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SECOND ORDER NECESSARY CONDITIONS FOR OPTIMAL

CONTROL PROBLEMS OF EVOLUTION EQUATIONS INVOLVING

FINAL POINT EQUALITY CONSTRAINTS

Hélène Frankowska1,*,∗∗ and Qi Lü2,∗∗∗

Abstract. We establish some second order necessary conditions for optimal control problems of evo-
lution equations involving final point equality and inequality constraints. Compared with the existing
works, the main difference is due to the presence of end-point equality constraints. With such con-
straints, we cannot simply use the variational techniques since perturbations of a given control may
be no longer admissible. We also cannot use the Ekeland’s variational principle, which is a first order
variational principle, to obtain second order necessary conditions. Instead, we combine some inverse
mapping theorems on metric spaces and second order linearization of data to obtain our results.
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1. Introduction

Let H be a separable Hilbert space and A : D(A)→ H an infinitesimal generator of a C0-semigroup {eAt}t≥0

on H. Let H1 be a separable Banach space and U ⊂ H1 be a nonempty bounded closed subset. Let T > 0. Put

U 4=
{
u : [0, T ]→ U

∣∣u(·) is Lebesgue measurable
}

and define a distance on U as follows:

d(u1, u2)
4
= |u1 − u2|L1(0,T ;H1), ∀u1, u2 ∈ U .

Then (U ,d) is a complete separable metric space.

∗∗The research of this author is partially supported by the AFOSR grant FA 9550-18-1-0254 and the CNRS-NSFC PRC Project
under grant 271392. She also benefited from the support of the FJMH Program PGMO and from the support to this program from
EDF-THALES-ORANGE-CRITEO.
∗∗∗The research of this author is supported by the NSF of China under grants 11971334, 12025105 and 11931011, by the Chang

Jiang Scholars Program from the Chinese Education Ministry, and the CNRS-NSFC PRC Project under grant 11530142.

Keywords and phrases: Optimal control, time evolution partial differential equation, second order necessary condition, local
minimizer.
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Consider the following control system:xt(t) = Ax(t) + f(t, x(t), u(t)), t ∈ (0, T ],

x(0) = x0, u ∈ U ,
(1.1)

where x0 ∈ H is given and the map f : [0, T ]×H ×H1 → H satisfies the following conditions:

(H1) For all (x, u) ∈ H × H1, f(·, x, u) is Lebesgue measurable, for all (t, x) ∈ [0, T ] × H, f(t, x, ·) is
continuous and there exists C > 0 such that

sup
u∈U
|f(t, x, u)|H ≤ C(1 + |x|H), ∀(t, x) ∈ [0, T ]×H. (1.2)

(H2) For every r > 0, there exists kr(·) ∈ L1(0, T ) such that for a.e. t ∈ [0, T ]

|f(t, x1, u)− f(t, x2, u)|H ≤ kr(t)|x1 − x2|H

for any x1, x2 ∈ H with |x1|H ≤ r, |x2|H ≤ r and all u ∈ U .

Here and in what follows, C denotes a generic constant which may change from line to line.
Under the assumptions (H1) and (H2), to each u ∈ U there corresponds a unique (mild) solution x ∈

C([0, T ];H) of the system (1.1) called a trajectory of (1.1).
Let r ∈ N, gj ∈ C(H;R) for j = 1, . . . , r, H2 be a separable Hilbert space and h ∈ C(H;H2). We consider

the following final state constraints

gj(x(T )) ≤ 0, j = 1, . . . , r (1.3)

and

h(x(T )) = 0. (1.4)

Let g0 ∈ C(H;R) and consider the following Mayer type cost functional:

J(u) = g0(x(T )), (1.5)

where x(·) is the solution to (1.1) corresponding to the control u(·) such that (1.3) and (1.4) hold.
Any trajectory-control pair (x, u) of (1.1) satisfying (1.3) and (1.4) is called an admissible pair. The

corresponding x and u are called admissible trajectory and admissible control, respectively.

Definition 1.1. An admissible pair (x̄, ū) is called a local minimizer of (1.5) if for some ε > 0, we have
g0(x(T )) ≥ g0(x̄(T )) for each admissible trajectory-control pair (x, u) such that |u− ū|L1(0,T ;H1) < ε.

It is one of the important issues in optimal control theory to characterize local minimizers. Similarly to the
Calculus, the most usual way to do this is to find necessary conditions satisfied by local minimizers. Since the
milestone in [17], first-order necessary conditions are studied extensively in the literature for different kinds of
control systems, such as systems governed by ordinary differential equations (e.g. [17]), systems governed by
partial differential equations (e.g. [13]), systems governed by stochastic differential equations (e.g. [21]), systems
governed by stochastic evolution equations (e.g. [15]), etc.

Second order necessary conditions for controlled partial differential equations are studied extensively in the
literature (e.g. [3–5, 18–20]). However, as far as we know, there are no published results on second order necessary
conditions with end-point equality constraints. The main purpose of this paper is to investigate such kind of
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problems. Second order necessary conditions have the same purpose as the first order conditions - to eliminate
some candidates for optimality that the first order conditions did not throw out. Sufficient conditions are usually
obtained by strengthening the obtained second order necessary conditions. This is planned as a future direction
of our research.

The main difficulties we face are as follows:

– The interior of the tangent space to constraints defined by equalities is, in general, empty. Then one cannot
simply use the variational technique to obtain second order necessary conditions since perturbations of
the optimal control may be not admissible.

– Unlike for the first order necessary condition, it is unclear whether one can use the Ekeland variational
principle, which is a first order variational principle, to derive second order necessary conditions.

– Unlike in the finite dimensional case, in the Hilbert spaces, in general, two convex sets having an empty
intersection can not be separated by a linear functional: at least one of them has to have interior points.
When there are several constraints, this requires all but one of them to have a nonempty interior. In the
presence of the end point equality constraints we face two sets with empty interiors, the second one coming
from the control system itself, that is usually seen as a second equality constraint.

In the literature these difficulties are usually handled by reducing the optimal control problem to an abstract
infinite dimensional mathematical programming one. For this aim it is usually requested that control sets
are described via inequality and equality constraints verifying some gradients independence assumptions. In
particular, if the set of controls is a union of such sets, instead of their intersection, such methodology does not
work anymore. In contrast, in our paper the control set U is an arbitrary nonempty closed subset of a Banach
space.

Usually, once such new abstract optimisation problem is stated, some abstract constraints qualification
assumptions (Robinson’s like conditions) allow to write a Lagrange multiplier rule. The main difficulty is then to
return back to the original problem and to translate the derived multiplier rule in terms of the original problem.
For this reason very often the authors restrict their attention to very simple sets U , impose some structural
assumptions on optimal controls and assume that optimal controls are piecewise continuous. Such assumptions
are very strong, because usually, in the presence of constraints, the classical existence results guarantee only
measurability of optimal controls with no particular structure.

In the difference with this approach, we do not make reduction of the optimal control of evolution system to an
abstract mathematical programming problem. Instead we linearize twice the control system and the constraints
in the original state space and apply the separation theorems to the linearized problem. This allows us to work
with measurable controls by the methods of variational analysis. Another advantage of our approach is that it
brings also sufficient conditions for the normality of the derived necessary conditions.

To overcome the difficulties mentioned above, we borrow some ideas from [8], where an optimal control
problem was investigated in the finite dimensional setting. Let us underline that usually the second order
tangents to reachable sets of control systems do have an empty interior. Same for the second order tangents to
the sets defined by the equality constraints. The separation theorems can not be applied then in the usual way to
get second order conditions like in [10, 12]. We exploit instead the idea from [8] saying that under a surjectivity
type assumption imposed on the linearized control system, the intersection of the two second order tangents is
the second order tangent to the reachable set of the control system with a final point equality constraint. For
this aim a non-standard inverse mapping theorem on a metric space is applied. We remain then with just one
set having an empty interior and the application of the separation theorem becomes then possible. Roughly
speaking, the inverse mapping theorem on a metric space allows us to consider equality constraints as a part of
control system because its second order linearization incorporates the second order linearization of the end-point
equality constraints. More details can be found in Section 4.

The rest of this paper is organized as follows: in Section 2, we present our main results, whose proofs are
given in Section 4. Section 3 is devoted to some preliminaries. At last, in Section 5, we provide two illustrative
examples.
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2. Statement of the main results

To begin with, let us introduce some notations. Let Z be a Banach space with the norm | · |Z . For any subset
K ⊂ Z, denote by intK, clK and ∂K the interior, closure and boundary of K, respectively. A subset K is called
a cone if αz ∈ K for every α ≥ 0 and z ∈ K. For a general K, denote by coK the smallest closed convex set
containing K. Define the distance between a point z ∈ Z and K as

dist (z,K)
4
= inf y∈K|y − z|Z .

Definition 2.1. For z ∈ K, the Clarke tangent cone CK(z) to K at z is

CK(z)
4
=
{
v ∈ Z

∣∣∣ lim
ε→0+,y∈K,y→z

dist (y + εv,K)

ε
= 0
}
,

and the adjacent cone T bK(z) to K at z is

T bK(z)
4
=
{
v ∈ Z

∣∣∣ lim
ε→0+

dist (z + εv,K)

ε
= 0
}
.

CK(z) is a closed convex cone in Z and CK(z) ⊂ T bK(z). When K is convex, CK(z) = T bK(z) = cl{α(ẑ − z)|α ≥
0, ẑ ∈ K}.

Definition 2.2. For z ∈ K and v ∈ Z, the second order adjacent subset to K at (z, v) is

T
b(2)
K (z, v)

4
=
{
h ∈ Z

∣∣∣ lim
ε→0+

dist (z + εv + ε2h,K)

ε2
= 0
}
.

The set T
b(2)
K (z, v) is closed and may be empty for instance when v /∈ T bK(z).

Let Y1, Y2 and Z be Banach spaces. Denote by L(Y1;Z) the Banach space of all bounded linear operators
from Y1 to Z and by L(Y1, Y2;Z) the Banach space of all bounded bilinear operators from Y1 × Y2 to Z. When
Y1 = Z, we replace L(Y1;Z) by L(Y1) for simplicity.

The Hamiltonian and the terminal Lagrange function are defined respectively by

H(t, x, u, p) =
〈
p, f(t, x, u)

〉
H

and

l(x, α, β) =

r∑
j=0

αjgj(x) +
〈
β, h(x)

〉
H2
,

where α = (α0, α1, · · · , αr) ∈ Rr+1
+ and β ∈ H2. Set

Kj
4
=
{
x ∈ H| gj(x) ≤ 0

}
for j = 1, . . . , r.

Clearly, for every x ∈ ∂Kj , we have gj(x) = 0.
Let (x̄, ū) be a local minimizer of (1.5). Put

Ig
4
=
{
j = 1, . . . , r

∣∣ x̄(T ) ∈ ∂Kj

}
.
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When f(t, ·, ·), gj (j = 0, . . . , r) and h are C1, the first-order necessary condition for local minimizers is as
follows:

Theorem 2.3. Assume (H1), that the maps f(t, ·, ·), gj (j = 0, . . . , r) and h are continuously Fréchet
differentiable for a.e. t ∈ [0, T ] and

|fx(t, x, u)|L(H) + |fu(t, x, u)|L(H1;H) +

r∑
j=0

|gj,x(x)|H + |hx(x)|L(H;H2) ≤ C, ∀ (t, x, u) ∈ [0, T ]×H × U.

Then there exist α = (α0, α1, . . . , αr) ∈ Rr+1
+ and β ∈ H2, not vanishing simultaneously, satisfying

αj = 0 if j /∈ Ig, (2.1)

such that for the (mild) solution p ∈ C([0, T ];H) of

−pt(t) = A∗p(t) +Hx(t, x̄(t), ū(t), p(t)), t ∈ [0, T ),

p(T ) = lx(x̄(T ), α, β),
(2.2)

we have

inf κ∈CU (ū(t))Hu(t, x̄(t), ū(t), p(t))(κ) ≥ 0, for a.e. t ∈ [0, T ], (2.3)

where Hx and Hu are the Fréchet derivatives of H with respect to x and u, respectively.

When U is convex and f is affine with respect to u, Theorem 2.3 is just the Pontryagin minimum principle for
the local minimizer (x̄, ū). When U is not convex, generally speaking, the conclusion of Theorem 2.3 is weaker
than the Pontryagin maximum principle derived by the needle variation technique (e.g., [13]) for the so called
strong local minimizers, i.e. when local means that trajectories stay nearby x̄ (instead of controls nearby ū).
Note that under our assumptions any strong local minimizer is also a weak local minimizer. However, in general
the converse is not true. Thus the first order results for local minimizers, in general, can not be deduced from
those known for strong local minimizers. In the recent publication [11], in the finite dimensional setting, the
authors derived the second order conditions for local minimizers together with the maximum principle using a
relaxation theorem. We do not have yet such analogue for the infinite dimensional context.

Theorem 2.3 can be proved by the separation theorem for convex sets. Since the main purpose of this paper
is to study second order necessary conditions, we shall derive the first-order condition as a consequence of the
second-order one and, so, for C2 data.

