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Abstract

Soil fauna communities are major drivers of many forest ecosystem processes. Tree species diversity and composition shape 
soil fauna communities, but their relationships are poorly understood, notably whether or not soil fauna diversity depends on 
tree species diversity. Here, we characterized soil macrofauna communities from forests composed of either one or three tree 
species, located in four different climate zones and growing on different soil types. Using multivariate analysis and model 
averaging we investigated the relative importance of tree species richness, tree functional type (deciduous vs. evergreen), litter 
quality, microhabitat and microclimatic characteristics as drivers of soil macrofauna community composition and structure. 
We found that macrofauna communities in mixed forest stands were represented by a higher number of broad taxonomic 
groups that were more diverse and more evenly represented. We also observed a switch from earthworm-dominated to 
predator-dominated communities with increasing evergreen proportion in forest stands, which we interpreted as a result of a 
lower litter quality and a higher forest floor mass. Finally, canopy openness was positively related to detritivore abundance 
and biomass, leading to higher predator species richness and diversity probably through trophic cascade effects. Interestingly, 
considering different levels of taxonomic resolution in the analyses highlighted different facets of macrofauna response to 
tree species richness, likely a result of both different ecological niche range and methodological constraints. Overall, our 
study supports the positive effects of tree species richness on macrofauna diversity and abundance through multiple changes 
in resource quality and availability, microhabitat, and microclimate modifications.

Keywords Community ecology · Forest ecosystems · Biodiversity-ecosystem functioning · Aboveground-belowground 
linkages
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Introduction

Forests are a major type of ecosystem in Europe, covering 
42% of land surface (Paivinen et al. 2001) and provid-
ing a multitude of key ecosystem services, such as timber 
production, watershed protection and carbon sequestra-
tion (Scherer-Lorenzen et al. 2005). These services depend 
strongly on tree taxonomic richness and on the proportion 
of different functional type (e.g., evergreen vs. decidu-
ous) in forest stands (Gamfeldt et al. 2013). In addition, 
tree species richness may determine the abundance and 
diversity of other groups of organisms (Ampoorter, et al. 
2019) that could affect ecosystem processes. Especially, 
trees shape communities of soil invertebrates, which are 
key regulators of soil functioning and primary productiv-
ity (Wardle 2004; Wall et al. 2012). However, the direct 
and indirect mechanisms underlying soil invertebrate 
responses to tree species diversity and composition remain 
poorly understood, even in temperate forest ecosystems 
(Korboulewsky et al. 2016).

Trees can influence soil fauna through the provision 
of energy and matter via living and dead plant products 
such as leaf and root litter, dead wood, and rhizodepo-
sition. Many soil organisms such as macrodetritivores 
(earthworms, millipedes, woodlice) feed directly on plant 
debris (Lavelle and Spain 2001), imposing stoichiometric 
constraints with lower and narrower carbon to nutrient 
ratios in animal biomass than that of their feeding resource 
(Sterner and Elser 2002). Resource nutrient concentrations 
are therefore particularly important as they determine lit-
ter palatability for macrodetritivores, and have important 
consequences on the structure of their communities, nota-
bly on their biomasses (Ott et al. 2014). In mixed forest 
stands, litter may be of overall higher quality relative to 
monospecific stands when tree species with high quality 
litter may compensate for those with low nutrient con-
centrations or high contents in recalcitrant compounds 
(e.g., polyphenols or lignin; Korboulewsky et al. 2016). 
Another pattern often highlighted in the literature is the 
strong effect of evergreen trees on soil fauna communities 
(Reich et al. 2005), which can be related to the low lit-
ter quality of most evergreen species. Additionally, other 
evergreen traits such as leaf life span and the phenology of 
leaf senescence together determine tree canopy properties 
which affect microhabitats and microclimate conditions at 
soil surface (Monk 1966).

Beyond litter quality and its consequences for the het-
erotrophic soil food web, different tree species also vary 
in a number of physical characteristics that may influ-
ence soil fauna communities. For instance, differences in 
leaf size, leaf shape, and amount of litterfall (including 
deadwood), determine the total volume of habitats, and 

their spatial organization for both detritivore and predator 
species (Aubert et al. 2006, Kaspari and Yanoviak 2009). 
The structural complexity of litter layers, and the resulting 
diversity of microhabitats for the soil fauna, also vary from 
one tree species to another and are likely higher in mixed 
than pure stands (Hättenschwiler et al. 2005). This may 
contribute to an increase in abundance, biomass, diversity, 
and evenness of soil invertebrates in mixed when com-
pared to monospecific forest stands (Hansen and Coleman 
1998; Perry and Herms 2016), especially when the mixed 
stands include deciduous broadleaved trees among ever-
green conifers (Kaneko and Salamanca 1999).

The influence of the previously mentioned litter prop-
erties (nutrient content, shape, litter layer depth) on soil 
and forest floor properties and on invertebrate communi-
ties also varies with tree canopy richness and composition 
(Augusto et al. 2002; Ponge 2003). Tree canopy openness 
is an important but overlooked forest stand characteristic 
that has important effects on forest floor conditions. By 
modulating light availability at the soil surface, canopy 
openness may influence soil communities by altering forest 
floor microclimate and understory vegetation (Prescott and 
Vesterdal 2013; Henneron et al. 2015; Mueller et al. 2016). 
This again can differ depending on tree species richness that 
can affect canopy openness and litter production through 
increased canopy packing, as was reported for different 
European forests (Jucker et al. 2015). In addition, evergreen 
tree species distinctively affect microclimatic conditions, in 
particular through a permanent canopy cover, and high leaf 
area index (LAI) all year round which leads to higher rainfall 
interception and evaporation and thus drier soils (Augusto 
et al. 2015).

