homsets given by C!(B,C) = D(!B,C). We have a situation

C!

C D
⊢

where the right adjoint is identity-on-objects and maps f : B → C to f ◦ ǫB , and the left
adjoint maps C ∈ C! to !C ∈ D and f ∈ C!(B,C) to f ! ∈ D(!B, !C).

A.2. The Kleisli category of a relative Seely category. For a relative Seely category
C as in Definition 3.37, the Kleisli category for the relative comonad ! is cartesian closed.
We give some details of the proof. Recall that the situation is the following:

C!

Cs C
⊢

GF

where F and G are defined in the last paragraph of the previous section.

Products. It is easy to show that J-relative right adjoints preserve the limits that J pre-
serves, see e.g. [Ulm68]. Since J preserves products, C! has all finite products constructed
as in Cs, with projections πA ◦ ǫA&B ∈ C!(A&B,A) and πB ◦ ǫA&B ∈ C!(A&B,B).

Cartesian closure. For A,B ∈ Cs, we define the function space A ⇒ B = !A ⊸ B; we
know this is an object of Cs since by definition the functor !A ⊸ − has type Cs → Cs. We
use the (relative) closed structure of C to derive the required bijection. For A,B,C ∈ Cs,

C!(A&B,C) = C(!(A &B), C)

∼= C(!A⊗ !B,C) (using mA,B)

∼= C(!A, !B ⊸ C) = C!(A,B ⇒ C)

and this is natural. The evaluation map evA,B ∈ C!((A ⇒ B) &A,B) is given by

!((A⇒ B) &A)
m−1

A,B
−−−→ !(A⇒ B)⊗ !A

ǫA⇒B⊗!A
−−−−−−→ !A⊸ B ⊗ !A

ev!A,B
−−−−→ B.

A.3. Synchronization up to Symmetry. First we include the proof of:

Proposition A.1. Consider σ : A ⊢ B and τ : B ⊢ C two strategies.
For xσ ∈ C+(σ), xτ ∈ C+(τ) and θ : xσB

∼=B xτB s.t. the composite bijection is secured:

xσ ‖ xτC
∂σ‖C
≃ xσA ‖ xσB ‖ xτC

A‖θ‖C
∼= xσA ‖ xτB ‖ xτC

A‖∂−1
τ

≃ xσA ‖ xτ ,

then there are (necessarily unique) yσ ∈ C+(σ) and yτ ∈ C+(τ) causally compatible, and

ϕσ : xσ ∼=σ y
σ , ϕτ : xτ ∼=τ y

τ ,
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such that we have ϕσA ∈ S−(A), ϕ
τ
C ∈ S+(C), and ϕτB ◦ θ = ϕσB.

Proof. Let us write A− for A with symmetry replaced with S (A−) = S−(A), S−(A−) =
S−(A), and S+(A−) reduced to identity bijections. Likewise, C+ is C with isomorphism
families restricted to positive symmetries. Then, then we consider the maps of essp

(∂σ ‖ idC) : σ ‖ C+ → A⊥ ‖ B ‖ C⊥ (idA ‖ ∂τ ) : A− ‖ τ → A ‖ B⊥ ‖ C

are dual pre-∼-strategies in the sense of [CCW19]. Existence then follows directly from an
application of Lemma 3.23 of [CCW19] to these two. For uniqueness, consider zσ ∈ C+(σ)
and zτ ∈ C+(τ) causally compatible together with ψσ : zσ ∼=σ x

σ and ψτ : zτ ∼=τ x
τ with

ψσA ∈ S−(A), ψ
τ
C ∈ S+(C) and ψτB ◦ θ = ψσB . Then,

∂σ(ψ
σ ◦ (ϕσ)−1) = θ−A ‖ (ψσB ◦ (ϕσB)

−1) ∂τ (ψ
τ ◦ (ϕτ )−1) = (ψτB ◦ (ϕτB)

−1) ‖ θ+C

where ψσB ◦ (ϕσB)
−1 = ψτB ◦ θ ◦ θ−1 ◦ (ϕτB)

−1 = ψτB ◦ (ϕτB)
−1, so by Proposition 3.28,

ω = (ψσ ◦ (ϕσ)−1)⊙ (ψτ ◦ (ϕτ )−1) ∈ S
+(τ ⊙ σ)

but its image by ∂τ⊙σ is a positive symmetry, so ω is an identity symmetry by Lemma 3.28
of [CCW19]. It follows easily from Proposition 3.28 that ψσ = (ϕσ)−1 and ψτ = (ϕτ )−1.