Let us introduce the following assumption:

(H3) The maps f(t, ·, ·), gj (j = 0, . . . , r) and h are twice continuously Fréchet differentiable for a.e. t ∈ [0, T ].
Moreover,1

|fx(t, x, u)|L(H) + |fxx(t, x, u)|L(H,H;H) + |fxu(t, x, u)|L(H,H1;H)

+|fu(t, x, u)|L(H1;H) + |fuu(t, x, u)|L(H1,H1;H) ≤ C, ∀ (t, x, u) ∈ [0, T ]×H × U
(2.4)

1Recall that, for Banach spaces Y and Z, a C2-function ϕ : Y → Z and any η ∈ Y , ϕxx(η) ∈ L(Y, Y ;Z). This means that, for
any η1, η2 ∈ Y , ϕxx(η)(η1, η2) ∈ Z.
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and

r∑
j=0

(
|gj,x(x)|H + |gj,xx(x)|L(H,H;R)

)
+ |hx(x)|L(H;H2) + |hxx(x)|L(H,H;H2) ≤ C, ∀ x ∈ H. (2.5)

Now, let us introduce two variational linearizations of control system (1.1) at (x̄, ū). The first one isyt(t) = Ay(t) + fx[t]y(t) + fu[t]u(t), u(t) ∈ T bU (ū(t)), t ∈ (0, T ],

y(0) = 0, u ∈ L1(0, T ;H1),
(2.6)

where fx[t]
4
= fx(t, x̄(t), ū(t)) and fu[t]

4
= fu(t, x̄(t), ū(t)).

The second one isỹt(t) = Aỹ(t) + fx[t]ỹ(t) + v(t), v(t) ∈ co f(t, x̄(t), U)− f [t], t ∈ (0, T ],

ỹ(0) = 0,
(2.7)

where v : [0, T ]→ H1 is measurable and f [t]
4
= f(t, x̄(t), ū(t)).

The reachable set of (2.7) at time T is

RL =
{
ỹ(T ) | ỹ(·) is a trajectory of (2.7)

}
.

Clearly, RL is convex. Put

Ξ
4
= C([0, T ];H)× L2(0, T ;H1).

To study second order conditions we introduce the set C(x̄, ū) of all critical pairs (y, u) ∈ Ξ solving the linear
system (2.6) such that

g0,x

(
x̄(T )

)(
y(T )

)
≤ 0, (2.8)

hx
(
x̄(T )

)(
y(T )

)
= 0, (2.9)

gj,x
(
x̄(T )

)(
y(T )

)
≤ 0, for j ∈ Ig, (2.10)

and

∃ δ0 > 0, ∃ c ∈ L2(0, T ), ∀ δ ∈ [0, δ0], dist(ū(t) + δu(t), U) ≤ c(t)δ2 for a.e. t ∈ [0, T ]. (2.11)

The last inequality strengthens the inclusion u(t) ∈ T bU (ū(t)) and is very useful in the second order analysis
involving such stronger tangents. Thus the critical set C(x̄, ū) can be seen as the set of all the solutions to the
strengthened linearized system (2.6) that satisfy the linearized final point constraints (2.9), (2.10) and is critical
in the sense of (2.8). Our proofs below imply that for any (y, u) ∈ C(x̄, ū) we have g0,x

(
x̄(T )

)(
y(T )

)
= 0 and,

consequently, the word critical is inherited from the classical Calculus.
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Put

Λ(x̄, ū)
4
=
{

(α, β, p) ∈ Rr+1
+ ×H2 × C([0, T ];H)| (α, β, p) 6= 0 and satisfies (2.1)–(2.3)

}
.

For any (α, β, p) ∈ Λ(x̄, ū), u : [0, T ]→ H1 and t ∈ [0, T ], define

Υ(u(t), p(t))
4
= inf

{
Hu[t](v)| v ∈ T b(2)

U (ū(t), u(t))
}
, (2.12)

where Hu[t] = Hu(t, x̄(t), ū(t), p(t)), and by convention, inf ∅ = +∞.
For every (α, β, p) ∈ Λ(x̄, ū) and (y, u) ∈ Ξ, define

Ω(y, u, α, β, p)
4
= lxx

(
x̄(T ), α, β

)(
y(T ), y(T )

)
+

∫ T

0

(
Hxx[t]

(
y(t), y(t)

)
+ 2Hxu[t](y(t), u(t)) +Huu[t]

(
u(t), u(t)

))
dt,

where Hxx[t] = Hxx(t, x̄(t), ū(t), p(t)) and Hxu[t], Huu[t] are defined in a similar way.
Fix a trajectory-control pair (y, u) ∈ Ξ of (2.6). We introduce a second order linearization

wt(t) = Aw + fx[t]w(t) + fu[t]v(t) +
1

2

[
fxx[t](y(t), y(t))

+2fxu[t](y(t), u(t)) + fuu[t](u(t), u(t))
]
, v(t) ∈ T b(2)

U (ū(t), u(t)), a.e. t ∈ (0, T ],

w(0) = 0, v ∈ L1(0, T ;H1),

(2.13)

where fxx[t] = fxx(t, x̄(t), ū(t)) and fxu[t], fuu[t] are similarly defined. Denote by RL(2) the reachable set at
time T of (2.13), which depends on the choice of (y, u). It is well known that the set clRL(2) is convex. This
can be easily deduced from Corollary 3.9 below.

Define the convex sets

Θ =
{
θ ∈ H

∣∣∣hx(x̄(T ))θ +
1

2
hxx
(
x̄(T )

)(
y(T ), y(T )

)
= 0
}

(2.14)

and

Θ̃ =
{
θ − κ

∣∣ θ ∈ Θ, κ ∈ cl (RL(2))
}
. (2.15)

Clearly, both Θ and Θ̃ depend on the choice of (y, u).
We impose the following additional assumption.

(H4) There is a closed subspace H̃ of H such that Θ̃ ⊂ H̃ and intH̃Θ̃ 6= ∅, where intH̃Θ̃ denotes the interior

of Θ̃ in H̃.

Remark 2.4. (H4) is introduced to apply the Hahn-Banach theorem to separate two convex sets. Indeed, it
is well known that to separate two convex sets in an infinite dimensional Hilbert space, one of them should
have an interior point. Usually, Θ̃ does not satisfy this requirement. To remedy that difficulty, we assume that
intH̃Θ̃ 6= ∅. Under this condition, for any nonempty convex subset K of H̃ having an empty intersections with

Θ̃ one can find a linear functional to separate Θ̃ from K. More details can be found in the proof of Theorem 2.5.
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For any given u : [0, T ]→ H1, set

V 2(ū, u)
4
=
{
v : [0, T ]→ H1| v is measurable, fu[·]v(·) is integrable and

v(t) ∈ T b(2)
U (ū(t), u(t)) for a.e. t ∈ [0, T ]

}
.

(2.16)

Theorem 2.5. Assume (H1), (H3) and let (x̄, ū) be a local minimizer of (1.5) satisfying

0 ∈ int clhx
(
x̄(T )

)(
RL
)

(2.17)

and

hx
(
x̄(T )

)(
H
)

= H2. (2.18)

Let (y, u) ∈ C(x̄, ū) be such that (H4) is satisfied and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. Then there exists (α, β, p) ∈
Λ(x̄, ū) such that αj = 0 whenever gj,x(x̄(T ))(y(T )) < 0, the function Υ(u, p) is integrable and

1

2
Ω(y, u, α, β, p) +

∫ T

0

Υ(u(t), p(t))dt ≥ 0. (2.19)

Remark 2.6. Condition (2.17) is an assumption on the controllability of the system (2.7). For a given controlled
partial differential equation, if the optimal control belongs to the interior of U for a.e. t ∈ [0, T ] and (2.18) is
satisfied, then one can use the classical controllability theory of partial differential equations to verify (2.17)
(e.g. [22]). For establishing the first order necessary condition, these assumptions can be relaxed (e.g. [13, 14]).
On the other hand, if there is no state constraint (1.4), then (2.17) and (2.18) can be omitted because in this
case h would not be involved in our proofs. Since RL is convex and (2.7) is linear in ỹ, (2.17) can be verified by
a separation theorem whenever clhx(x̄(T ))(RL) has a nonempty interior.

Recall that if α0 > 0, then the necessary condition in Theorem 2.5 is called normal. In such case, by normal-
izing, one can set α0 = 1. On the other hand, in the abnormal case i.e. when α0 = 0, the necessary condition is
independent of the cost functional. Hence, it is important to show the normality of the multiplier. We present a
second-order sufficient condition for normality below. To this end, let us introduce the following linear control
system zt(t) = Az(t) + fx[t]z(t) + fu[t]π(t), π(t) ∈ CU (ū(t)), t ∈ (0, T ],

z(0) = 0, π ∈ L1(0, T ;H1).
(2.20)

Denote by R the reachable set of (2.20) at time T . Clearly, R is convex.

Theorem 2.7. Under all the assumptions of Theorem 2.5 suppose that

clhx
(
x̄(T )

)(
R
)

= H2. (2.21)

If there exists wT ∈ clRL(2) such that

hx
(
x̄(T )

)(
wT
)

+
1

2
hxx
(
x̄(T )

)(
y(T ), y(T )

)
= 0 (2.22)
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and

gj,x
(
x̄(T )

)(
wT
)

+
1

2
gj,xx

(
x̄(T )

)(
y(T ), y(T )

)
< 0, for j ∈ Ig, (2.23)

then the conclusion of Theorem 2.5 is valid with α0 = 1.

If there is no wT as in Theorem 2.7, then the second-order condition holds true in the abnormal form. More
generally, we have the following result.

Theorem 2.8. Assume (H1), (H3) and let (x̄, ū) be a trajectory-control pair of (1.1) satisfying (2.18). Let
(y, u) ∈ Ξ be a trajectory-control pair of (2.6) such that (H4) holds and V 2(ū, u)∩L2(0, T ;H1) 6= ∅. If there is
no wT as in Theorem 2.7, then the conclusion of Theorem 2.5 is valid with α0 = 0.

For the sake of completeness we also provide a result without assumption (2.17).

Theorem 2.9. Assume (H1), (H3) and let (x̄, ū) be a local minimizer of (1.5) satisfying (2.18). If

clhx(x̄(T ))(RL) has interior points or is contained in a closed subspace H̃2  H2, then for every (y, u) ∈
C(x̄, ū) verifying (H4) and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅, there exists (α, β, p) ∈ Λ(x̄, ū) such that for any
trajectory-control pair (w, v) of (2.13) satisfying (2.22) with wT = w(T ), we have

1

2
Ω(x, u, α, β, p) +

∫ T

0

Hu[t]
(
v(t)

)
dt ≥ 0.

In Theorems 2.5–2.9, we assume that f , gj (j = 0, . . . , r) and h are twice continuously Fréchet differentiable
with respect to x. This is quite restrictive in the infinite dimensional framework, but is needed when {eAt}t≥0 is
a general C0-semigroup. On the other hand, if {eAt}t≥0 has some smoothing effect, then (H3) can be relaxed.
Let us discuss it below.

Let X ⊂ H be a separable reflexive Banach space with the norm Gateaux differentiable away from zero.
Further suppose that X is dense in H and that the embedding from X to H is continuous.

Several assumptions are in order.

(S1) {eAt}t≥0 is a C0-semigroup on X and for every t > 0, there is a constant C = C(t) > 0 such that

for all η ∈ H, |eAtη|X ≤ C|η|H . Further, there exists a constant C̃ > 0 such that for all t ∈ [0, T ) and η ∈ H,

|eA·η|L2(t,T ;X) ≤ C̃|η|H .

(S2) f(·, ·, ·) : [0, T ]×X ×H1 → X is measurable in the first variable, continuous in the third variable, and{
|f(t, x1, u)− f(t, x2, u)|X ≤ C|x1 − x2|X , ∀ (t, x1, x2, u) ∈ [0, T ]×X ×X × U,

|f(t, 0, u)|X ≤ C, ∀ (t, u) ∈ [0, T ]× U.
(2.24)

(S3) For a.e. t ∈ [0, T ], f(t, ·, ·) : X ×H1 → H is C2. Moreover,

|fx(t, x, u)|L(X;H) + |fxx(t, x, u)|L(X,X;H) + |fxu(t, x, u)|L(X,H1;H)

+|fu(t, x, u)|L(H1;H) + |fuu(t, x, u)|L(H1,H1;H) ≤ C, ∀ (t, x, u) ∈ [0, T ]×X × U.
(2.25)

(S4) gj : X → R (j = 0, . . . , r) and h : X → H2 are C2. Moreover, for all x ∈ X,

r∑
j=0

(
|gj,x(x)|L(X;R) + |gj,xx(x)|L(X,X;R)

)
+ |hx(x)|L(X;H2) + |hxx(x)|L(X,X;H2) ≤ C. (2.26)
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By (S1)–(S2), it is easy to prove that for any x0 ∈ H and u ∈ U there exists a unique mild solution
x(·) ∈ C([0, T ];H) ∩ L2(0, T ;X) to the system (1.1) and x(t) ∈ X for every t ∈ (0, T ]. Furthermore, for any
trajectory-control pair (y, u) of (2.6) we have y ∈ C([0, T ];X). Similar statement is also valid for trajectories of
(2.7). Thus the system in (2.13) is well defined. Moreover R, RL, RL(2) are subsets of X.