Characterizing soil fauna responses to the diversity and 
composition of the standing vegetation is thus complex 
and often made even more difficult by taxonomic impedi-
ments and our lack of knowledge of certain taxa. Indeed, 
it is difficult if not impossible to obtain rapid and reliable 
taxonomic assignations at a species level for most of the 
soil biota (Decaëns 2010). A classic strategy to avoid this 
problem in soil macrofauna studies is to target assignations 
to higher taxonomic ranks, which allows the whole com-
munity to be considered without prior selection of target 
taxa (Williams and Gaston 1994; Andersen 1995). Another 
option is to make species-level identifications possible by 
restricting the study to a small number of taxa, for which 
taxonomic expertise is available, that are further assumed to 
be representative of the whole community or of a particu-
lar trophic group thereof. The implication of each of these 
approaches for our ability to describe community patterns 
reliably, and the importance of the level of taxonomic reso-
lution they imply, has never been formally addressed with 
regard to soil fauna. However, it is probable that some of 
these patterns (e.g., diversity—area, or diversity—available 
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energy relationships) may vary in their shape depending on 
the fundamental taxonomic units of the study, which could 
consequently affect observed community responses to envi-
ronmental gradients (Williams and Gaston 1994; Kaspari 
2001; Storch and Šizling 2008).

In this study, we described soil macrofauna communities 
in forest plots composed of either a single dominant tree 
species or three co-dominant tree species in four different 
pedoclimatic zones ranging from boreal to Mediterranean. 
These plot were part of an existing network of natural forest 
plots with different tree species richness and composition 
across Europe (Baeten et al. 2013). We tested three com-
plementary hypotheses. First (H1) higher tree richness in 
forest stand will promote soil macrofauna richness, diversity, 
evenness, abundance, and biomass, likely by increasing the 
probability of including at least one tree species that sig-
nificantly improve life conditions for invertebrates (e.g., by 
producing a high quality litter, having a denser canopy that 
limits microclimatic variations, or promoting more diver-
sified microhabitats in the litter layer). Alternatively, (H2) 
increasing the proportion of evergreen species will nega-
tively affect detritivore assemblages due to their low-quality 
litter and soil-acidification effect, but may favor predator 
organisms by the production of a thicker litter layer and the 
consecutive provision of more microhabitats. Combined, 
these expected effects will result in changes in the whole 
macrofauna community composition. Finally, because of the 
tighter trophic link between litter characteristics and detri-
tivores species (Scherber et al. 2010; Beugnon et al. 2019), 
we expect that (H3) tree species richness and composition 
will induce a stronger response in detritivore than in predator 
communities. These three hypotheses were tested at different 
levels of taxonomic resolution to assess the response of the 
whole macrofauna community and of specific groups with 
narrower ecological niche.

Material and methods

Study sites and tree stand composition

The study was carried out within the framework of the Soil-
ForEUROPE project in four forest sites selected to represent 
four major European forest types along a broad climatic gra-
dient in Europe: thermophilous deciduous forests (Colline 
Metallifere, Italy), mountainous deciduous forests (Râsça, 
Romania), temperate mixed coniferous and broadleaf for-
ests (Bialowieza, Poland), and boreal forests (North Karelia, 
Finland). The sampled plots are part of the FunDivEUROPE 
exploratory platform (Baeten et al. 2013) excluding within 
site variation in climate, soil and land use history between 
plots and specifically designed to disentangle the species 
diversity and identity effect in the biodiversity—ecosystem 

functioning relationship (Nadrowski et al. 2010). In each 
site, replicated forest plots of 30 × 30 m were selected to 
represent either monospecific stands (34 plots) or 3 species 
mixtures (30 plots), further referred to as pure and mixed 
stands, respectively. Selected tree species (i.e., target spe-
cies) are 13 locally dominant and representative tree species, 
including evergreen conifers and evergreen or deciduous 
broadleaved trees (Table 1). These plots were selected in 
2012 during the FunDivEUROPE project and relative basal 
area of tree species was re-estimated in 2018 for this study. 
The relative proportion of tree species was based on their 
relative basal area, and non-targeted species basal area in 
the plot was kept below 5%. In each plot we selected three 
subplots based on tree triplets forming a triangle of three 
individual trees with a minimal diameter at breast height of 
5 cm, composed of either the same target species in the pure 
stands or the three target tree species in the mixed stands 
(Fig. S1).

Invertebrates sampling and community descriptors

Sampling was conducted in 2017 during the phenological 
spring at each of the four sites. In each plot, soil macrofauna 
was sampled by excavating one soil block of 25 × 25 × 10 cm 
within each tree triplet (i.e., three soil blocks per plot). Inverte-
brates were hand sorted in the field, and immediately fixed and 
preserved in 70% ethanol. They were further assigned to broad 
taxonomic groups (usually orders), with additional considera-
tion of trophic position or ecological categories when relevant. 
This resulted in 16 groups: Araneae, predatory Coleoptera 
(Carabidae adults and larvae, Staphylinidae), Opilionidae, 
Dermaptera, Chilopoda, Blattodea, rhizophagous Coleop-
tera (larvae of Melolonthinae, Curculionidae, Elateridae), 
coprophagous Coleoptera (Geotrupinae), endogeic, epigeic, 
and anecic Lumbricidae, Diplopoda, Isopoda, Diptera larvae, 
Gastropoda, and Lepidoptera larvae. Species level identifi-
cations were done for all Lumbricidae, Isopoda, Diplopoda, 
Chilopoda, and Araneae specimens. For the few individuals 
for which this was not possible, genus or family levels were 
kept for the analysis; as this only concerned a small fraction of 
specimens, these higher rank taxonomic identifications were 
treated without distinguishing them from species-level iden-
tifications. All invertebrates were counted per broad group or 
species and weighed individually to the nearest 0.01 mg after 
gently drying them with a paper towel. The abundance and 
biomass of the 16 different groups is given in Table S1. We 
then organized the data into three different matrices: one with 
the numbers of individuals per plot for each broad group, fur-
ther referred to as “all macrofauna”, and two with the numbers 
of individuals per plot and per species (or finest level achieved) 
for the detritivore and predator groups previously mentioned, 
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further referred to as “detritivore assemblage” and “predator 

assemblage”, respectively (taxa list in Table S2).
From these three matrices, we calculated several commu-

nity descriptors: taxonomic richness (S) Pielou’s evenness (J; 
Pielou 1966), and  Hillq=1′ diversity (D1). D1 was obtained with 
the formula:

(1)Dq =

(
S∑

i=1

p
q

i

) 1

1−q

where S is the total number of taxa (i.e., fundamental taxo-
nomic units: broad groups or species depending on the 
matrix), p the proportion of taxa i and q the “order” of the 
diversity. The order q determines the diversity index sen-
sitivity to common and rare taxa with values of q below 
or above one giving diversities highly sensitive to rare or 
common taxa, respectively (Jost 2006). We choose q = 1 and 
even though Eq. (1) is not defined when the diversity order 
is one its limit exists and equals:

Table 1  Description of the four 
sample sites, including the tree 
species pool, and site-specific 
sampling design

Soil measurements are from the first 10 cm of mineral soil. (1) Evergreen needle-leaf, (2) evergreen broad-
leaf, (3) deciduous broadleaf

MAT mean annual temperature, MAP mean annual precipitation, from WorldClim
a Area was obtained from the polygon area joining most distant plots within each country, using Google 
Earth
I Data from SoilForEUROPE project
II Data from FunDivEUROPE project

Finland Poland Romania Italy

Site description

 Latitude, longitude (°) 62.9, 29.9 52.8, 23.9 47.3, 26.0 43.2, 11.2

  Areaa  (km2) 1447 346 4.26 216

 Altitude (m) 139.4 ± 36.6 165.7 ± 12.6 891.8 ± 96.4 405.8 ± 60.5

 Date of sampling 2017/06/12–16 2017/05/05–10 2017/05/22–28 2017/04/10–16

 MAT (°C) 2.0 ± 0.3 6.9 ± 0.1 5.5 ± 0.5 13.4 ± 0.3

 MAP (mm) 632 ± 6 597 ± 4 692 ± 25 738 ± 43

 Soil  typeII Podzol Cambisol/Luvisol Eutric Cambisol Cambisol

 Sand (%)I 48.2 ± 6.2 65.5 ± 7.5 12.9 ± 9.4 17.2 ± 6.4

 Silt (%)I 46.6 ± 5.6 28.7 ± 6.3 59.6 ± 4.9 64.7 ± 4.9

 Clay (%)I 5.1 ± 0.8 5.8 ± 1.6 27.4 ± 6.1 18.1 ± 5.4

 C (mg  g−1 dry soil)II 37.8 ± 11.5 28.4 ± 5.3 49.2 ± 16 50.4 ± 13.4

 N (mg  g−1 dry soil)II 1.7 ± 0.6 1.7 ± 0.2 3.5 ± 1 2.6 ± 0.9

  pHII 3.9 ± 0.3 3.8 ± 0.3 4.6 ± 0.7 4.6 ± 1.1

 Bulk density (g  cm−3)II 1.03 ± 0.09 1.02 ± 0.07 0.93 ± 0.06 0.88 ± 0.07

  Number of mono-specific 
plots

6 6 8 10

 Number of mixed plots 3 14 8 9

Tree species pool

(1) Abies alba ×

(1) Picea abies × × ×

(1) Pinus sylvestris × ×

(2) Quercus ilex ×

(3) Acer pseudoplatanus ×

(3) Betula pendula/pubescens × ×

(3) Carpinus betulus ×

(3) Castanea sativa ×

(3) Fagus sylvatica ×

(3) Ostrya carpinifolia ×

(3) Quercus petraea ×

(3) Quercus robur ×

(3) Quercus cerris ×
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This is the exponential of Shannon entropy which has the 
advantage of being relatively insensitive to rare or common 
taxa. All analyses were done using R software v.3.5.2 (R 
Core Team 2019) with the individual forest plots as replica-
tion units (i.e., the three samples per plot were pooled for 
calculations). Community descriptors were calculated with 
the diversity function of the vegan package (Oksanen et al. 
2019).

Selection of predictor variables

The predictor variables used in this study are summarized in 
Table S3, and protocols of variable acquisition are detailed 
in Online Appendix 1. Tree richness was included in the 
analyses as a factor (one or three tree species), and we 
assessed the effect of tree functional type using the relative 
basal area of evergreen species across the three tree triplets. 
Other predictor variables (i.e., leaf litter traits, microenvi-
ronmental characteristics, and soil properties) were summa-
rized by computing three Principal Components Analysis 
(PCA) ordinations (Fig. S2) with the prcomp function from 
the package factoextra (Kassambara 2019). The scores of 
the forest plots on the retained axes of each PCA were then 
used as synthetic environmental variables to further explain 
the structure and composition of macrofauna communities. 
Pearson correlation between all predictor variable is given 
in Figure S3.

Litter traits included the concentrations of cellulose, 
lignin, polyphenols, nitrogen, and calcium measured in 
freshly fallen leaf litter of all tree species for each coun-
try independently (i.e., we used country mean trait value 
for each tree species). PCA was computed with community 
weighted means of these traits (Garnier et al. 2004), using 
tree basal area over the three triplets as a measure of the rela-
tive proportion of each species. We kept the first PCA axis 
which accounted for 49.5% of overall variance and repre-
sented a “litter quality” gradient from low-quality associated 
with high concentrations of lignin and cellulose (negative 
scores) to high-quality associated with high nitrogen and 
polyphenol concentrations (positive scores) (Fig. S2A).