We can also prove the same property on symmetries rather than configurations. For
this, we use higher symmetries on ess: if θ, θ′ ∈ S (E), we write Θ : θ ∼=E θ

′ for a bijection
between their graphs, such that writing dom(Θ) = {(a1, b1) | ((a1, a2), (b1, b2)) ∈ Θ},

dom(Θ) : dom(θ) ∼=E dom(θ′)

and likewise for cod(Θ).

Proposition A.2. Consider σ : A ⊢ B and τ : B ⊢ C two strategies.
For θσ ∈ S +(σ), θτ ∈ S +(τ) and Θ : θσB

∼=B θτB s.t. the composite bijection is secured:

θσ ‖ θτC
∂σ‖C
≃ θσA ‖ θσB ‖ θτC

A‖Θ‖C
∼= θσA ‖ θτB ‖ θτC

A‖∂−1
τ

≃ θσA ‖ θτ ,

then there are (necessarily unique) ϑσ ∈ S +(σ) and ϑτ ∈ S +(τ) causally compatible, and

Φσ : θσ ∼=σ ϑ
σ , Φτ : θτ ∼=τ ϑ

τ ,

s.t. ΦσA is negative ( i.e. dom(ΦσA) and cod(ΦσA) negative), Φ
τ
C is positive, and ΦτB ◦Θ = ΦσB.

Proof. Let us write θσ : xσ ∼=σ y
σ and θτ : xτ ∼=τ y

τ . Applying Proposition 4.4, we get

ϕσ : xσ ∼=σ u
σ ϕτ : xτ ∼=τ u

τ ψσ : yσ ∼=σ v
σ ψτ : yτ ∼=τ v

τ

where uσ, uτ causally compatible, vσ, vτ causally compatible, and satisfying additional prop-
erties not listed here. We may then define ϑσ and ϑτ as the missing sides of:

xσ
ϕσ

//

θσ

��

uσ

yσ
ψσ

// vσ

xτ
ϕτ

//

θτ

��

uτ

yτ
ψτ

// vτ

and Φσ : θσ ∼=σ ϑ
σ and Φτ : θτ ∼=τ ϑ

τ induced by those commuting diagrams. It is then a
simple diagram chasing that the additional properties are satisfied.
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A.4. Horizontal Composition of Positive Isomorphisms. Next we detail the proof
of:

Proposition A.3. Let σ, σ′ ∈ Strat(A,B); τ, τ ′ ∈ Strat(B,C); ϕ : σ ≈ σ′, ψ : τ ≈ τ ′.
Then, there exists a positive isomorphism ψ ⊙ ϕ : τ ⊙ σ ≈ τ ′ ⊙ σ′ such that for all

xτ ⊙ xσ ∈ C+(τ ⊙ σ), writing yτ
′
⊙ yσ

′
= (ψ ⊙ ϕ)(xτ ⊙ xσ) ∈ C+(τ ′ ⊙ σ′), we have

ϕ(xσ) ∼=σ′ y
σ′ , ψ(xτ ) ∼=τ ′ y

τ ′ .

Proof. We define ψ ⊙ ϕ on +-covered configurations. Take xτ ⊙ xσ ∈ C+(τ ⊙ σ). There is,
of course, no reason why ϕ(xσ) and ψ(xτ ) would be compatible. However, since ϕ and ψ
are positive isomorphisms, there are (unique) symmetries θ−A , θ

+
B , θ

−
B , θ

+
C such that

xσ

ϕ

��

∂σ // xσA ‖ xσB

θ−
A
‖θ+

B

��
ϕ(xσ)

∂σ′

// ϕ(xσ)A ‖ ϕ(xσ)B

xτ

ψ

��

∂τ // xτB ‖ xτC

θ−
B
‖θ+

C

��
ψ(xτ )

∂τ ′
// ψ(xτ )B ‖ ψ(xτ )C

commute. We show that there are unique yτ
′
⊙ yσ

′
∈ C+(τ ′ ⊙ σ′) and symmetries

ω : ϕ(xσ) ∼=σ′ y
σ′ ν : ψ(xτ ) ∼=τ ′ y

τ ′

such that ωA ∈ S−(A), νC ∈ S+(C) and ωB ◦ θ+B = νB ◦ θ−B .
Existence. We get θB = θ−B ◦ (θ+B)