By (S4), the final data of the adjoint equation (2.2) belongs to X ′. By (S1) and Corollary 1.10.6 of [16], A∗

is the infinitesimal generator of the adjoint C0-semigroup (eAt)∗ on X ′, denoted by {eA∗t}t≥0. Also by (S1) for
every t > 0, there is a constant C = C(t) > 0 such that for all η ∈ X ′, |eA∗tη|H ≤ C|η|X′ and eA

∗·η ∈ L2(0, T ;H).

Further, we have that for all t ∈ [0, T ) and η ∈ X ′, |eA∗·η|L2(t,T ;H) ≤ C̃|η|X′ . Then it is easy to prove that under
assumptions (S1)–(S4) the mild solution to (2.2) belongs to C([0, T ];X ′) ∩ L2(0, T ;H) and p(t) ∈ H for every
t ∈ [0, T ).

Define the convex sets

ΘX =
{
η ∈ X

∣∣∣hx(x̄(T ))(η) +
1

2
hxx
(
x̄(T )

)(
y(T ), y(T )

)
= 0
}

(2.27)

and

Θ̃X =
{
θ − κ

∣∣ θ ∈ ΘX , κ ∈ clX(RL(2))
}
, (2.28)

where clX denotes the closure in X.
We impose the following assumption.

(S5) There is a closed subspace X̃ of X such that Θ̃X ⊂ X̃ and intX̃Θ̃X 6= ∅, where intX̃Θ̃X denotes the

interior of Θ̃X in X̃.
Corresponding to Theorems 2.5–2.9, we have the following results with

Kj
4
=
{
x ∈ X| gj(x) ≤ 0

}
for j = 1, . . . , r,

Ig
4
=
{
j = 1, . . . , r

∣∣ x̄(T ) ∈ ∂XKj

}
, (2.29)

where ∂XKj denotes the boundary of Kj in X and

ΛX(x̄, ū)
4
=
{

(α, β, p) ∈ Rr+1
+ ×H2 × C([0, T ];X ′)| (α, β, p) 6= 0 and satisfies (2.1)–(2.3)

}
.

Theorem 2.10. Suppose (S1)–(S4) and let (x̄, ū) be a local minimizer of (1.5) satisfying (2.17) and

hx
(
x̄(T )

)(
X
)

= H2. (2.30)

Let (y, u) ∈ C(x̄, ū) be such that (S5) holds and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. Then there exists (α, β, p) ∈
ΛX(x̄, ū) such that αj = 0 whenever gj,x(x̄(T ))(y(T )) < 0, the function Υ(u, p) is integrable and

1

2
Ω(y, u, α, β, p) +

∫ T

0

Υ(u(t), p(t))dt ≥ 0. (2.31)

Theorem 2.11. Suppose (S1)–(S4) and let (x̄, ū) be a local minimizer of (1.5) satisfying (2.17), (2.21). Let
(y, u) ∈ C(x̄, ū) be such that (S5) is satisfied and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. If there exists wT ∈ clXR

L(2)

such that (2.22) and (2.23) hold, then the conclusion of Theorem 2.10 is valid with α0 = 1.
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Theorem 2.12. Suppose (S1)–(S4). Let (x̄, ū) be a trajectory-control pair of (1.1) satisfying (2.30) and
(y, u) ∈ Ξ be a trajectory-control pair of (2.6) such that (S5) holds and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. If there is
no wT as in Theorem 2.11, then the conclusion of Theorem 2.10 is valid with α0 = 0.

Theorem 2.13. Suppose (S1)–(S4) and let (x̄, ū) be a local minimizer of (1.5) satisfying (2.30). If

clhx(x̄(T ))(RL) has interior points or is contained in a closed subspace H̃2  H2, then for every (y, u) ∈
C(x̄, ū) satisfying (S5) and V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅, there exists (α, β, p) ∈ ΛX(x̄, ū) such that for any
trajectory-control pair (w, v) of (2.13) verifying (2.22) with wT = w(T ), we have

1

2
Ω(y, u, α, β, p) +

∫ T

0

Hu[t]
(
v(t)

)
dt ≥ 0.

Proofs of Theorems 2.10–2.13 are very similar to those of Theorems 2.5–2.9, respectively. To shorten the
paper, we only give the one of Theorem 2.10.

3. Preliminaries

3.1. Some results of set-valued analysis

For readers’ convenience, we collect some basic facts from set-valued analysis. More information can be found
in [1].

Definition 3.1. Let (M,Σ) be a measurable space, Z a separable Banach space and F :M Z a set-valued
map. For any ω ∈M, F (ω) is called the value of F at ω. The map F is called measurable if

F−1(B)
4
=
{
ω ∈M | F (ω) ∩B 6= ∅

}
∈ Σ for any B ∈ B(Z),

where B(Z) is the Borel σ-algebra on Z.

Definition 3.2. Let (M,Σ, µ) be a complete σ-finite measure space, Y and Z two complete separable metric
spaces. We call g :M× Y → Z a Carathéodory function if for every ω ∈M, g(ω, ·) is continuous and for every
y ∈ Y , g(·, y) is measurable.

Lemma 3.3. ([1], Thm. 8.2.8) Let (M,Σ, µ) be a complete σ-finite measure space, Y and Z two complete
separable metric spaces, and S :M Y a measurable set-valued map with closed values. Let g :M× Y → Z
be a Carathéodory function. Then the set-valued map defined by

M3 ω  cl g(ω, S(ω))

is measurable.

Next, we recall the notion of measurable selection for a set-valued map.

Definition 3.4. Let (M,Σ) be a measurable space and Z a complete separable metric space. Let F be a set-
valued map from M to Z. A measurable map f :M→ Z is called a measurable selection of F if f(ω) ∈ F (ω)
for all ω ∈M.

A sufficient condition for the existence of a measurable selection is as follows.

Lemma 3.5. ([1], Thm. 8.1.3) Let Z be a complete separable metric space, (M,Σ) a measurable space, and
F :M Z a measurable set-valued map with nonempty closed values. Then there exists a measurable selection
of F .
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Lemma 3.6. ([1], Thm. 8.2.9) Consider a complete σ-finite measure space (M,Σ, µ), complete separable metric
spaces Y , Z, and measurable set-valued maps S :M Y , G :M Z with closed values. Let g :M× Y → Z
be a Carathéodory function. Then the set-valued map R defined by

R(ω)
4
=
{
x ∈ S(ω)

∣∣ g(ω, x) ∈ G(ω)
}

is measurable. Consequently, if R(ω) 6= ∅ for all ω ∈ M, then there exists a measurable selection f(ω) ∈ S(ω)
such that g(ω, f(ω)) ∈ G(ω) for all ω ∈M.

Recall that for a measure space (M,Σ, µ), the integral of a set-valued map ω  Ψ(ω) fromM into a Banach
space Z is defined by∫

M
Ψdµ =

{∫
M
ψ(ω)dω

∣∣∣ ψ(ω) ∈ Ψ(ω) a.e., ψ(·) is Bochner integrable
}
,

where
∫
M ψ(ω)dω is the Bochner integral of ψ(·) over M. We say that Ψ is integrably bounded, if there is a

(Lebesgue) integrable k : M→ R+ such that Ψ(ω) ∈ k(ω)BZ(1) for all ω ∈ M, where BZ(1) stands for the
closed unit ball in Z.

Lemma 3.7. Let (M,Σ, µ) be a complete measure space with µ(M) <∞, Y be a separable metric space, and
Z be a separable Banach space. Consider a measurable set-valued map S : M  Y with closed values and a
Carathéodory function g :M× Y → Z. If M3 ω  g(ω, Y ) is integrably bounded, then

cl

∫
M
g(ω, S(ω))dµ = cl

∫
M

cl g(ω, S(ω))dµ.

Proof. Clearly

cl

∫
M
g(ω, S(ω))dµ ⊂ cl

∫
M

cl g(ω, S(ω))dµ.

Fix a Bochner integrable selection ψ(ω) ∈ cl g(ω, S(ω)) and let δ > 0. Then for

BZ(ψ(ω), δ)
4
= {η ∈ Z| |η − ψ(ω)|Z ≤ δ},

we have

g(ω, S(ω)) ∩BZ(ψ(ω), δ) 6= ∅ ∀ω ∈M.

By Lemma 3.6, there exists a measurable selection u(ω) ∈ S(ω) such that g(ω, u(ω)) ∈ BZ(ψ(ω), δ). Since u(·)
is measurable, it is the pointwise limit of simple measurable maps {un}n≥1. Using that g is Carathéodory we
deduce that g(·, u(·)) is pointwise limit of simple measurable maps. Since g(ω, Y ) is integrably bounded, by the
Lebesgue dominated convergence theorem, g(·, u(·)) is Bochner integrable. This implies that∫

M
ψdµ ∈

∫
M
g(ω, u(ω))dµ+ δµ(M)BZ(1).

By arbitrariness of δ > 0, we have

∫
M
ψdµ ∈ cl

∫
M
g(ω, S(ω))dµ. The arbitrariness of the Bochner integrable

selection ψ(ω) ∈ cl g(ω, S(ω)) ends the proof.
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Lemma 3.8. ([1], Props. 8.6.2 and 8.6.4) Let (M,Σ, µ) be a complete σ-finite measure space, Y a separable
Banach space, and F :M Y a measurable, integrably bounded set-valued map with nonempty closed values.
Then

cl

∫
M

coFdµ = co

∫
M
Fdµ.

Furthermore, if µ is non-atomic, then

cl

∫
M

coFdµ = cl

∫
M
Fdµ.

Corollary 3.9. Suppose that all the assumptions of Lemma 3.7 hold and µ is non-atomic. Then

cl

∫
M
g(ω, S(ω))dµ = cl

∫
M

co g(ω, S(ω))dµ.

As an immediate corollary of Lemma 2.10 of [12], we have the following result.

Lemma 3.10. Let Σ be the σ-algebra of all Lebesgue measurable sets contained in [0, T ], U ⊂ H1 be closed and
u ∈ U . Then the set-valued map t CU (u(t)) is Σ measurable.

We shall also need the following lemma.

Lemma 3.11. ([9], Lem. 2.4) Let Z be a Banach space, K ⊂ Z. Then for every z ∈ K ⊂ Z and z1 ∈ T bK(z),

T
b(2)
K (z, z1) = T

b(2)
K (z, z1) + CK(z).

3.2. Some inverse mapping theorems

The aim of this section is to prove the following two inverse mapping like theorems.

Theorem 3.12. Assume (H1), (H3) and let (x̄, ū) be a trajectory-control pair of (1.1) with h(x̄(T )) = 0. If
(2.17) holds true, then there exist ε > 0 and c > 0 such that for every trajectory-control pair (x, u) of (1.1)
satisfying |u− ū|L1(0,T :H1) < ε we can find a trajectory-control pair (x̃, ũ) of (1.1) satisfying

h(x̃(T )) = 0, |ũ− u|L1(0,T ;H1) ≤ c|h(x(T ))|H2
.

Theorem 3.13. Assume (S1)–(S4) and let (x̄, ū) be a trajectory-control pair of (1.1) with h(x̄(T )) = 0. If
(2.17) holds true, then there exist ε > 0 and C > 0 such that for every trajectory-control pair (x, u) of (1.1)
with |u− ū|L1(0,T :H1) < ε we can find a trajectory-control pair (x̃, ũ) of (1.1) satisfying

h(x̃(T )) = 0, |ũ− u|L1(0,T ;H1) ≤ C|h(x(T ))|H2
.

By the classical theory of evolution equations (e.g. [13], Chap. 2, Subsect. 5.2), we know that under
assumptions (H1) and (H2), to every control u ∈ U there corresponds a unique solution x(·, u) of the
control system (1.1). Furthermore, using the Gronwall lemma, it is not difficult to check that the mapping
U 3 u 7→ x(·;u) ∈ C([0, T ];H) is continuous. However, since U is only a metric space, one cannot differentiate
the map U 3 u → h(x(T, u)) to get the above inverse mapping theorems. Instead we replace derivatives by
variations in the following way:
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Recall that for a family of subsets {Γδ}δ>0 of a Banach space Z, the upper set limit is defined by

v ∈ Limsupδ→0+Γδ ⇐⇒ lim inf
δ→0+

dist (v,Γδ) = 0.

Define the continuous map G : U → H2 by G(u)
4
= h(x(T, u)). For δ > 0 and u ∈ U , set

Bδ(u)
4
= {v ∈ U|d(v, u) ≤ δ}.

The first-order contingent variation of G at u ∈ U is defined by

G(1)(u)
4
= Limsupδ→0+

G(Bδ(u))−G(u)

δ
.

Usually, it is difficult to compute the whole set G(1)(u). However, as we show below, the set hx(x̄(T ))(RL) is a
subset of coG(1)(ū). This is sufficient for our purposes.

Denote by BH2 the closed unit ball in H2. The following result is an immediate consequence of Theorem 3.2
of [7].