The microenvironmental variables included forest floor 
mass, biomass of understory vegetation and volume of 
coarse deadwood debris per unit ground area, and the leaf 
area index of canopy trees as a proxy of canopy closure. 
Here, to include enough variance in microhabitat and micro-
climate properties, we kept the first two PCA axes, explain-
ing 38.2% and 26% of the overall variance, respectively. The 
first axis corresponded to a switch from plots with a high 
understory vegetation biomass (negative scores), to plots 

(2)D1 = exp

(
−

S∑

i=1

pilnpi

)
= exp(H)

with most of the soil covered by a thick forest floor (positive 
scores), and is for simplicity further referred to as “forest 
floor mass”. The second axis reflected “canopy openness”, 
with closed canopy plots having negative scores on this axis 
(Fig. S2B).

Soil characteristics in the top 10 cm of mineral horizon 
included bulk density, pH (determined in a  CaCl2 solution), 
clay content, carbon content, and C/N ratio. We kept the 
first axis which explained 52.5% of the overall variance and 
represented a gradient of “soil quality”, with sites having 
negative scores being characterized by more compact, acidic 
and C-poor soils (Fig. S2C).

Statistical analysis

To test the effect of tree stand properties and environmental 
variables on the whole macrofauna, detritivore, and preda-
tor community composition, we calculated the Bray–Curtis 
dissimilarity matrix of the three matrices and performed a 
partial distance-based Redundancy Analysis (dbRDA; Leg-
endre and Anderson 1999) with capscale function of the 
vegan package, and including the country as a random fac-
tor with the argument condition (Borcard et al. 2018). The 
significance of the predictor variable and of the ordination 
along each axis was assessed using permutation tests (anova 
function of the stats package, R Core Team 2019), constrain-
ing the permutation within countries (4999 permutations, 
how function in permute package; Besag and Clifford 1989).

Since macrofauna communities are concomitantly influ-
enced by many environmental factors, themselves driven by 
tree species richness and functional type, we modeled the 
response of each community descriptor first with a model 
(M1) including only tree species richness and functional 
type as co-variable, and then with a complete model (M2) 
including also microenvironment variable. Thus, H1 and H2 
are validated if a significant effect of tree species richness 
and evergreen proportion are detected in M1, respectively. If 
these effects are no longer supported in M2 and are replaced 
by significant effects of the other co-variables, this gives 
further insights into the mechanisms through which tree spe-
cies richness and evergreen proportion affect macrofauna 
communities. On the other hand, similar results in M1 and 
M2 would suggest that tree species richness or evergreen 
proportion effects are mediated by mechanisms others than 
those covered by our co-variables. Finally, the fact of finding 
significant effects only for microenvironmental variables in 
M2, would imply that macrofauna communities are influ-
enced by microenvironment independently of tree species 
richness and evergreen proportion. H3 was tested by com-
paring the results of both models obtained for detritivore and 
predator assemblages separately.

We applied a MultiModel Inference (MMI) approach 
(Burnham et al. 2002) allowing to quantify for the relative 
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importance of each co-variable and constructed the two con-
secutive models as below:

where Y is one of the 15 response variables (i.e., taxonomic 
richness,  Hillq=1 diversity, evenness, abundance, and bio-
mass calculated separately for the whole macrofauna and 
detritivore and predator assemblages). The list of terms 
preceded by the “ ~ ” are the explanatory variables (with 
Tree SR = tree species richness; Evergreen % = percentage 
of evergreen basal area; litter quality = PC1 of litter traits; 
FF mass = PC1 of microenvironmental variables; canopy 
openness = PC2 of microenvironmental variables; soil qual-
ity = PC1 of soil properties; PC refereeing to the plot score 
on the axes of PCA of environmental variables as defined in 
the previous section), and “1|Country” refers to the belong-
ing to countries included as random factor. We used Gener-
alized Linear Mixed Models with the glmmTMB function of 
the glmmTMB package (Magnusson et al. 2019) and checked 
for residual normality and homoscedasticity. Abundance 
data were log(1 + x) transformed since including an argu-
ment to model residuals distributions in the function (Pois-
son or negative binomial family) was not sufficient to meet 
model assumptions (Ives 2015). In both model steps (M1 
and M2), best models were selected based on the Akaike 
Information Criterion for small sample size (AICc, dredge 
function in the MuMIN package), keeping all models within 
ΔAICc < 6 (Harrison et al. 2018). Predictor estimates were 
obtained by averaging their value across the models in which 
the predictor appeared to avoid estimate value shrinkage 
towards zero (Harrison et al. 2018). Estimates were stand-
ardized (βst scale-standardization) to allow cross model 
comparisons of predictor effects. To quantify to what extent 
including microenvironmental variables improve community 
descriptors modeling, we compared the best model obtained 
from the reduced (M1) and complete (M2) model. These 
two best models were compared on the basis of the addi-
tional variance explained by fixed effects (R2m) and by fixed 
and random effects (R2c; Nakagawa and Schielzeth 2013), 
and AICc. Additionally to this first analysis across the four 
sites (continental scale), we performed the same analytical 
procedure with the complete model (M2) in each country 
individually (regional scale) to investigate to what extent the 
observed effects could depend on the geographic context (as 
in de Wandeler et al. 2018). Abundance data were log(1 + x) 
transformed as well as detritivore and predator biomass data 
to reach model assumptions. The analysis was not feasible 
for detritivore assemblage in Finland because of the large 
proportion of empty sites (eight out of nine plots).

Y ∼ Tree SR + Evergreen % + 1|Country (M1)

Y ∼ Tree SR + Evergreen % + Litter quality + FF mass + Canopy openness + Soil quality + 1|Country (M2)

Results

We collected a total of 2951 soil invertebrates belonging 
to 16 broad groups, with an average of 237.6 ± 98.9 indi-

viduals per square meter in Finland, 246.1 ± 106 in Poland, 
300 ± 111.8 in Romania, and 204.1 ± 76.4 in Italy. Among 
the identified specimens, roughly one sixth of all individu-
als collected (504 individuals) were detritivores assigned 
to 14 species of Lumbricidae, 10 of Isopoda, and 20 of 
Diplopoda, and a bit more than one fourth (803 individuals) 
were predators assigned to 90 species of Araneae and 49 of 
Chilopoda. Nine detritivore species were singletons (1 indi-
vidual sampled), and 3 doubletons (2 individuals sampled), 
while 55 singletons and 25 doubletons predator species were 
recorded. Macrofauna individuals were sampled in every 
plots, but detritivore species (Lumbricidae, Isopoda, Diplop-
oda) were absent in nine plots, mainly in Finland (absent in 
eight over nine plots).