−1 : ϕ(xσ)B ∼=B ψ(xτ )B a mediating symmetry
between ϕ(xσ) and ψ(xτ ) and from the two diagrams above we easily deduce that

xσ ‖ xτCϕ‖θ+
C
ww♦♦♦♦

∂σ‖xτC // xσA ‖ xB ‖ xτC
xσ
A
‖∂−1

τ // xσA ‖ xτ
θ−
A
‖ψ
''◆◆

◆◆

zσ
′
‖ zτ

′

C
∂σ′‖zτ

′

C

// zσ
′

A ‖ zσ
′

B ‖ zτ
′

C
zσ

′

A
‖θB‖zτ

′

C

// zσ
′

A ‖ zτ
′

B ‖ zτ
′

C
zσ

′

A
‖∂−1

τ

// zσ
′

A ‖ zτ
′

commutes, writing zσ
′
= ϕ(xσ) and zτ

′
= ψ(xτ ). As the (bijection induced by) the top row

is secured and ϕ,ψ are order-isomorphisms, it follows that the (bijection induced by) the
bottom row is also secured. Therefore, applying Proposition 4.4, it follows that there are

yτ
′
⊙ yσ

′
∈ C

+(τ ′ ⊙ σ′) ω : zσ
′ ∼=σ′ y

σ′ ν : zτ
′ ∼=τ ′ y

τ ′

such that ωA ∈ S−(A), νC ∈ S+(C) and νB ◦ θB = ωB as required. For uniqueness, if

uτ
′
⊙ uσ

′
∈ C

+(τ ′ ⊙ σ′) µ : zσ
′ ∼=σ′ u

σ′ γ : zτ
′ ∼=τ ′ u

τ ′

then (µ ◦ ω−1)⊙ (γ ◦ ν−1) ∈ S (τ ′ ⊙ σ′) displays to a positive symmetry of A ⊢ C, so is an
identity by Lemma 3.28 of [CCW19]. By Proposition 3.28, µ = ω and γ = ν.

Now, we may set (ψ ⊙ ϕ)(xτ ⊙ xσ) = yτ
′
⊙ xσ

′
. To prove preservation of symmetry, we

perform the exact same construction on symmetries, using Proposition A.2, which commutes
with domain and codomain. The inverse (ψ ⊙ ϕ)−1 is constructed similarly. The fact that
these are inverses and their monotonicity are direct consequences of the uniqueness of the
construction above. Finally, any order-isomorphism preserving symmetry between ess is
generated by a unique isomorphism of ess, see e.g. Lemma D.4 from [CC21].
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A.5. Invariance of ∼+-witnesses. We show that the cardinality of ∼+-witnesses do not
depend on the choice of representative.

Proposition A.4. Consider A,B arenas, σ : A ⊢ B, and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B).

Then, the cardinality of ∼+-wit
+
σ (xA, xB) does not depend on xA ∈ xA and xB ∈ xB.

Proof. We show the following. Consider A a game, σ : A a strategy. For any xA ∈ C (A),
set ∼+-witσ(xA) = {(xσ, ψ+) | ψ+ : xσA

∼=A xA}. Then, for any xA ∼=A yA, we have a bijection
∼+-witσ(xA) ≃ ∼+-witσ(yA). Indeed, fix θ : xA ∼=A yA, which can be factored uniquely as
θ+ ◦ θ− and as ϑ− ◦ ϑ+ by Lemma 4.10. Now, given (xσ, ψ+) ∈ ∼+-witσ(xA), then there are
unique yσ ∈ C (σ), ϕσ : xσ ∼=σ y

σ, ω+ : yσA
∼=+
A zA s.t. the following diagram commutes.

xσA
ψ+

//

ϕσ
A

��

xA

θ−

��

ϑ+ // z′A

ϑ−

��
yσA

ω+
// zA

θ+
// yA

For existence, refactor θ− ◦ ψ+ = Θ+ ◦ Θ− by Lemma 4.10, say Θ− : xσA
∼=−
A uA and

Θ+ : uA ∼=+
A zA. By Lemma 4.15, there are unique ϕσ : xσ ∼=σ y

σ and Ω+ : yσA
∼=+
A uA such

that Ω+ ◦ ϕσA = Θ−. Setting ω+ = Θ+ ◦Ω+ satisfies our constraints.