Lemma 3.14. If for some ε > 0 and ρ > 0, ρBH2 ⊂
⋂

d(u,ū)≤ε

coG(1)(u), then for every u ∈ U such that d(ū, u) ≤

ε
2 and c ∈ [0, ε2 ],

G(u) + cρ intBH2 ⊂ G(Bc(u)).

Moreover, for every u ∈ B ε
4
(ū) and x ∈ H2 satisfying |x−G(u)|H2

< min{ ε8 ,
ερ
4 }, we have

dist (u,G−1(x)) ≤ 1

ρ
|x−G(u)|H2

.

Lemma 3.15. Assume (H1), (H3) and let (x̄, ū) be a trajectory-control pair of (1.1). If (2.17) holds true,
then there exist ε > 0 and ρ > 0 such that for every u ∈ U satisfying d(u, ū) < ε, we have ρBH2 ⊂ coG(1)(u).

Before proving Lemma 3.15, we recall the following result.

Lemma 3.16. ([2], Thm. 2.8) Let Y and Z be separable metric spaces and consider a Carathéodory map
F : [0, T ] × Y → Z. Then, for any ε > 0 there exists a compact set Tε ⊂ [0, T ] with the Lebesgue measure of
([0, T ] \ Tε) smaller than ε and such that the restriction of F to Tε × Y is continuous.

Proof of Lemma 3.15. For u ∈ U , let x(·, u) denote the corresponding solution of (1.1). By (H1) the set
{x(·, u)}u∈U is bounded in C([0, T ];H). We borrow some ideas from the proof of Proposition 2.9 in [2]. Choosing
Y = H ×H1, Z = H and F = f , by Lemma 3.16, for every k ∈ N, there exists a compact T1,k ⊂ [0, T ] such that
f is continuous on T1,k ×H ×H1 and the Lebesgue measure of [0, T ] \ T1,k is smaller than 1

k . Fix any u ∈ U .
By Lemma 3.16 again, for every k ∈ N, there exists a compact T2,k ⊂ [0, T ] such that u is continuous on T2,k

and the Lebesgue measure of [0, T ] \ T2,k is smaller than 1
k . Let Tk = T1,k ∩ T2,k and denote by T̃k the set of

Lebesgue density points in Tk. Then the Lebesgue measure of the set T 4=
⋃∞
k=1 T̃k is equal to T .

Define M = maxw∈U |w|H1 + 1 and consider a dense subset {uj}∞j=1 of U . Let t ∈ T ∩ (0, T ] and δ ∈ (0, 2Mt).
For a fixed j ∈ N, define the control

uj,δ(s) =

uj , if s ∈ [t− δ/2M, t],

u(s), otherwise.



SECOND ORDER NECESSARY CONDITIONS IN OPTIMAL CONTROL OF EVOLUTION EQUATIONS 15

Then uj,δ ∈ Bδ(u) and

x(t, uj,δ)− x(t, u) =

∫ t

t−δ/2M
eA(t−s)[f(s, x(s, uj), uj)− f(s, x(s, u), u(s))

]
ds

=

∫ t

t−δ/2M
eA(t−s)[f(s, x(s, uj), uj)− f(s, x(s, u), uj)

]
ds

+

∫ t

t−δ/2M
eA(t−s)[f(s, x(s, u), uj)− f(s, x(s, u), u(s))

]
ds.

(3.1)

From (H3), we deduce that

∣∣∣ ∫ t

t−δ/2M
eA(t−s)[f(s, x(s, uj), uj)− f(s, x(s, u), uj)

]
ds
∣∣∣
H

=
∣∣∣ ∫ t

t−δ/2M
eA(t−s)

∫ 1

0

fx
(
s, x(s, u) + σ(x(s, uj)− x(s, u)), uj

)
(x(s, uj)− x(s, u))dσds

∣∣∣
H

≤ C sup
s∈[t−δ/2M,t]

|x(s, uj)− x(s, u)|Hδ = o(δ).

(3.2)

Since t ∈ T , there exists k > 0 such that t ∈ T̃k. Since t is a Lebesgue density point of Tk, it follows from (H1)
that

lim
δ→0

∣∣∣1
δ

∫
[t−δ/2M,t]\Tk

eA(t−s)[f(s, x(s, u), uj)− f(s, x(s, u), u(s))
]
ds
∣∣∣
H

≤ C lim
δ→0

1

δ

∫
[t−δ/2M,t]\Tk

ds = 0.

(3.3)

Recalling that f(·, ·, ·) is continuous on Tk ×H ×H1, from (3.3), we obtain

lim
δ→0

1

δ

∫ t

t−δ/2M
eA(t−s)[f(s, x(s, u), uj)− f(s, x(s, u), u(s))

]
ds

= lim
δ→0

1

δ

∫
[t−δ/2M,t]∩Tk

eA(t−s)[f(s, x(s, u), uj)− f(s, x(s, u), u(s))
]
ds

=
1

2M
[f(t, x(t, u), uj)− f(t, x(t, u), u(t))].

(3.4)

Combining (3.1), (3.2) and (3.4), we have

lim
δ→0

x(t, uj,δ)− x(t, u)

δ
=

1

2M
[f(t, x(t, u), uj)− f(t, x(t, u), u(t))]. (3.5)

Consider the following equation:zt(s) = Az(s) + fx(s, x(s, u), u(s))z(s), s ∈ (t, T ],

z(t) = z0,
(3.6)
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and define the family of operators Φ(·, t;u) on H as follows:

Φ(s, t;u)z0 = z(s) for s ∈ [t, T ].

Then we have that

lim
δ→0+

x(T, uj,δ)− x(T, u)

δ
=

1

2M
Φ(T, t;u)[f(t, x(t, u), uj)− f(t, x(t, u), u(t))].

Therefore,

hx(x(T, u))
{

Φ(T, t;u)
[
f(t, x(t, u), uj)− f(t, x(t, u), u(t))

]}
⊂ 2MG(1)(u). (3.7)

Since j ∈ N is arbitrary, {uj}∞j=1 is dense in U , and f is continuous with respect to the third variable, it follows
from (3.7) that for a.e. t ∈ [0, T ],

hx(x(T, u))
{

Φ(T, t;u)
[
f(t, x(t, u), U)− f(t, x(t, u), u(t))

]}
⊂ 2McoG(1)(u).

Consequently, for every measurable selection v(t) ∈ f(t, x(t, u), U)− f(t, x(t, u), u(t)) and for a.e. t ∈ [0, T ], we
have

hx(x(T, u))
[
Φ(T, t;u)v(t)

]
∈ 2McoG(1)(u).

This implies that

hx(x(T, u))
[ ∫ T

0

Φ(T, t;u)v(t)dt
]
∈ 2MT coG(1)(u). (3.8)

Denote by RL,u the reachable set at time T of the following control system:
ŷt(t) = Aŷ(t) + fx(t, x(t, u), u(t))ŷ(t) + v(t), t ∈ (0, T ],

v(t) ∈ f(x(t, u), U)− f(x(t, u), u(t)), a.e. t ∈ [0, T ],

ŷ(0) = 0.

(3.9)

Since coG(1)(u) is closed, we get from (3.8) that

clhx(x(T, u))(RL,u) ⊂ 2MT coG(1)(u).

Hence, we only need to show that

∃ ρ̄ > 0,∀u ∈ U , sufficiently close to ū in U , it holds that ρ̄BH2 ⊂ clhx(x(T, u))(RL,u). (3.10)

By the continuity of the map U 3 u→ x(·, u) ∈ C([0, T ];H) we know that

∀ ε̂ > 0, ∃ δ̂ > 0 such that |x(·, u)− x̄(·)|C([0,T ];H) < ε̂, ∀u ∈ U with d(u, ū) < δ̂. (3.11)
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Using the Gronwall lemma it is not difficult to show that

∀ ε̂ > 0, ∃ δ̂ > 0 such that sup
t∈[0,T ]

|Φ(T, t;u)− Φ(T, t; ū)|L(H) < ε̂, ∀u ∈ U with d(u, ū) < δ̂. (3.12)

Let ũ ∈ U . From (3.11), (3.12) and (H3) we deduce that for each ε > 0, there exists δ = δ(ε) > 0 independent
from ũ such that for any u ∈ U satisfying d(u, ū) < δ,

hx(x̄(T ))
{∫ T

0

Φ(T, t; ū)
[
f(t, x̄(t), ũ(t))− f(t, x̄(t), ū(t))

]
dt
}

∈ hx(x(T, u))
{∫ T

0

Φ(T, t;u)
[
f(t, x(t, u), ũ(t))− f(t, x(t, u), u(t))

]
dt
}

+ εBH2 .

Observe next that by Lemmas 3.5 and 3.6 for every measurable selection v(t) ∈ f(t, x̄(t), U)− f [t] there exists
ũ ∈ U such that v(t) = f(t, x̄(t), ũ(t))− f [t] a.e. in [0, T ]. Consequently,

clhx(x̄(T ))(RL,ū) ⊂ cl
(
hx(x(T, u))(RL,u) + εBH2

)
. (3.13)

Define F (t) = f(t, x̄(t), U)− f [t] for all t ∈ [0, T ]. It is not difficult to check that

co (hx(x̄(T ))Φ(T, t;u)F (t)) = cl (hx(x̄(T ))Φ(T, t;u)coF (t)).

Therefore, by Lemma 3.7, applied with S(t) = coF (t) and g(t, ξ) = hx(x̄(T ))Φ(T, t; ū)ξ

cl
(
hx(x̄(T ))RL

)
= cl

∫ T

0

hx(x̄(T ))Φ(T, t; ū)coF (t)dt

= cl

∫ T

0

cl (hx(x̄(T ))Φ(T, t; ū)coF (t))dt

= cl

∫ T

0

co (hx(x̄(T ))Φ(T, t; ū)F (t)) dt.

This and Corollary 3.9 applied with S ≡ U and g(t, u) = hx(x̄(T ))Φ(T, t; ū)(f(t, x̄(t), u)− f [t]) imply that

cl
(
hx(x̄(T ))RL

)
= cl

∫ T

0

hx(x̄(T ))Φ(T, t; ū)F (t)dt.

Therefore cl
(
hx(x̄(T ))RL

)
= cl

(
hx(x̄(T ))RL,ū

)
and the set cl

(
hx(x̄(T ))RL,ū

)
is convex. The same argument

implies that cl
(
hx(x̄(T ))RL,u

)
is convex for any u ∈ U .

By (2.17), for some ρ > 0 we have

ρBH2 ⊂ cl (hx(x̄(T ))RL,ū). (3.14)

Fix ε ∈ (0, ρ2 ) and let δ = δ(ε) be as above.
We claim that

(ρ− 2ε)BH2 ⊂ clhx(x(T, u))(RL,u), ∀u ∈ U satisfying d(u, ū) < δ. (3.15)
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Otherwise, by the separation theorem, there exists q1 ∈ H2 with |q1|H2
= 1 such that

sup
e∈hx(x(T ;u))(RL,u)

〈
e, q1

〉
H2

< ρ− 2ε. (3.16)

By (3.13),

sup
e∈hx(x̄(T ))(RL,ū)

〈
e, q1

〉
H2
≤ sup
e∈hx(x(T ;u))(RL,u)

〈
e, q1

〉
H2

+ ε.

This, together with (3.14), yields

ρ ≤ sup
e∈hx(x̄(T ))(RL,ū)

〈
e, q1

〉
H2
≤ sup
e∈hx(x(T ;u))(RL,u)

〈
e, q1

〉
H2

+ ε < ρ− 2ε+ ε = ρ− ε.

The obtained contradiction yields (3.15). Consequently, (3.10) is satisfied with ρ̄ = ρ− 2ε whenever d(u, ū) < δ.

Proof of Theorem 3.12. By Lemma 3.15, there exist ε > 0 and ρ > 0 such that for every u ∈ U with d(u, ū) < ε
we have ρBH2 ⊂ coG(1)(u). Then by Lemma 3.14, we obtain the desired result.

To prove Theorem 3.13, we need to modify the assumptions of Lemma 3.15.

Lemma 3.17. Assume (S1)–(S4) and let (x̄, ū) be a trajectory-control pair of (1.1). If (2.17) holds true, then
there exist ε > 0, ρ > 0 such that for every u ∈ U satisfying d(u, ū) < ε we have ρBH2 ⊂ coG(1)(u).

Proof. By (S1)–(S2), for every u ∈ U and t ∈ (0, T ], x(t, u) ∈ X. Then one can mimic the proof of Lemma 3.15
to deduce Lemma 3.17.

The proof of Theorem 3.13 is the same as the one of Theorem 3.12.

3.3. Tangents to trajectories satisfying end-point equality constraints

The aim of this section is to prove the following two lemmas.