Community composition

At a coarse level of taxonomic resolution, whole macro-
fauna communities were organized along the first axis of 
the dbRDA (Fig. 1), which explained 38.4% of overall vari-
ance (p < 0.001, Table S4) and was mainly driven by litter 
quality, evergreen proportion, and forest floor mass. Plots 
with negative scores on the first axis were characterized 
by high understory biomass, thin forest floor layer, high 
litter chemical quality, and low evergreen proportion, and 
they supported high abundance of earthworms of all three 
ecological types (i.e., endogeic, epigeic, and anecic). Plots 
with positive scores were dominated by evergreen tree spe-
cies, presented a thick forest floor layer, a high amount of 
coarse deadwood debris, and harbored a relatively high 
abundance of predators (Araneae, Chilopoda, predatory 
Coleoptera, Opiliones). The second axis explained 23.4% 
of overall variance (p = 0.075) and highlighted the effect of 
soil quality on macrofauna communities. Plots with positive 
scores were characterized by low clay and carbon content, 
lower pH associated with evergreen tree dominance, and 
harbored comparatively higher densities of rhizophagous 
Coleoptera, Diptera larvae, and Diplopoda. The same anal-
ysis on detritivore and predator assemblages did not reveal 
any significant ordination  (dbRDADetritivore axis 1 p = 0.13, 
 dbRDAPredator Axis 1 p = 0.06, Fig. S4, Table S4), meaning 
that the predictors considered in our study did not signifi-
cantly explain community composition at the finer level of 
taxonomic resolution.
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Community structure

When all macrofauna was considered, the proportion of 
explained variance by fixed effects (R2m) in the full model 
(M2) varied from 14% (abundance) to 44%  (Hillq=1′ diver-
sity D1). Accounting for random effects (R2c) increased the 
proportion of explained variance to 24% (evenness J) and 
to 76% (biomass), indicating a strong variability between 
countries. Broad group richness,  Hillq=1 diversity and even-
ness were well predicted in the reduced model (M1), while 
biomass, and to a lesser extent abundance, were better pre-
dicted in the complete model (M2). Broad group richness, 
 Hillq=1 diversity and evenness were higher in mixed than in 
monospecific stands (M1, S: std.est. = 0.51, p = 0.013; D1: 
std.est. = 0.72, p < 0.001; J: std.est. = 0.62, p < 0.01, Fig. 2, 
Fig. S5–S6), and at the same time decreased with the propor-
tion of evergreen trees (M1, S: std.est. = − 0.46, p < 0.001; 
D1: std.est. = − 0.50, p < 0.001; J: std.est. = − 0.36, p < 0.01, 
Fig. 2, Fig. S5–S6). There were no consequent changes 
between M1 and M2 in the proportion of explained vari-
ance or AICc, except for broad groups  D1 that also decreased 
with canopy openness (∆AICc = − 9.5, ∆R2m =  + 0.06%, 
∆R2c =  + 0.04%; Fig. 2, Table S5). Broad group abundance 
was poorly predicted regardless of the model, while bio-
mass decreased with evergreen proportion in M1. However, 

this effect disappeared in M2, where total biomass instead 
decreased with forest floor mass and increased with canopy 
openness (Fig. 2). In this case, the best complete model 
showed a lower AICc (∆AICc = − 9.5) and higher proportion 
of explained variance (∆R2m =  + 0.08%, ∆R2c =  + 0.24%; 
Fig. 2, Table S5). Most significant effects detected at the 
continental scale were also detected in at least 1 country 
(14 effects out of 23; Table S6). Only the negative effect 
of canopy openness on broad group  Hillq=1 diversity and 
the negative effect of evergreen proportion and broad group 
evenness only appeared at the continental scale. On the other 
hand, some factors that were not significant at the continen-
tal scale showed significant effects at the regional scale in 
one or two countries. Regarding detritivore species assem-
blages, the proportion of variance explained by fixed effects 
was low, ranging from 4% (J) to 23% (biomass). Including 
the country as a random factor substantially increased the 
explained variance to 68% (J) and 79% (abundance), except 
for taxa  Hillq=1′ diversity which only reached 24% of total 
explained variance in both models. In M1, none of the com-
munity metrics were affected by tree species richness, while 
evergreen proportion negatively affected all of them (Fig. 2, 
Table S5). However, most of these effects were replaced in 
M2 by the effect of microenvironmental variables, which 
produced a better model with substantially lower AICc 
and higher explained variance. Detritivore richness mar-
ginally increased with canopy openness, while detritivore 
 Hillq=1′ diversity increased with litter quality (std.est. = 0.33, 
p = 0.029). Evergreen proportion was retained as the best 
predictor of detritivore evenness in both models (M1: std.
est. = − 0.22, p = 0.012; M2: std.est. = − 0.21, p = 0.033; 
Fig. 2, Table S5). Forest floor mass was negatively corre-
lated with abundance and biomass (ab: std.est. = − 0.08, 
p = 0.013; m: std.est. = − 0.17, p < 0.001; Fig. 2, Table S5), 
while the opposite pattern was found with canopy openness 
(ab: std.est. = 0.15, p = 0.023; m: std.est. = 0.22, p = 0.02; 
Fig. 2, Table S5). Five out of the eight significant relation-
ships found at the continental scale were also observed at 
the regional scale, but the effect of forest floor mass and 
canopy openness on detritivore abundance and biomass 
mainly occurred at the continental scale. In Poland, tree SR 
increased detritivore  Hillq=1 diversity, and evergreen propor-
tion reduced detritivore biomass and marginally abundance.