Uniqueness. If we also have yσ ′, ϕσ ′, and ω+′
satisfying those constraints, then ϕσ ◦

(ϕσ ′)−1 ∈ S (σ) maps to the identity which is a positive symmetry, so must be an identity

by Lemma 4.6. It follows that yσ = yσ ′, ϕσ = ϕσ ′, and by necessity ω+ = ω+′
as well.

This yields a construction from ∼+-witσ(xA) to ∼+-witσ(yA). Note that the construction
is symmetric and may be applied from ∼+-witσ(yA) to ∼+-witσ(xA) as well via θ

−1. That the
two constructions are inverse follows immediately from the uniqueness property.

Appendix B. Not Every Game is Representable

The following counter-example is due to Marc de Visme.

Example B.1. Consider the tcg A, with events, polarities, and causality and follows:

⊖1 ⊖2

⊕1 ⊕2

Its symmetry comprises all order-isomorphisms between configurations. The negative
symmetry has all order-isomorphisms included in one of the two maximal bijections

⊖1 ⊖2

⊕1 ⊕2

∼=−
A

⊖1 ⊖2

⊕1 ⊕2

⊖1 ⊖2

⊕1 ⊕2

∼=−
A

⊖2 ⊖1

⊕2 ⊕1

where again, the bijection matches those events in the corresponding position of the diagram.
Likewise, the positive symmetry has all order-isomorphisms included in one of:

⊖1 ⊖2

⊕1 ⊕2

∼=+
A

⊖1 ⊖2

⊕1 ⊕2

⊖1 ⊖2

⊕1 ⊕2

∼=+
A

⊖1 ⊖2

⊕2 ⊕1
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forming, altogether, a tcg. Then, the endosymmetry

⊖1 ⊖2

⊕1

∼=A

⊖2 ⊖1

⊕1

which is neither positive nor negative, uniquely factors as

⊖1 ⊖2

⊕1

∼=−
A

⊖2 ⊖1

⊕2

∼=+
A

⊖2 ⊖1

⊕1

which is not formed of endosymmetries. So this configuration is not canonical, but its only
symmetric {⊖1,⊖2,⊕2} is not canonical either, for the same reason.

Appendix C. Further Content on Groupoids of Strategies

C.1. On Weights of Symmetry Classes. How should one correct the sum, if one is
to count symmetry classes instead of positive witnesses? Let us fix A a game, σ : A any
strategy, and xA ∈ C 0

∼=(A). We show how negative symmetries act on ∼+-witnesses of xA.

Proposition C.1. For any (xσ, θ+) ∈ ∼+-witσ(xA) and ϕ− ∈ S−(xA) there are unique
(yσ, ψ+) ∈ ∼+-witσ(xA) and φ : xσ ∼=σ y

σ such that the following diagram commutes:

xσA
θ+ //

φσA ��

xA
ϕ−

��
yσA

ψ+
// xA

Proof. Consider (xσ, θ+) ∈ ∼+-wit(xA) and ϕ− ∈ S−(xA). We show that there is unique
φσ : xσ ∼=σ y

σ and ψ+ : yσA
∼=+
A xA making the following diagram commute:

xσA
θ+ //

φσ
A ��

xA
ϕ−

��
yσA ψ+

// xA

For existence, by Lemma 4.10, ϕ− ◦ θ+ : xσA
∼=A xA factors uniquely as Ξ+ ◦Ξ− : xσA

∼=A

xA. Next, by Lemma 4.15, there is φσ : xσ ∼=σ y
σ such that we have

φσA = Ω+ ◦ Ξ− : xσA
∼=A y

σ
A

for some Ω+ : yA ∼=+
A y

σ
A. We then form ψ+ = Ξ+ ◦ (Ω+)−1 to conclude.