Lemma 3.18. Assume (H1) and (H3). Let (x̄, ū) be a trajectory-control pair of (1.1) with h(x̄(T )) = 0 satisfy-
ing (2.17) and (y, u) ∈ Ξ be a trajectory-control pair of (2.6) satisfying (2.11) and such that hx(x̄(T ))(y(T )) = 0.
Then for every trajectory-control pair (w, v) ∈ Ξ of (2.13) satisfying (2.22) with wT = w(T ), there exists c > 0
and trajectory-control pairs {(xδ, uδ)}δ>0 of (1.1) such that |uδ − ū|L1(0,T ;H1) ≤ cδ,

h(xδ(T )) = 0

and

lim
δ→0+

|xδ − x̄− δy − δ2w|C([0,T ];H)

δ2
= 0.

Furthermore, if V 2(ū, u) ∩L2(0, T ;H1) 6= ∅, then for any wT ∈ clRL(2) satisfying (2.22), there exist trajectory-
control pairs {(xn, un)}n∈N of (1.1) and δn → 0+ such that h(xn(T )) = 0, lim

n→∞
|un − ū|L1(0,T ;H1) = 0 and

lim
n→∞

|xn(T )− x̄(T )− δny(T )− δ2
nwT |H

δ2
n

= 0.

Lemma 3.19. Assume (S1)–(S4). Let (x̄, ū) be a trajectory-control pair of (1.1) with h(x̄(T )) = 0 satisfying
(2.17) and (y, u) ∈ Ξ be a trajectory-control pair of (2.6) satisfying (2.11) and such that hx(x̄(T ))(y(T )) = 0.
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Then for every trajectory-control pair (w, v) ∈ Ξ of (2.13) such that (2.22) holds true with wT = w(T ) there
exists c > 0 and trajectory-control pairs {(xδ, uδ)}δ>0 of (1.1) satisfying |uδ − ū|L1(0,T ;H1) ≤ cδ,

h(xδ(T )) = 0

and

lim
δ→0+

|xδ − x̄− δy − δ2w|C([0,T ];X)

δ2
= 0.

Furthermore, if V 2(ū, u) ∩L2(0, T ;H1) 6= ∅, then for any wT ∈ clRL(2) satisfying (2.22), there exist trajectory-
control pairs {(xn, un)}n∈N of (1.1) and δn → 0+ such that h(xn(T )) = 0, lim

n→∞
|un − ū|L1(0,T ;H1) = 0 and

lim
n→∞

|xn(T )− x̄(T )− δny(T )− δ2
nwT |X

δ2
n

= 0.

Proposition 3.20. Let ũ ∈ U and u, v : [0, T ]→ H1 be measurable and such that

(i) for some measurable c : [0, T ]→ R+, ρ0 > 0 and for any ρ ∈ (0, ρ0], dist(ũ(t) + ρu(t), U) ≤ ρ2c(t) for a.e.
t ∈ [0, T ];

(ii) v(t) ∈ T b(2)
U (ũ(t), u(t)) for a.e. t ∈ [0, T ].

Then for any ρ ∈ (0, ρ0], there exists a measurable vρ : [0, T ]→ H1 satisfying

(1) |vρ(t)| ≤ 2|v(t)|+ 2ρ+ c(t) for a.e. t ∈ [0, T ];
(2) ũ(t) + ρu(t) + ρ2vρ(t) ∈ U for a.e. t ∈ [0, T ];
(3) lim

ρ→0+
vρ(t) = v(t) for a.e. t ∈ [0, T ].

In particular, if v ∈ L2(0, T ;H1) and c ∈ L2(0, T ), then limρ→0+ |vρ − v|L2(0,T ;H1) = 0.

Proof. Let ρ ∈ (0, ρ0]. Put

aρ(t)
4
= dist(ũ(t) + ρu(t) + ρ2v(t), U). (3.17)

Then aρ is measurable. Further, by Lemmas 3.5 and 3.6, there exists a measurable yρ : [0, T ]→ U such that

aρ(t) ≤ |ũ(t) + ρu(t) + ρ2v(t)− yρ(t)|H1
≤ aρ(t) + ρ3 for a.e. t ∈ [0, T ].

Similarly, there exists a measurable zρ : [0, T ]→ U such that

|ũ(t) + ρu(t)− zρ(t)|H1
≤ dist(ũ(t) + ρu(t), U) + ρ3 ≤ ρ2c(t) + ρ3 for a.e. t ∈ [0, T ].

This, together with (3.17), implies that

aρ(t) ≤ |ũ(t) + ρu(t) + ρ2v(t)− zρ(t)|H1
≤ ρ2c(t) + ρ2|v(t)|H1

+ ρ3 for a.e. t ∈ [0, T ].

Consequently,

aρ(t)

ρ2
≤ c(t) + |v(t)|H1 + ρ for a.e. t ∈ (0, T ).
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Next, define vρ : [0, T ]→ H1 by

vρ(t)
4
=
yρ(t)− ρu(t)− ũ(t)

ρ2
.

Then we have that

|v(t)− vρ(t)|H1
≤ aρ(t)

ρ2
+ ρ for a.e. t ∈ [0, T ].

Therefore, for a.e. t ∈ [0, T ],

|vρ(t)|H1 ≤ 2|v(t)|H1 + c(t) + 2ρ.

Further, it follows directly from the definition of vρ that

ũ(t) + ρu(t) + ρ2vρ(t) ∈ U for a.e. t ∈ [0, T ].

Finally, since for a.e. t ∈ [0, T ], v(t) ∈ T b(2)
U (ũ(t), u(t)), we have that

lim
ρ→0+

aρ(t)

ρ2
= 0 for a.e. t ∈ [0, T ].

Proof of Lemma 3.18. By Proposition 3.20, we know that for every δ > 0 there exists ũδ ∈ U such that

lim
δ→0+

ũδ − ū− δu
δ2

= v in L2(0, T ;H1). (3.18)

Denote by x̃δ the solution of (1.1) corresponding to ũδ. It follows from (3.18) that

|ũδ − ū|L2(0,T ;H1) = O(δ), (3.19)

|ũδ − ū− δu|L2(0,T ;H1) = O(δ2) (3.20)

and

|ũδ − ū− δu− δ2v|L2(0,T ;H1) = o(δ2). (3.21)

Then we have that for some C > 0,∣∣x̃δ(t)− x̄(t)
∣∣
H

=
∣∣∣ ∫ t

0

eA(t−s)f(s, x̃δ(s), ũδ(s))ds−
∫ t

0

eA(t−s)f(s, x̄(s), ū(s))ds
∣∣∣
H

≤
∣∣∣ ∫ t

0

eA(t−s)fx[s]
(
x̃δ(s)− x̄(s)

)
ds
∣∣∣
H

+
∣∣∣ ∫ t

0

eA(t−s)fu[s]
(
ũδ(s)− ū(s)

)
ds
∣∣∣
H

+
1

2

∣∣∣∫ t

0

eA(t−s)
[ ∫ 1

0

(1−θ)fxx(s, x̄(s) + θ(x̃δ(s)−x̄(s)), ū(s))dθ
](
x̃δ(s)−x̄(s), x̃δ(s)−x̄(s)

)
ds
∣∣∣
H
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+
1

2

∣∣∣∫ t

0

eA(t−s)
[ ∫ 1

0

(1−θ)fxu(s, x̄(s)+θ(x̃δ(s)−x̄(s)), ū(s))dθ
](
x̃δ(s)−x̄(s), ũδ(s)−ū(s)

)
ds
∣∣∣
H

+
1

2

∣∣∣∫ t

0

eA(t−s)
[ ∫ 1

0

(1−θ)fxu(s, x̄(s), ū(s)+θ(ũδ(s)−ū(s)))dθ
](
x̃δ(s)−x̄(s), ũδ(s)−ū(s)

)
ds
∣∣∣
H

+
1

2

∣∣∣∫ t

0

eA(t−s)
[ ∫ 1

0

(1− θ)fuu(s, x̄(s), ū(s)+θ(ũδ(s)− ū(s)))dθ
](
ũδ(s)−ū(s), ũδ(s)−ū(s)

)
ds
∣∣∣
H

≤ C
(∫ t

0

|x̃δ(s)− x̄(s)|Hds+ δ
)
.

This, together with Gronwall’s inequality, implies that∣∣x̃δ − x̄∣∣C([0,T ];H)
≤ Cδ. (3.22)

Similarly, from (3.20) and the above inequalities, we can deduce that∣∣x̃δ − x̄− δy∣∣C([0,T ];H)
≤ Cδ2. (3.23)

From (3.19) and (3.22) it follows that∣∣x̃δ(t)− x̄(t)− δy(t)− δ2w(t)
∣∣
H

=
∣∣∣ ∫ t

0

eA(t−s)f(s, x̃δ(s), ũδ(s))ds−
∫ t

0

eA(t−s)f(s, x̄(s), ū(s))ds

−δ
∫ t

0

eA(t−s)(fx[s]y(s) + fu[s]u(s)
)
ds− δ2

∫ t

0

eA(t−s)(fx[s]w(s) + fu[s]v(s)
)
ds

−δ
2

2

∫ t

0

eA(t−s)[fxx[s]
(
y(s), y(s)

)
+ 2fxu[s]

(
y(s), u(s)

)
+ fuu[s]

(
u(s), u(s)

)]
ds
∣∣∣
H

=
∣∣∣ ∫ t

0

eA(t−s)fx[s]
(
x̃δ(s)− x̄(s)− δy(s)− δ2w(s)

)
ds (3.24)

+

∫ t

0

eA(t−s)fu[s]
(
ũδ(s)− ū(s)− δu(s)− δ2v(s)

)
ds

+
1

2

∫ t

0

eA(t−s)[fxx[s]
(
x̃δ(s)− x̄(s), x̃δ(s)− x̄(s)

)
+ 2fxu[s]

(
x̃δ(s)− x̄(s), ũδ(s)− ū(s)

)
+fuu[s]

(
ũδ(s)− ū(s), ũδ(s)− ū(s)

)]
ds

−δ
2

2

∫ t

0

eA(t−s)[fxx[s]
(
y(s), y(s)

)
+ 2fxu[s]

(
y(s), u(s)

)
+ fuu[s]

(
u(s), u(s)

)]
ds
∣∣∣
H

+ ot(δ
2)

with supt∈[0,T ] |ot(δ2)| = o(δ2).
By (3.22) and (3.23), we see that for every t ∈ [0, T ],∫ t

0

∣∣fxx[s]
(
x̃δ(s)− x̄(s), x̃δ(s)− x̄(s)

)
− δ2fxx[s]

(
y(s), y(s)

)∣∣
H

ds

=

∫ t

0

∣∣fxx[s]
(
x̃δ(s)−x̄(s), x̃δ(s)−x̄(s)−δy(s)

)
+fxx[s]

(
δy(s), x̃δ(s)−x̄(s)−δy(s)

)∣∣
H

ds

≤ o(δ2).

(3.25)
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Similarly, we can show that

∣∣∣ ∫ t

0

[
2fxu[s]

(
x̃δ(s)− x̄(s), ũδ(s)− ū(s)

)
+ fuu[s]

(
ũδ(s)− ū(s), ũδ(s)− ū(s)

)]
ds

−δ2

∫ t

0

[
2fxu[s]

(
y(s), u(s)

)
+ fuu[s]

(
u(s), u(s)

)]
ds
∣∣∣
H
≤ o(δ2).

(3.26)

Combining (3.21), (3.24), (3.25) and (3.26), we obtain that

∣∣x̃δ(t)− x̄(t)− δy(t)− δ2w(t)
∣∣
H
≤ C

∫ t

0

∣∣x̃δ(s)− x̄(s)− δy(s)− δ2w(s)
∣∣
H

ds+ o(δ2).

This and Gronwall’s inequality imply that∣∣x̃δ − x̄− δy − δ2w
∣∣
C([0,T ];H)

= o(δ2), (3.27)

which yields

lim
δ→0+

x̃δ − x̄− δy
δ2

= w in C([0, T ];H).

Then by the choice of y and w, h(x̃δ(T )) = o(δ2). By Theorem 3.12, for every δ > 0, there exists a trajectory-
control pair (xδ, uδ) of (1.1) such that

|ũδ − uδ|L1(0,T ;H1) = o(δ2)

and h(xδ(T )) = 0. Thus,

|uδ − ū|L1(0,T ;H1) ≤ |uδ − ũδ|L1(0,T ;H1) + |ũδ − ū|L1(0,T ;H1) ≤ Cδ + o(δ2).

Similarly to the proof of (3.22), we can get that

|x̃δ − xδ|C([0,T ];H) = o(δ2).

This, together with (3.27), implies that∣∣xδ − x̄− δy − δ2w
∣∣
C([0,T ];H)

= o(δ2).

Consequently,

lim
δ→0+

xδ − x̄− δy
δ2

= w in C([0, T ];H).

To prove the last statement, consider trajectory-control pairs (wn, vn) of (2.13) such that lim
n→∞

wn(T ) = wT .

Since V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅, we may assume that (wn, vn) ∈ Ξ.
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Fix n and let (x̃δ, ũδ) be as at the beginning of the proof with w replaced by wn. In particular, lim
δ→0+

|ũδ −
ū|L1(0,T ;H1) = 0 and

lim
δ→0+

|x̃δ − x̄− δy − δ2wn|C([0,T ];H)

δ2
= 0.