Most descriptors of predator assemblages were well 
explained by fixed factor, except for evenness, with R2m 
ranging from 9% (biomass) to 45% (D1). The random factor 
accounted for a very small part of predator richness, diver-
sity, or evenness, but consistently increased explained vari-
ance for abundance and biomass. Most of community met-
rics were better predicted in the complete model. Predator 
species richness and (marginally) Hill’s diversity decreased 
with litter quality (S: std.est. = − 0.29, p = 0.012; D1: std.
est. = − 0.21, p = 0.059) and strongly increased with canopy 

Fig. 1  dbRDA biplot of the whole macrofauna community. ARA  
Araneae, C_PRE Coleoptera Predaceous, C_RHI Coleoptera Rhizo-
phagous, GAS Gasteropoda, CHIL Chilopoda, L Lumbricidae, EPI 
Epigeic, ANE Anecic, ENDO Endogeic, DIPLO Diplopoda, ISOP 
Isopoda, OPI Opilionidae, DER Dermaptera, BLA Blattaria, LEP 
Lepidotera Larvae, DIPT Diptera Larvae, CWD coarse deadwood 
debris. Name colors represent predaceous (red), saprophagous 
(brown), and herbivorous (light green) groups. Solid black arrows 
represent significant predictor variables after permutational ANOVA. 
Explained variance (%) and level of significance of each axis is 
shown in the axis title. Ellipses correspond to forest systems levels: 
pure deciduous (light blue), mixed (purple), and pure evergreen (dark 
green) stands. Illustration credit www. lesbu llesd emo. fr
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openness (S: std.est. = 0.36, p < 0.001; D1: std.est. = 0.33, 
p < 0.001) and soil quality (S: std.est. = 0.45, p < 0.001; 
D1: std.est. = 0.51, p < 0.001). Here, changes in the propor-
tion of explained variance and AICc were very high (S: 
∆R2m =  + 0.44%, ∆R2c =  + 0.16%, ∆AICc = − 11.2; S: 
∆R2m =  + 0.45%, ∆R2c =  + 0.15%, ∆AICc = − 10.2; Fig. 2, 
Table S5). Predator abundance weakly decreased with litter 
quality and weakly increased with canopy openness, while 
biomass strongly decreased with evergreen proportion in 
both the reduced and complete models. Nine of the 11 sig-
nificant effects detected at the continental scale were also 
present at the regional scale. Tree SR decreased predator 
abundance in Finland but increased their biomass in Poland. 
Canopy openness negatively affected predator assemblage 

evenness in both Poland and Italy, while litter quality 
decreased predator biomass in Finland and Poland. Finally, 
soil quality had a negative effect on predator abundance and 
biomass in Finland, while FF mass increased predator abun-
dance in Poland.

Discussion

The results of our study show the effect of tree richness 
and functional type (i.e., stand evergreen proportion) on 
soil macrofauna communities and highlight the underly-
ing mechanisms. Interestingly, we found that forest stands 
with a low evergreen tree proportion supported macrofauna 

Fig. 2  Standardized estimates 
and explained variance from 
Multimodel Inference. Circle 
size and colour intensity are 
proportional to the effects 
trengh, red colour show for 
negative effect, blue colour 
show positive effect). The level 
of significance of the effect is 
indicated (†, *, **, ***: p val
ue < 0.1, < 0.05, < 0.01, < 0.0
01). Non-significant variable 
estimates are not shown but are 
reported in Table S5. The bar 
graph on the right indicates the 
change in the proportion of vari-
ance explained by fixed effects 
(R2m, light green) and fixed 
plus random effects (∆R2c, dark 
green), as well as the differ-
ence in AICc (ΔAICc, number) 
between the most parcimonious 
models from each of the two 
hypotheses. Tree SR tree species 
richness, FF mass forest floor 
mass, Canopy open. canopy 
openness
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communities with a higher number of broad groups that 
were also more diverse and evenly represented. In contrast, 
at a species-level taxonomic resolution, the effects of tree 
species richness and functional type were less pronounced. 
Instead, litter quality, microhabitat and microclimate became 
important drivers of both detritivore and predator assem-
blage structure, with trophic cascade effects potentially 
occurring between these two trophic groups. The majority 
of the effects observed at the continental scale were also 
present in at least one country, giving further support to 
our results (Table S6). Some effects idiosyncratically dis-
appeared or appeared at the regional scale due to changes 
in sample size, or narrower environmental and community 
variable gradients as reported for earthworms in European 
forests (de Wandeler et al. 2018). In our study, considering 
this regional scale provided no additional insights into the 
links between macrofauna communities and their environ-
ment, and this will therefore not be discussed further.

Main axes of variability in soil macrofauna 
communities

The results of our redundancy analysis show that as much 
as 38.4% of the total variability in macrofauna communi-
ties, when described at a coarse taxonomic resolution, was 
explained by an opposition between two extremes of a gra-
dient from pure deciduous to pure evergreen stands. This 
gradient is consistent with the classification of ecosystems 
along a productivity gradient (Wardle 2004), soil process 
domains (Desie et al. 2019), or the distinction between dif-
ferent humus types ranging from mull, i.e., “fast turnover” 
and “acquisitive strategy”, to moder and mor, i.e., “slow 
turnover” and “conservative strategy” (Ponge 2003; Zanella 
et al. 2011).