For uniqueness, if we have ϕ1 : x
σ ∼=σ y

σ and ϕ2 : x
σ ∼=σ z

σ satisfying the requirements,

yσA
(σϕ1)−1

//

+
��

xσA
+
��

σϕ2 // zσA
+
��

xA
(ϕ−)−1

// xA
ϕ−

// xA

commutes, so (σϕ2) ◦ (σϕ1)
−1 = σ(ϕ2 ◦ ϕ

−1
1 ) is positive, so by Lemma 3.28 of [CCW19] we

have ϕ2 ◦ ϕ
−1
1 = id, so ϕ1 = ϕ2.
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It follows easily that there is a group action

( y ) : S−(xA)×∼+-wit(xA) → ∼+-wit(xA) ,

though we shall not use this specifically.
Next, we show that representatives of symmetry classes of configurations in σ can always

be chosen to be positively symmetric to the chosen representative in the game.

Lemma C.2. Consider xσ ∈ wit
∼=
σ (xA). Then, there exists xσ ∈ xσ such that ∂σx

σ ∼=+
A xA.

Proof. By hypothesis, ∂σx
σ = xσA ∈ xA, so there exists

xσA
θ

∼=A xA

which factors uniquely as xσA

θ−

∼=−
A yA

θ+

∼=+
A xA by Lemma 4.10. But then, by Lemma 4.15,

there is ϕ : xσ ∼=σ y
σ and ψ+ : yA ∼=+

A y
σ
A such that

∂σϕ = ψ+ ◦ θ− : xσA
∼=A y

σ
A ,

so that in particular yσ ∈ xσ and yσA

(ψ+)−1

∼=+
A yA

θ+

∼=+
A xA.

So, for each xσ ∈ wit
∼=
σ (xA) we fix a representative xσ such that xσA

∼=+
A xA. We also

choose a reference θ+xσ : xσA
∼=+
A xA. Finally, for every x

σ ∈ xσ we choose κxσ : xσ ∼=σ x
σ.

Our aim is, for every symmetry class xσ ∈ wit
∼=
σ (xA), count the number of concrete

witnesses in xσ. We introduce some notations for this set – let us write

wit+σ [x
σ] = {xσ ∈ wit+σ (xA) | x

σ ∈ xσ}

∼+-witσ[x
σ] = {xσ ∈ ∼+-witσ(xA) | x

σ ∈ xσ}

for the concrete witnesses (resp. ∼+-witnesses) within a symmetry class xσ ∈ wit
∼=
σ (xA).

Then, we prove the following bijection:

Proposition C.3. There is a bijection ∼+-witσ[x
σ]× S (xσ) ≃ S (xA).

Proof. First we show that for every (xσ, θ+) ∈ ∼+-witσ(xA) and ϕ ∈ S (xσ), there is a unique
ψ ∈ S (xA) such that the following diagram commutes:

xσA
θ+
xσ //

(κxσ◦ϕ)A ��

xA

ψ
��

xσA
θ+

// xA

but this is obvious, as ψ is determined by composition from the other components.
Reciprocally, we show that for all ψ ∈ S (xA), there are unique (xσ , θ+) ∈ ∼+-witσ(xA)

and ϕ ∈ S (xσ) such that the same diagram above commutes. First, by canonicity of xA,
ψ = ψ+ ◦ ψ− for ψ− ∈ S−(xA) and ψ+ ∈ S+(xA). By Proposition C.1, there are unique
(yσ, ω+) ∈ ∼+-witσ(xA) and φ

σ : xσ ∼=σ y
σ such that the following diagram commutes:

xσA
θ+
xσ //

φσ
A ��

xA

ψ−

��
yσA ω+

// xA
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We may then define xσ := yσ, θ+ := ψ+ ◦ω+, and ϕ := (κyσ )
−1 ◦φσ and the diagram is

obviously satisfied. It remains to prove uniqueness, so assume we have (zσ , ϑ+) ∈ ∼+-witσ(xA)
and ν ∈ S (xσ) such that the following diagram commutes:

xσA
θ+
xσ //

(κzσ◦ν)A ��

xA

ψ
��

zσA
ϑ+

// xA

But then (κzσ ◦ ν) ◦ (κxσ ◦ ϕ−1) ∈ S (σ) displays to a positive symmetry, so must be
an identity by Lemma 4.6. Thus xσ = yσ, so ν = ϕ, and so θ+ = ϑ+ as it is uniquely
determined from the other components by the diagram. This gives constructions in both
directions, and that they are inverses follows directly from the uniqueness properties.