On the other hand, setting

εn =
∣∣2hx(x̄(T ))(wn(T )) + hxx

(
x̄(T )

)(
y(T ), y(T )

)∣∣+
1

n
,

we know that lim
n→∞

εn = 0. By the choice of y, for all δ > 0 sufficiently small,

|h(x̃δ(T ))| ≤ εnδ2.

By Theorem 3.12 there exists c > 0 independent of n and δ̄n > 0, such that for every δ ∈ (0, δ̄n], we can find a
trajectory-control pair (xδ, uδ) of (1.1) such that

|ũδ − uδ|L1(0,T ;H1) ≤ cεnδ2

and h(xδ(T )) = 0. Then, by the Gronwall inequality, for a constant C > 0 independent of n, we have |xδ −
x̃δ|C([0,T ];H) ≤ Cεnδ2. Taking δ̄n smaller and keeping the same notation, we may assume that

|x̃δ − x̄− δy − δ2wn|C([0,T ];H)

δ2
≤ εn

for all δ ∈ (0, δ̄n]. Then

|xδ − x̄− δy − δ2wn|C([0,T ];H)

δ2
≤ (C + 1)εn

for all δ ∈ (0, δ̄n]. Consider next any δn ∈ (0, δ̄n] such that δn → 0+ and define (xn, un) = (xδn , uδn). Then

|xn(T )− x̄(T )− δny(T )− δ2
nwT |

δ2
n

≤ (C + 1)εn + |wn(T )− wT |H .

The proof is complete
The proof of Lemma 3.19 is very similar to that of Lemma 3.18. One only needs to use the smoothing effect

to compensate the loss of the regularity of the derivatives of f , h, etc. Indeed, for any x0 ∈ H, the solution
x(t) ∈ X for t > 0. Hence, for t > 0, the terms such as |fx(t, x(t), u)|L(X;H), |fxx(t, x(t), u)|L(X,X;H) make sense.
We omit the details.

4. Proofs of the main results

We borrow some ideas from [8, 10] to prove Theorem 2.5. The key point is to find “admissible perturbations”
of the control (perturbation of the local minimizer which still fulfill the endpoints constraints) using Lemma 3.18,
the second order linearization of our control system and second order linearizations of the end-point constraints.
Then we write a variational inequality satisfied by these perturbations and derive a dual expression of this
variational inequality by using the separation theorem. To get the above variational inequality we need a
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Mangasarian-Fromovitz like constraint qualification. When it fails to hold, again, by using the same kind of
arguments based on the separation theorem the necessary conditions follow in the abnormal form.
Proof of Theorem 2.5. By (2.18), the mapping hx(x̄(T )) is surjective. Thus, hx(x̄(T ))∗ is injective and

(
kerhx(x̄(T ))

)⊥
= Imhx(x̄(T ))∗. (4.1)

Fix (y, u) ∈ C(x̄, ū) with V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. By Lemma 3.11, we obtain that

R+RL(2) = RL(2). (4.2)

Put

Qj =
{
η ∈ H

∣∣∣ gj,x(x̄(T ))(η) +
1

2
gj,xx(x̄(T ))(y(T ), y(T )) < 0

}
, j ∈ Ig ∪ {0} (4.3)

and observe that if for some ` ∈ Ig ∪ {0}, Q` = ∅, then for all η ∈ H,

g`,x(x̄(T ))(η) +
1

2
g`,xx(x̄(T ))(y(T ), y(T )) ≥ 0.

This implies that

g`,x(x̄(T )) = 0, g`,xx(x̄(T ))(y(T ), y(T )) ≥ 0.

In this case, set β = 0, α` = 1 and αj = 0 for j 6= `. Then (α, 0, 0) ∈ Λ(x̄, ū) and (2.19) is verified with p(·) = 0.
Now we only need to deal with the case when Qj 6= ∅ for every j ∈ Ig ∪ {0}.
From (4.3), we see that if gj,x(x̄(T )) = 0, then Qj = H. Put

I 4=
{
j ∈ Ig

∣∣ gj,x(x̄(T )) 6= 0, gj,x(x̄(T ))(y(T )) = 0
}
.

In what follows, for convenience, if I = ∅, then we set
⋂
j∈I Qj = H.

The remaining proof is quite long and is divided into three steps. It is well known that the set clRL(2) is convex
(it can be verified similarly to the end of the proof of Lemma 3.15, where we have shown that cl (hx(x̄(T ))RL,ū)
is convex).

Step 1. Assume that (
⋂
j∈I Qj)

⋂
Θ
⋂

clRL(2) 6= ∅ and let wT ∈ (
⋂
j∈I Qj)

⋂
Θ
⋂

clRL(2) (recall (2.14) for the
definition of Θ). Let (xn, un) and δn → 0+ be as in the last statement of Lemma 3.18. If j /∈ Ig, then for all
large n, xn(T ) ∈ Qj and therefore gj(xn(T )) ≤ 0. Also if for some j ∈ Ig we have gj,x(x̄(T ))(y(T )) < 0, then
for all large n

gj(xn(T )) = gj(x̄(T )) + δngj,x(x̄(T ))(y(T )) + o(δn) < 0.

Finally, if gj,x(x̄(T ))(y(T )) = 0 for some j ∈ Ig, then for all large n

gj(xn(T )) = gj(x̄(T )) + δ2
n

(
gj,x(x̄(T ))(wT ) +

1

2
gj,xx(x̄(T ))(y(T ), y(T ))

)
+ o(δ2

n) < 0.
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Consequently, (xn, un) is admissible whenever n is sufficiently large. It follows from the inequality
g0,x(x̄(T ))(y(T )) ≤ 0 that

0 ≤ lim
n→∞

g0(xn(T ))− g0(x̄(T ))

δ2
n

≤ lim
n→∞

g0,x(x̄(T ))(xn(T )− x̄(T )− δny(T ))

δ2
n

+
1

2
lim
n→∞

g0,xx(x̄(T ))
(xn(T )− x̄(T )

δn
,
xn(T )− x̄(T )

δn

)
= g0,x(x̄(T ))(wT ) +

1

2
g0,xx(x̄(T ))(y(T ), y(T )).

If g0,x(x̄(T )) = 0, set α0 = 1, αj = 0 for j 6= 0 and β = 0, p(·) = 0. Then, by the above inequality, the conclusion
of Theorem 2.5 holds with this choice of multipliers. From now on we assume that g0,x(x̄(T )) 6= 0.

If I 6= ∅, let I = {j1, . . . , jγ}, where 1 ≤ γ ≤ r. The above string of inequalities implies that the convex set

Γ
4
=
{

(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ)|κ ∈ clRL(2), θ ∈ Θ, q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ
}

does not contain 0. By (H4), we know that Γ has interior points in the product space
∏γ
j=0Ej × H̃, where

Ej = H for all j = 0, . . . , γ. By the separation theorem for convex sets, there exists a nonzero bounded linear

functional ρ on
∏γ
j=0Ej × H̃ such that

ρ(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ) ≥ 0,

∀κ ∈ clRL(2), θ ∈ Θ, q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ.

Define an extension ρ̃ of ρ as follows:

ρ̃(ζ0, . . . , ζγ , ζγ+1) = ρ(ζ0, . . . , ζγ ,PH̃ζγ+1), ∀(ζ0, . . . , ζγ , ζγ+1) ∈
γ∏
j=0

Ej ×H,

where PH̃ denotes the orthogonal projection from H to H̃. Then we have

ρ̃(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ) ≥ 0,

∀κ ∈ clRL(2), θ ∈ Θ, q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ.
(4.4)

By the Riesz representation theorem, there exist ζ, ζj ∈ H (j ∈ I ∪ {0}), not vanishing simultaneously, such
that for every κ ∈ clRL(2), ∑

j∈I∪{0}

inf qj∈Qj

〈
ζj , qj − κ

〉
H

+ inf θ∈Θ

〈
ζ, θ − κ

〉
H
≥ 0.

By taking p1 = −
∑

j∈I∪{0}

ζj − ζ, we have

∑
j∈I∪{0}

ζj + ζ + p1 = 0 (4.5)
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and ∑
j∈I∪{0}

inf qj∈Qj

〈
ζj , qj

〉
H

+ inf θ∈Θ

〈
ζ, θ
〉
H

+ inf k∈RL(2)

〈
p1, k

〉
H
≥ 0. (4.6)

It follows from (4.6) that

inf
{〈
ζ, κ
〉
H
|κ ∈ kerhx(x̄(T ))

}
> −∞ (4.7)

implying that ζ ∈ kerhx(x̄(T ))⊥. Hence, by (4.1), we get that

ζ = hx(x̄(T ))∗q1 for some q1 ∈ H2.

Set β = −q1. Similarly, by the definition of Qj , for every j ∈ I ∪ {0}, we have

ζj ∈ (ker gj,x(x̄(T )))⊥ = Im gj,x(x̄(T ))∗.

Consequently,

ζj = λjgj,x(x̄(T )) for some λj ∈ R.

We next observe that for all large λ > 0, −λgj,x(x̄(T )) ∈ Qj . By (4.6), we have that for some c > 0

inf λ>c
〈
λjgj,x(x̄(T )),−λgj,x(x̄(T ))

〉
H

= inf λ>c
(
− λλj |gj,x(x̄(T ))|2H

)
> −∞.

Recalling that |gj,x(x̄(T ))|2H > 0, we deduce that λj ≤ 0. By the very definition of Qj , for every j ∈ I ∪ {0},

sup
κ∈Qj

gj,x(x̄(T ))(κ) = −1

2
gj,xx(x̄(T ))(y(T ), y(T )).

Therefore,

inf κ∈Qj
ζj(κ) =

|λj |
2
gj,xx(x̄(T ))(y(T ), y(T )).

Set

αj =

|λj |, if j ∈ I ∪ {0},

0, if j ∈ {1, . . . , r} \ I.

By (4.5),

p1 =

r∑
j=0

αjgj,x(x̄(T )) + hx(x̄(T ))∗β. (4.8)

Since ζ∗ and {ζ∗j }j∈I∪{0} do not vanish simultaneously, we have (α, β) 6= 0. Denote by p(·) the solution to the
adjoint equation (2.2) with the final datum pT = p1. It follows from (4.6) that inf κ∈RL(2)p(T )(κ) is bounded
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from below. Since R is a cone, we deduce from (4.2) and (4.6) that

inf κ∈R p(T )(κ) ≥ 0.

Let (z, π) be a trajectory-control pair of (2.20). Then

〈
p(T ), z(T )

〉
H

=

∫ T

0

〈
p(t), fu[t]π(t)

〉
H

dt ≥ 0.

From Lemmas 3.10 and 3.5, using that CU (ū(t)) is a cone, we deduce that

inf κ∈CU (ū(t))

〈
p(t), fu[t]κ

〉
H

= 0.

Hence (α, β, p) ∈ Λ(x̄, ū).

Step 2. Let (w, v) be a trajectory-control pair of (2.13). From (4.6) and the above calculations we obtain

1

2

〈
hxx(x̄(T ))(y(T ), y(T )), β

〉
H2

+
∑

j∈I∪{0}

αj
2
gj,xx(x̄(T ))(y(T ), y(T )) +

〈
p(T ), w(T )

〉
H
≥ 0.

On the other hand,〈
p(T ), w(T )

〉
H

=

∫ T

0

[〈
p(t), fu[t]v(t)

〉
H

+
1

2

(〈
p(t), fxx[t](y(t), y(t))

〉
H

+ 2
〈
p(t), fxu[t](y(t), u(t))

〉
H

+
〈
p(t), fuu[t](u(t), u(t))

〉
H

)]
dt

=

∫ T

0

[
Hu[t](v(t)) +

1

2

(〈
Hxx[t]y(t), y(t)

〉
H

+ 2Hxu[t](y(t), u(t)) +Huu[t](u(t), u(t))
)]

dt.

This yields

1

2
Ω(y, u, α, β, p) +

∫ T

0

Hu[t](v(t))dt ≥ 0.

Next, for every ṽ ∈ V 2(ū, u), there exists

{vi}∞i=1 ⊂
{
v ∈ L2(0, T ;H1)

∣∣ v(t) ∈ T b(2)
U (ū(t), u(t)) for a.e. t ∈ [0, T ]

}
such that

lim
i→∞

Hu[·](vi(·)) = Hu[·](ṽ(·)) in L1(0, T ;R).

Thus

1

2
Ω(y, u, α, β, p) + inf v∈V 2(ū,u)

∫ T

0

Hu[t](v(t))dt ≥ 0. (4.9)

Then, by an argument similar to end of Section 5 of [10], we can obtain the inequality (2.19).



28 H. FRANKOWSKA AND Q. LÜ

Step 3. Assume that (
⋂
j∈I Qj)

⋂
Θ
⋂

clRL(2) = ∅. Then the set

Γ
4
=
{

(q1 − κ, . . . , qγ − κ, θ − κ)|κ ∈ clRL(2), θ ∈ Θ, q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ
}

does not contain zero. Applying the same separation arguments as in Step 1 and the analysis of Step 2 to this
new set Γ and I ∪ {0} replaced by I we obtain (α, β, p) ∈ Λ(x̄, ū) with α0 = 0 satisfying (2.19).