In fast cycling systems, deciduous trees provide high-
quality litter and canopy openness over the year, allow-
ing the establishment of an important understory vegeta-
tion, which produces litter rich in important nutrients such 
as calcium and nitrogen (Reich et al. 2005; Gilliam 2007; 
Augusto et al. 2015). This results in both a higher earthworm 
proportion in macrofauna communities and more diverse 
detritivore assemblages in general (Reich et al. 2005). Being 
more abundant and diverse, macrodetritivores are expected 
to further accelerate litter burial and decomposition, thus 
reducing the litter layer thickness at the soil surface (Hedde 
et al. 2010; Coulis et al. 2016). Conversely, the decrease in 
earthworm relative abundance and detritivore diversity in 
evergreen dominated forests is a long known pattern that 
can be explained by the poor quality of litter inputs as well 
as the more acidic conditions of the forest floor (Reich et al. 
2005; Ammer et al. 2006; Schelfhout et al. 2017). Such a 
decrease in macrodetritivore abundance is expected to be 
associated to lower bacterial activity, thicker forest floor 

layer, and the promotion of other groups of smaller detriti-
vores such as Collembola (Scheu et al. 2003). This probably 
also explains the observed increase in predator relative abun-
dance in stands with higher evergreen proportion, as this 
group could benefit simultaneously from the higher diversity 
and amount of microhabitats, and from the increased avail-
ability of mesofauna prey (Arpin et al. 1986; Kaspari and 
Yanoviak 2009).

Tree diversity and functional type direct 
versus indirect effects

In line with our first hypothesis, both our reduced and com-
plete model showed a strong positive effect of tree species 
richness and a negative effect of evergreen proportion on 
the richness, diversity, and evenness of macrofauna broad 
groups. This is globally congruent with the results of other 
studies that described a higher diversity of soil organisms 
at a broad taxonomic level in mixed compared to pure ever-
green forests (Scheu et al. 2003; Salamon et al. 2008). As 
mentioned previously, many environmental factors can dif-
fer between mixed and pure forests, including litter quality 
and trait diversity, microhabitat heterogeneity and quantity, 
canopy openness and soil quality (Scherer-Lorenzen et al. 
2005), and most of them could indirectly explain tree effects 
on soil macrofauna communities. However, when included 
in a more detailed statistical model, none of the microenvi-
ronmental variables considered in our study were found to 
explain macrofauna community metrics at a broad level of 
taxonomic resolution, apart from canopy openness which 
had a weak negative effect on  Hillq=1 diversity. This suggests 
that tree species richness and evergreen proportion effects on 
macrofauna broad groups could be related to other micro-
environmental variables not included in our analysis, such 
as litter trait diversity or microhabitat heterogeneity. This 
would be in line with other studies that have emphasized 
the importance of litter chemical and physical trait variation, 
which may both determine resource diversity for detritivores 
and microhabitat quantity and diversity for invertebrates in 
general (Hansen and Coleman 1998).

At a finer level of taxonomic resolution, tree species 
richness no longer had a detectable effect on detritivore nor 
predator community descriptors, as indicated by our reduced 
model. Concomitantly, the negative effect of evergreen pro-
portion on detritivore and predator assemblages produced 
by the reduced model was not retained in the complete 
model, except for detritivore evenness and predator biomass. 
Instead, our results revealed rather an indirect effect via 
resource quality, habitat volume, and microclimate. The lack 
of tree species richness effect on macrofauna assemblages at 
this level of taxonomic resolution, is congruent with simi-
lar studies focusing on earthworms or on detritivorous and 
predatory beetles (Schwarz et al. 2015; Chamagne et al. 
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2016; De Wandeler et al. 2018). Other studies did report a 
positive effect of tree species richness on spiders, saprox-
ylic beetles, or earthworm richness, but differences in sam-
pling protocols and study design can probably explain these 
apparently contradictory results (Chamagne et al. 2016; 
Ampoorter et al. 2019). Here, we also have to consider that 
our design only included two levels of tree species richness 
(monocultures and three-species mixtures), which is differ-
ent from a true species richness gradient. This might have 
impeded the detection of a tree richness effect, if it occurs at 
another level of the diversity gradient. The negative effect of 
evergreen proportion on detritivore evenness was consistent 
regardless of the model, suggesting a significant importance 
of diversity of litter traits or microhabitat, as already dis-
cussed for broad group diversity. The negative response of 
predator biomass to evergreen proportion, which was also 
highlighted by both modeling approaches, and the simulta-
neous lack of effect on their abundance, indicates that ever-
green trees drive the predator assemblages towards smaller 
body-sized taxa in less productive stands (Sklodowski 2002). 
This supports the previously discussed idea that soil fauna 
communities in evergreen-dominated stands are dominated 
by small detritivores (Collembola and Acari), representing 
a preferred prey for small body-sized predators (Arpin et al. 
1986; Scheu et al. 2003).

Detritivore and predator communities also showed a 
strong response to canopy openness, with increased detri-
tivore abundance and biomass and predator richness and 
diversity in more open forests. This can first be explained 
by the direct controls exerted by canopy openness on for-
est ground insolation, water availability, and temperature 
conditions (Prescott 2002), as well as their expected effects 
on ectotherm activity and on animals’ ability to access 
resources (Turner et al. 1987; Kaspari et al. 2000; Salmon 
et al. 2008). Secondly, canopy openness increase light and 
water availability for understory plants, which can result in 
higher plant cover and diversity (Thomas et al. 1999). Detri-
tivores will thus benefit from the nutrient-rich herbaceous 
plant leaf litter and roots, which may constitute an important 
and high-quality source of organic matter (Lavelle and Spain 
2001; Gilliam 2007; Henneron et al. 2015). Finally, preda-
tors may also rely on understory vegetation which deter-
mines to a large extent the characteristics and heterogeneity 
of their microhabitat (Pakeman and Stockan 2014).