From that bijection, we may conclude the following result:

Theorem C.4. Consider A a game, σ : A and xA ∈ C 0
∼=(A), and xσ ∈ wit

∼=
σ (xA). Then,

♯wit+σ [x
σ] =

♯S−(xA)

♯S (xσ)
.

Proof. By Proposition C.3, we have ♯∼+-witσ[x
σ]× ♯S (xσ) = ♯S (xA), so we have

♯S+(xA)× ♯wit+σ [x
σ]× ♯S (xσ) = ♯S+(xA)× ♯S−(xA)

using Lemma 4.18 and canonicity of xA. The identity follows.

This finally lets us state the collapse formula for symmetry classes – below we use
that by invariance under symmetry, any the valuation of any R-strategy lifts canonically to
symmetry classes. So we can finally reformulate (6.1) as:

Theorem C.5. Consider σ ∈ R-Strat(A,B) and xA ∈ C 0
∼=(A), xB ∈ C 0

∼=(B). Then,

∫(σ)xA,xB =
∑

xσ∈wit
∼=
σ (xA,xB)

♯S−(xA)

♯S (xσ)
∗ Vσ(x

σ)

Proof. We calculate:

∫(σ)xA,xB =
∑

xσ∈wit+σ (xA,xB)

Vσ(x
σ)

=
∑

xσ∈wit
∼=
σ (xA,xB)

∑

xσ∈wit+σ [xσ]

Vσ(x
σ)

=
∑

xσ∈wit
∼=
σ (xA,xB)

♯wit+σ [x
σ] ∗ Vσ(x

σ)

=
∑

xσ∈wit
∼=
σ (xA,xB)

♯S−(xA)

♯S (xσ)
∗ Vσ(x

σ)
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C.2. Absorption of Symmetries. As final contribution, we include a property which,
though not used for the main results of this paper, was required for the quantum collapse
of [CdV20]. As such, we believe it fits with the present development.

For A a game, σ : A a strategy, and xA ∈ C 0
∼=(A), a variant of the ∼+-witnesses is

∼-wit+σ (xA) = {(xσ , θ) | xσ ∈ wit+σ (xA), θ : x
σ
A
∼=A xA} ,

so we still consider witnesses xσ ∈ C+(σ) such that xσA
∼=+
A xA still, but associated with all

possible symmetries, not only positive symmetries as in ∼+-witσ(xA). Our last contribution
consists in counting ∼-wit+σ (xA), compared to ∼+-witσ(xA). First we need:

Lemma C.6. Consider A a tcg, xA ∈ C∼=(A), and x ∈ C (A) s.t. x ∼=+
A xA.

Then, any θ : x ∼=A xA factors uniquely as θ− ◦ θ+, where θ+ : x ∼=+
A xA, θ

− ∈ S−(xA).

Proof. Fix some ϕ : x ∼=+
A xA. Now, take θ : x ∼=A xA. By Lemma 4.10, θ factors uniquely

as θ− ◦ θ+, where θ+ : x ∼=+
A z and θ− : z ∼=−

A xA for some z ∈ C (A). But then,

ϕ ◦ θ−1 : xA
∼=A xA

factors via (ϕ◦(θ+)−1) : z ∼=+
A xA and (θ−)−1 : xA

∼=−
A z, so xA = z since xA is canonical.

Corollary C.7. There is a bijection ∼-wit+σ (xA) ≃ S−(xA)×∼+-witσ(xA).

Proof. First, we show that for all (xσ, θ) ∈ ∼-wit+σ (xA) there are unique yσ ∈ C+(σ), ϕσ ∈
S (σ), θ− ∈ S−(A), θ

+ ∈ S+(A) and ψ
+ ∈ S+(A), such that the diagram commutes:

xσA
θ+ //

ϕσ
A

��

θ

  ❅
❅❅

❅❅
❅❅

❅
xA

θ−

��
yσA ψ+

// xA

By Lemma C.6, θ factors uniquely as claimed. But then, the other components and their
uniqueness follows from Proposition C.1. Reciprocally, we show that for all θ− ∈ S−(xA)
and (yσ, ψ+) ∈ ∼+-witσ(xA), there are unique xσ ∈ C (σ), θ ∈ S (A), θ+ ∈ S+(A) and
ϕσ ∈ S (σ) such that the diagram above commutes – but this is again Proposition C.1.

These two constructions immediately provide the two sides of the bijection, and that
they are inverses immediately follows from the uniqueness.
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