The proof of Theorem 2.10 is almost the same as the one of Theorem 2.5. One only needs to use the fact
that for all t ∈ (0, T ], x̄(t), y(t), w(t) ∈ X. We only focus on the differences in the proof.

Proof of Theorem 2.10. By (2.30), the mapping hx(x̄(T )) is surjective. Thus,

Imhx(x̄(T ))∗ = {φ ∈ X ′|φ(η) = 0, ∀η ∈ kerhx(x̄(T ))}. (4.10)

Fix (y, u) ∈ C(x̄, ū) with V 2(ū, u) ∩ L2(0, T ;H1) 6= ∅. By Lemma 3.11, we know that (4.2) is satisfied. Define

Qj =
{
η ∈ X

∣∣∣ gj,x(x̄(T ))(η) +
1

2
gj,xx(x̄(T ))(y(T ), y(T )) < 0

}
, j ∈ Ig ∪ {0}, (4.11)

where Ig is as in (2.29). Again, if for some ` ∈ Ig ∪ {0}, Q` = ∅, then it is sufficient to set β = 0, α` = 1 and
αj = 0 for j 6= `. Then (α, 0, 0) ∈ ΛX(x̄, ū) and (2.19) is verified with p(·) = 0.

Assume next that Qj 6= ∅ for every j ∈ Ig ∪ {0}.
Step 1. From (4.11), we see that if gj,x(x̄(T )) = 0, then Qj = X. Put

I 4=
{
j ∈ Ig

∣∣ gj,x(x̄(T )) 6= 0, gj,x(x̄(T ))(y(T )) = 0
}
.

Again, if I = ∅, then we set
⋂
j∈I Qj = X.

Let wT ∈ (
⋂
j∈I Qj)

⋂
ΘX

⋂
clXR

L(2). In the same way as in Steps 1, 2 of the proof of Theorem 2.5 we show
that

g0,x(x̄(T ))(wT ) +
1

2
g0,xx(x̄(T ))(y(T ), y(T )) ≥ 0. (4.12)

If g0,x(x̄(T )) = 0, set α0 = 1, αj = 0 for j 6= 0 and β = 0, p(·) = 0. Then, by the above inequality, the conclusion
of Theorem 2.10 holds with this choice of multipliers. From now on we assume that g0,x(x̄(T )) 6= 0.

If I 6= ∅, let I = {j1, . . . , jγ}, where 1 ≤ γ ≤ r. Inequality (4.12) implies that the convex set

Γ
4
=
{

(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ)|κ ∈ clXR
L(2), θ ∈ ΘX , q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ

}
does not contain 0. By (S5), Γ has interior points in the product space

∏γ
j=0Xj × X̃, where Xj = X for all

j = 0, . . . , γ. By the separation theorem for convex sets, there exists a nonzero bounded linear functional ρ on∏γ
j=0Xj × X̃ such that

ρ(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ) ≥ 0,

∀κ ∈ clX R
L(2), θ ∈ ΘX , q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ.
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By the Hahn-Banach theorem, ρ has an extension ρ̃ on
∏γ
j=0Xj ×X. Then

ρ̃(q0 − κ, q1 − κ, . . . , qγ − κ, θ − κ) ≥ 0,

∀κ ∈ clX R
L(2), θ ∈ ΘX , q0 ∈ Q0, q` ∈ Qj` , ` = 1, . . . , γ.

(4.13)

By the Riesz representation theorem, there exist ζ, ζj ∈ X ′ (j ∈ I ∪ {0}), not vanishing simultaneously, such
that for every κ ∈ clX R

L(2), ∑
j∈I∪{0}

inf qj∈Qj
ζj(qj − κ) + inf θ∈ΘX

ζ(θ − κ) ≥ 0.

By taking p1 = −
∑

j∈I∪{0}

ζj − ζ, we have

∑
j∈I∪{0}

ζj + ζ + p1 = 0 (4.14)

and ∑
j∈I∪{0}

inf qj∈Qj
ζj(qj) + inf θ∈ΘX

ζ(θ) + inf κ∈RL(2)p1(κ) ≥ 0. (4.15)

As in the proof of Theorem 2.5 it follows from (4.15) that ζ = hx(x̄(T ))∗q1 for some q1 ∈ H2. Set β = −q1.
Similarly, ζj = λjgj,x(x̄(T )) for some λj ∈ R−. Let j ∈ I and η ∈ X be such that gj,x(x̄(T ))(η) = |gj,x(x̄(T ))|X′ .
Then for all large λ > 0, −λη ∈ Qj . By (4.15), we have that for some c > 0

inf λ>cλjgj,x(x̄(T ))(−λη) = inf λ>c
(
− λλj |gj,x(x̄(T ))|X′

)
> −∞

and therefore λj ≤ 0. As before we know that

inf κ∈Qj
ζj(κ) =

|λj |
2
gj,xx(x̄(T ))(y(T ), y(T )).

Set

αj =

|λj |, if j ∈ I ∪ {0},

0, if j ∈ {1, . . . , r} \ I.

By (4.14),

p1 =

r∑
j=0

αjgj,x(x̄(T )) + hx(x̄(T ))∗β.

Since ζ and {ζj}j∈I∪{0} do not vanish simultaneously, we have (α, β) 6= 0. Denote by p(·) the solution to the
adjoint equation (2.2) with the final datum pT = p1. It follows from (4.15) that inf κ∈RL(2)p(T )(κ) is bounded
from below. Since R is a cone, we deduce from (4.2) and (4.15) that

inf κ∈R p(T )(κ) ≥ 0.
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Let (z, π) be a trajectory-control pair of (2.20). Then

〈
p(T ), z(T )

〉
X′,X

=

∫ T

0

〈
p(t), fu[t]π(t)

〉
H

dt ≥ 0.

This, together with Lemmas 3.10 and 3.5, implies that (α, β, p) ∈ ΛX(x̄, ū).

Step 2. Let (w, v) be a trajectory-control pair of (2.13). From (4.15) and the above calculations we obtain

1

2

〈
hxx(x̄(T ))(y(T ), y(T )), β

〉
H2

+
∑

j∈I∪{0}

αj
2
gj,xx(x̄(T ))(y(T ), y(T )) +

〈
p(T ), w(T )

〉
X′,X

≥ 0.

On the other hand, by assumptions (S1)–(S4),〈
p(T ), w(T )

〉
X′,X

=

∫ T

0

[〈
p(t), fu[t]v(t)

〉
H

+
1

2

(〈
p(t), fxx[t](y(t), y(t))

〉
H

+ 2
〈
p(t), fxu[t](y(t), u(t))

〉
H

+
〈
p(t), fuu[t](u(t), u(t))

〉
H

)]
dt

=

∫ T

0

[
Hu[t](v(t)) +

1

2

(〈
Hxx[t]y(t), y(t)

〉
H

+ 2Hxu[t](y(t), u(t)) +Huu[t](u(t), u(t))
)]

dt.

This yields

1

2
Ω(y, u, α, β, p) +

∫ T

0

Hu[t](v(t))dt ≥ 0.

The proof ends in the same way as the one of Theorem 2.5.

Proof of Theorem 2.7. By our assumption, if j ∈ Ig, then Qj 6= ∅. From the proof of Theorem 2.5 we know
that if g0,x(x̄(T )) = 0, then the conclusion of Theorem 2.5 holds with α0 = 1, β = 0, αj = 0 for all j 6= 0 and
p(·) = 0.

Now we consider the case of g0,x(x̄(T )) 6= 0. From the proof of Theorem 2.5, we only need to show that
ζ0 6= 0. Otherwise, let wT be as in the assumptions of our theorem. From (4.5) and (4.6), taking the closure of
RL(2) in H we have that ∑

j∈I
inf qj∈Qj

〈
ζj , qj − wT

〉
H

+ inf θ∈Θ

〈
ζ, θ − wT

〉
H
≥ 0.

This and the choice of wT yield ζj = 0 for every j ∈ I. Consequently,

p1 = −hx(x̄(T ))∗q1 for some 0 6= q1 ∈ H2.

This and (4.6) imply that

inf κ∈RL(2)

〈
− hx(x̄(T ))∗q1, κ

〉
H

= inf κ∈RL(2)

〈
− q1, hx(x̄(T ))κ

〉
H2

> −∞,

which contradicts (2.21) and (4.2).
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Proof of Theorem 2.8. The assumption of this theorem is equivalent to( ⋂
j∈Ig

Qj

)⋂
Θ
⋂

clRL(2) = ∅.

Then, by the same arguments as in the proof of Theorem 2.5, we can get the conclusion.

Proof of Theorem 2.9. By Theorem 2.5, we only need to deal with the case when 0 is on the boundary of
clhx(x̄(T ))(RL). By the assumption of Theorem 2.9 on clhx(x̄(T ))(RL) and the separation theorem, there
exists a nonzero q1 ∈ H2 such that

min
κ∈RL

〈
q1, hx(x̄(T ))κ

〉
H2

= 0. (4.16)

Set α = 0, β = q1 and denote by p the corresponding solution of the adjoint equation (2.2). As before, (4.16)
and Lemma 3.5 imply that for a.e. t ∈ [0, T ],

H(t, x̄(t), u, p(t)) ≥ H(t, x̄(t), ū(t), p(t)), ∀u ∈ U.

This yields (2.3). Furthermore, if a trajectory-control pair (w, v) of (2.13) satisfies (2.22) with wT = w(T ), then

〈
p(T ), w(T )

〉
H

+
1

2

〈
β, hxx(x̄(T ))(y(T ), y(T ))

〉
H2

= 0.

On the other hand, as in the proof of Theorem 2.5,〈
p(T ), w(T )

〉
H

=

∫ T

0

[
Hu[t](v(t)) +

1

2

(
Hxx[t](y(t), y(t)) + 2Hxu[t](y(t), u(t)) +Huu[t](u(t), u(t))

)]
dt.

Hence,

1

2

〈
β, hxx(x̄(T ))(y(T ), y(T ))

〉
H2

+

∫ T

0

Hu[t](v(t))dt

+
1

2

∫ T

0

(〈
Hxx[t]y(t), y(t)

〉
H

+ 2Hxu[t](y(t), u(t)) +Huu[t](u(t), u(t))
)
dt = 0.

This completes the proof.

5. Two examples

In this section, we present two illustrative examples for our assumptions to be verified.

5.1. A controlled hyperbolic equation

Let D ⊂ R3 be a bounded domain with a C2 boundary ∂D. Let D0 be a nonempty open subset of D. Put

U
4
=
{
û ∈ L2(D)

∣∣ |û|L2(D) ≤ 1
}
. (5.1)
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Consider the following controlled hyperbolic equation:


x̃tt(t, ξ) = ∆x̃(t, ξ) + f̃(t, ξ, x̃(t, ξ)) + χD0(ξ)ũ(t, ξ), (t, ξ) ∈ (0, T ]×D,

x̃(t, ξ) = 0, (t, ξ) ∈ [0, T ]× ∂D,

x̃(0, ξ) = x̃0(ξ), x̃t(0, ξ) = x̃1(ξ), ξ ∈ D,

(5.2)

where (x̃0(·), x̃1(·)) ∈ H1
0 (D)× L2(D). The cost functional is

Ĵ(ũ) =

∫
D

g̃0(ξ, x̃(T, ξ))dξ, (5.3)

and the constraints are

∫
D

g̃j(ξ, x̃(T, ξ))dξ ≤ 0, j = 1, . . . , r (5.4)

and

∫
D

h̃j(ξ)x̃(T, ξ)dξ = 0, j = 1, . . . , k. (5.5)

Here {h̃j}kj=1 ⊂ L2(D) are linearly independent. Assume f̃ and g̃j (j = 0, . . . , r) satisfy the following conditions:

(C1). The function f̃ : [0, T ]×D×R→ R is Lebesgue measurable in the first two variables, g̃j : D×R→ R
is Lebesgue measurable in the first variable and |f̃(·, ·, 0)|L∞((0,T )×D) <∞.

(C2). The function r 7→ f̃(t, ξ, r) (resp. r 7→ g̃j(ξ, r)) has first and second order derivatives, which are also

continuous functions in r and are denoted by f̃ ′ and f̃ ′′(resp. g̃′j and g̃′′j ). Moreover,

|f̃ ′|L∞((0,T )×D×R) + |f̃ ′′|L∞((0,T )×D×R) +

r∑
j=0

(
|g̃′j |L∞(D×R) + |g̃′′j |L∞(D×R)

)
≤ C.

Under conditions (C1) and (C2), by the classical well-posedness result for hyperbolic equations (e.g. [16],
Sect. 6.1) for each measurable function ũ : [0, T ]→ U , there is a unique weak solution x̃(·) ∈ C1([0, T ];L2(D))∩
C([0, T ];H1

0 (D)) of (5.2) such that

|x̃(·)|C1([0,T ];L2(D)) + |x̃(·)|C([0,T ];H1
0 (D)) ≤ C

(
|(x̃0, x̃1)|H1

0 (D)×L2(D) + |ũ|L2(0,T ;L2(D))

)
.