Detritivore versus predator responses

A surprising result of our study is the fact that predator 
assemblages seem to be more sensitive to soil quality than 
detritivores. This predator response to soil quality may first 
be attributed to the fact that roughly half of them belonged 
to Chilopoda in our samples (Table S2), a group which 
is known to have at least partly endogeic behavior and is 

therefore sensitive to soil properties, notably soil pH and 
organic matter content (Blackburn et al. 2002). Conversely, 
the absence of detritivore response may be explained by 
three mechanisms. First, it is possible that other soil and 
forest floor properties not included here, such as forest 
floor pH or litter phosphorus content, may be more impor-
tant for detritivore communities (De Wandeler et al. 2016). 
Secondly, detritivore assemblages were composed of both 
endogeic groups (endogeic Lumbricidae) and epigeic groups 
(epigeic Lumbricidae, Diplopoda, and Isopoda). Epigeic 
taxa may show weaker response to soil characteristics than 
endogeic taxa which may have resulted in the absence of 
response (Scheu and Falca 2000; Henneron et al. 2015; De 
Wandeler et al. 2016). Finally, soil characteristics and plot 
scores on the first PCA axis were strongly country specific 
(Table 1), and it is possible that by including country as a 
random factor in the models, captured part of soil charac-
teristics variations was obscured. This is supported by the 
smaller proportion of variance explained by fixed compared 
to random effects (14 vs 50% on average) for detritivore 
assemblage descriptors, which is notably due to the very low 
abundance of these organisms in Finland.

In addition to the direct and indirect effects of tree rich-
ness and functional type on macrofauna communities, 
trophic cascades may also have occurred between detriti-
vore and predator assemblages, particularly because Lum-
bricidae, and to a lesser extent Diplopoda and Isopoda, 
represent potentially important preys for Chilopoda and 
Araneae (Scheu and Falca 2000). First, higher detritivore 
abundance and biomass in response to increased canopy 
openness may have enhanced predator diversity and rich-
ness through higher resource availability (Abrams 1995). 
Secondly, increased detritivore diversity in response to litter 
quality may have resulted in a more heterogeneous resource 
for predators, potentially decreasing prey-finding probability 
for the more specialized species (Root 1973), and result-
ing in the observed less rich, diverse and abundant predator 
assemblages. These mechanisms stress the importance of 
including trophic interactions when modeling soil macro-
fauna distribution in forests (Scheu et al. 2003; Salamon 
et al. 2008). To this end, it would also be interesting to 
include in future studies other sampling methods, such as 
pitfall traps, that could be more effective at sampling large, 
mobile predators such as Carabidae that may feed on large 
Lumbricidae.

Importance of taxonomic resolution

Given that the effect of tree species richness and ever-
green proportion was detectable on whole macrofauna 
communities described at a low taxonomic resolution but 
no longer on detritivore or predator assemblages iden-
tified at the species level deserves particular attention. 
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Mixed deciduous-evergreen stands, with their intermedi-
ate position between two forest type extremes (“fast” pure 
deciduous, versus “slow” pure evergreen systems) may 
provide the necessary conditions for the co-existence of 
a high number of broad groups with contrasting ecologi-
cal requirements (Fig. 1). This can also be explained by 
the fact, as mentioned previously, that mixed deciduous-
evergreen forests produce a litter layer with larger chemi-
cal and physical trait variation, thus increasing resource 
diversity for detritivores and microhabitat features for 
invertebrates in general (Schuldt et al. 2008). The same 
does not apply when considering individual detritivore 
or predator species, because their narrower environmen-
tal preferences limit them to a more restricted part of 
the environmental gradient. This can explain why, at the 
species level, detritivores and predators were more sen-
sitive to resources, habitat, and microclimate conditions 
than to tree species diversity and functional type (Fig. 
S4; Kaspari 2001).

The differences in response patterns highlighted by 
the use of different levels of taxonomic resolution also 
illustrate some important methodological issues. Indeed, 
approaches at low taxonomic resolution are often favored 
in studies of soil macrofauna, especially because they 
allow to bypass the taxonomic impediment that exists for 
many groups of soil invertebrates (Decaëns et al. 2010). 
The use of broad taxonomic levels makes it possible 
to consider the whole macrofauna community without 
reducing datasets to the best-known groups for which 
species-level identifications are possible. Taxa of higher 
rank also have wider geographic distributions, making 
comparisons easier between geographically distant sites. 
In our case, where sites harbor contrasting macrofauna 
species pools, the multiple pedoclimatic changes along 
latitude may be the major drivers of soil communities (De 
Wandeler et al. 2018). This is supported by the fact that 
the proportion of variance explained by random effects is 
larger when using species than when using broad group 
as fundamental taxonomic units (Table S5), as well as the 
small effect of the included predictor variables on detriti-
vore and predator assemblage composition in the dbRDA 
analysis (Table S4, Fig. S4). Finally, datasets constructed 
at coarse levels of taxonomic resolution also by definition 
have fewer zeros than those constructed at species level, 
thus increasing the robustness and statistical power of 
analyses (Harrison et al. 2018). However, a corollary of 
this is that they are also potentially less efficient at detect-
ing subtle community responses to ecological gradients 
since the distributions of higher rank taxa along these 
gradients are wider than those of the species that consti-
tute them (Kaspari 2001). This stresses the importance of 
investigating community responses at different levels of 
taxonomic resolution.

Conclusion

Our study highlights the complexity of the direct and indi-
rect mechanisms underlying the relationships between 
tree species richness and composition and macrofauna 
communities. Mixed forest stands supported richer, more 
diverse and even macrofauna communities, at a broad 
level of taxonomic resolution. Compared to mixed stands, 
pure deciduous stands favored Lumbricidae and other 
macrodetritivore groups, while evergreen forests were 
dominated by predator taxa. Combined, these two results 
suggest that mixed forest stands offer resource, microhabi-
tat, microclimate, and soil conditions suitable for a wide 
range of organisms of contrasting lifestyles. Future stud-
ies should incorporate if possible quantitative description 
of changes in litter or fine root trait diversity and habi-
tat heterogeneity, as they can be of importance for soil 
macrofauna. Macrofauna response to tree species richness 
and functional type was detectable almost only at a coarse 
level of taxonomic resolution, while macrofauna species 
rather responded to microenvironmental variables. This 
highlights the importance of combining different levels 
of taxonomic resolution to elucidate in a comprehensive 
way the complex tree-macrofauna relationships in forest 
ecosystems.
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