Put H = H1
0 (D)× L2(D), H1 = L2(D). Then x = (x̃, ˜̃x) ∈ H with x̃ ∈ H1

0 (D) and ˜̃x ∈ L2(D). Let

D(A) =
(
H2(D) ∩H1

0 (D)
)
×H1

0 (D), A(x̃, ˜̃x) = (˜̃x,∆x̃), ∀(x̃, ˜̃x) ∈ D(A)
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and 

f(t, x(·), u) = (0, f̃(t, ·, x̃(·)) + χD0(·)u(·)), ∀x = (x̃, ˜̃x) ∈ H, u ∈ U,

g0(x) =

∫
D

g̃0(ξ, x̃(ξ))dξ, gj(x) =

∫
D

g̃j(ξ, x̃(ξ))dξ, j = 1, . . . , r, ∀x = (x̃, ˜̃x) ∈ H,

h(x) =
(∫

D

h̃1(ξ)x̃(ξ)dξ, . . . ,

∫
D

h̃k(ξ)x̃(ξ)dξ
)>

for all x = (x̃, ˜̃x) ∈ H.

(5.6)

By (C1) and (C2), it is clear that (H1) and (H2) hold. Now we prove that f , h and gj (j = 0, . . . , r) are
twice continuously Fréchet differentiable. For any (δx0(·), δx1(·)) ∈ H1

0 (D)× L2(D), by the Sobolev inequality
(e.g. [6], p. 284, Thm. 6), we have that∣∣f̃(t, ·, x̃(·) + δx0(·))− f̃(t, ·, x̃(·))− f̃ ′(t, ·, x̃(·))δx0(·)

∣∣
L2(D)

=
∣∣∣ ∫ 1

0

f̃ ′(t, ·, x̃(·) + θδx0(·))dθδx0(·)− f̃ ′(t, ·, x̃(·))δx0(·)
∣∣∣
L2(D)

=
∣∣∣ ∫ 1

0

[
f̃ ′(t, ·, x̃(·) + θδx0(·))− f̃ ′(t, ·, x̃(·))

]
dθδx0(·)

∣∣∣
L2(D)

≤
∣∣∣ ∫ 1

0

[
f̃ ′(t, ·, x̃(·) + θδx0(·))− f̃ ′(t, ·, x̃(·))

]
dθ
∣∣∣
L3(D)

∣∣δx0(·)
∣∣
L6(D)

≤ C
∣∣∣ ∫ 1

0

[
f̃ ′(t, ·, x̃(·) + θδx0(·))− f̃ ′(t, ·, x̃(·))

]
dθ
∣∣∣
L3(D)

∣∣δx0(·)
∣∣
H1

0 (D)
.

This implies that

lim
|δx0|H1

0(D)
→0

∣∣f̃(t, ·, x̃(·) + δx0(·))− f̃(t, ·, x̃(·))− f̃ ′(t, ·, x̃(·))δx0(·)
∣∣
L2(D)

|δx0|H1
0 (D)

≤ C lim
|δx0|H1

0(D)
→0

∣∣∣ ∫ 1

0

[
f̃ ′(t, ·, x̃(·) + θδx0(·))− f̃ ′(t, ·, x̃(·))

]
dθ
∣∣∣
L3(D)

= 0.

Thus, for any x ∈ H and u ∈ U , it holds that for any (δx0(·), δx1(·)) ∈ H1
0 (D) × L2(D) (recall (5.6) for the

definition of f),

fx(t, x, u)(δx0(·), δx1(·)) =
(
0, f̃ ′(t, ·, x̃(·))δx0(·))

and

|fx(t, x, u)|L(H) ≤ |f̃ ′(t, ·, x̃(·))|L3(D) ≤ C for a.e. t ∈ [0, T ] and for all (x, u) ∈ H × U.

Next, for any (δx0(·), δx1(·)), (δ̃x0(·), δ̃x1(·)) ∈ H1
0 (D)× L2(D), we have that∣∣f̃ ′(t, ·, x̃(·) + δx0(·))δ̃x0(·)− f̃ ′(t, ·, x̃(·))δ̃x0(·)− f̃ ′′(t, ·, x̃(·))δx0(·)δ̃x0(·)

∣∣
L2(D)

≤
∣∣f̃ ′(t, ·, x̃(·) + δx0(·))− f̃ ′(t, ·, x̃(·))− f̃ ′′(t, ·, x̃(·))δx0(·)

∣∣
L3(D)

|δ̃x0(·)|L6(D)

=
∣∣∣ ∫ 1

0

f̃ ′′(t, ·, x̃(·) + θδx0(·))dθδx0(·)− f̃ ′′(t, ·, x̃(·))δx0(·)
∣∣∣
L3(D)

|δ̃x0(·)|L6(D)
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=
∣∣∣ ∫ 1

0

[
f̃ ′′(t, ·, x̃(·) + θδx0(·))− f̃ ′′(t, ·, x̃(·))

]
dθδx0(·)

∣∣∣
L3(D)

|δ̃x0(·)|L6(D)

≤
∣∣∣ ∫ 1

0

[
f̃ ′′(t, ·, x̃(·) + θδx0(·))− f̃ ′′(t, ·, x̃(·))

]
dθ
∣∣∣
L6(D)

∣∣δx0(·)
∣∣
L6(D)

|δ̃x0(·)|L6(D)

≤ C
∣∣∣ ∫ 1

0

[
f̃ ′′(t, ·, x̃(·) + θδx0(·))− f̃ ′′(t, ·, x̃(·))

]
dθ
∣∣∣
L6(D)

∣∣δx0(·)
∣∣
H1

0 (D)
|δ̃x0(·)|H1

0 (D).

This implies that

lim
|δx0|H1

0 (D) → 0

|δ̃x0|H1
0 (D) → 0

∣∣f̃ ′(t, ·, x̃(·) + δx0(·))δ̃x0(·)− f̃ ′(t, ·, x̃(·))δ̃x0(·)− f̃ ′′(t, ·, x̃(·))δx0(·)δ̃x0(·)
∣∣
L2(D)

|δx0|H1
0 (D)|δ̃x0|H1

0 (D)

≤ C lim
|δx0|H1

0(D)
→0

∣∣∣ ∫ 1

0

[
f̃ ′′(t, ·, x̃(·) + θδx(·))− f̃ ′′(t, ·, x̃(·))

]
dθ
∣∣∣
L6(D)

= 0.

Thus, it holds that for any (δx0(·), δx1(·)), (δ̃x0(·), δ̃x1(·)) ∈ H1
0 (D)× L2(D),

fxx(t, x, u)
(
(δx0, δx1), (δ̃x0, δ̃x1)

)
= (0, f̃ ′′(t, ·, x̃(·))δx0(·)δ̃x0(·))

and

|fxx(t, x, u)|L(H,H;H) ≤ |f̃ ′′(t, ·, x̃(·))|L6(D) ≤ C for a.e. t ∈ [0, T ] and for all (x, u) ∈ H × U.

Similarly, we can prove that (recall (5.6) for the definition of gj (j = 0, . . . , r) and h)

|gj,x(x)|H + |gj,xx(x)|L(H) ≤ C for all x ∈ H and j = 0, . . . , r

and

|hx(x)|L(H;Rk) + |hxx(x)|L(H,H;Rk) ≤ C for all x ∈ H.

Let
(
(¯̃x, ¯̃xt), ¯̃u

)
be a local minimizer. By (5.1), we know that U is the unit ball in L2(D). Then

T bU (¯̃u(t)) =


{
v ∈ L2(D)

∣∣ 〈v, ¯̃u(t)
〉
L2(D)

≤ 0
}

if |¯̃u(t)|L2(D) = 1

L2(D) otherwise.

Consider a critical pair
(
(ỹ, ỹt), ũ

)
∈ C
(
(¯̃x, ¯̃xt), ¯̃u

)
. Then ũ(t) ∈ T bU (¯̃u(t)) for a.e. t ∈ [0, T ]. Assume in addition

that ũ ∈ L∞(0, T ;L2(D)) and that for some δ ∈ (0, 1) and a.e. t ∈ [0, T ],

|¯̃u(t)|L2(D) > 1− δ =⇒ 〈¯̃u(t), ũ(t)〉L2(D) ≤ 0.

Define M := ess supt∈[0,T ] |ũ(t)|L2(D) and observe that for a.e. t ∈ [0, T ] such that |¯̃u(t)|L2(D) ≤ 1 − δ and for

every ε ∈ [0, δ/M ] we have |¯̃u(t) + εũ(t)|L2(D) ≤ 1. Therefore dist(¯̃u(t) + εũ(t), U) = 0 and 0 ∈ T b(2)
U (¯̃u(t), ũ(t)).
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Consider next t ∈ [0, T ] such that |¯̃u(t)|L2(D) > 1− δ. Then for all small ε > 0 we have

∣∣¯̃u(t) + εũ(t)− ε2|ũ(t)|2L2(D)
¯̃u(t)

∣∣2
L2(D)

=
∣∣(1− ε2|ũ(t)|2L2(D))

¯̃u(t) + εũ(t)
∣∣2
L2(D)

≤ (1− ε2|ũ(t)|2L2(D))
2|¯̃u(t)|2L2(D) + ε2|ũ(t)|2L2(D)

≤ (1− ε2|ũ(t)|2L2(D))
2 + ε2|ũ(t)|2L2(D)

= 1− ε2|ũ(t)|2L2(D) + ε4|ũ(t)|2L2(D)M
2 < 1.

Consequently, dist(¯̃u(t) + εũ(t), U) ≤ ε2|ũ(t)|2L2(D)|¯̃u(t)|L2(D) whenever ε > 0 is sufficiently small, and

−|ũ(t)|2L2(D)
¯̃u(t) ∈ T b(2)

U (¯̃u(t), ũ(t)). This implies that V 2(¯̃u, ũ) ∩ L2(0, T ;H1) 6= ∅.
In the setting of this subsection, the control system (2.13) reads



w̃tt(t, ξ) = ∆w̃(t, ξ) + f̃ ′(t, ξ, ¯̃x(ξ))w̃(t, ξ)

+
1

2
f̃ ′′(t, ξ, x̃(ξ))ỹ(t, ξ)2 + χD0

(t, ξ)ṽ(t, ξ), (t, ξ) ∈ (0, T ]×D,

w̃(t, ξ) = 0, (t, ξ) ∈ (0, T ]× ∂D,

w̃(0, ξ) = 0, w̃t(0, ξ) = 0, ξ ∈ D.

(5.7)

Here ṽ(t) ∈ T b(2)
U (¯̃u(t), ũ(t)) for a.e. t ∈ [0, T ] with ṽ(·) ∈ L2(0, T ;L2(D)) and ỹ solves


ỹtt(t, ξ) = ∆ỹ(t, ξ) + f̃ ′(t, ξ, ¯̃x(ξ))ỹ(t, ξ) + χD0

(t, ξ)ũ(t, ξ), (t, ξ) ∈ (0, T ]×D,

ỹ(t, ξ) = 0, (t, ξ) ∈ (0, T ]× ∂D,

ỹ(0, ξ) = 0, ỹt(0, ξ) = 0, ξ ∈ D.

(5.8)

From (5.5), we know that Θ is a finite codimensional subspace of H. Let us consider two different cases:

Case 1 RL(2) ⊂ Θ. In this case, Θ̃ = Θ fulfills (H4).
Case 2 ∅ 6= RL(2)  Θ. Denote by PΘ the orthogonal projection operator from H to Θ and by I the identity

operator on H. Then we have that (I − PΘ)RL(2) 6= {0}. Since Θ is a finite codimensional subspace of
H, there are only finitely many linearly independent elements in (I −PΘ)RL(2). Denote by {rj}k1

j=1 these

linearly independent elements. Then we know that (I−PΘ)RL(2) ⊂ H3
4
= span {r1, . . . , rk1}. Then Θ⊕H3

is a closed subspace of H, Θ̃ ⊂ Θ⊕H3 and intΘ⊕H3
Θ̃ 6= ∅. By choosing H̃ = Θ⊕H3, we get (H4).

5.2. A controlled parabolic equation

Consider the following controlled parabolic equation:
x̂t(t, ξ) = ∆x̂(t, ξ) + f̂(t, ξ, x̂(t, ξ)) + χD0(ξ)û(t, ξ), (t, ξ) ∈ (0, T ]×D,

x̂(t, ξ) = 0, (t, ξ) ∈ (0, T ]× ∂D,

x̂(0, ξ) = x̂0(ξ), ξ ∈ D,

(5.9)
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where x̂0(·) ∈ L2(D), and û(t, ·) ∈ U (recall (5.1) for the definition of U) for a.e. t ∈ [0, T ] and is measurable
with respect to t. The cost functional is

Ĵ(û) =

∫
D

ĝ0(ξ, x̂(T, ξ))dξ, (5.10)

and the constraints are (5.4) and (5.5) with linearly independent {h̃j}kj=1 ⊂ L2(D) and x̃ replaced by x̂. Assume

f̂ and ĝj (j = 0, . . . , r) satisfy the following conditions:

(C3). The function f̂ : [0, T ]×D×R→ R is Lebesgue measurable in the first two variables, ĝj : D×R→ R
(j = 0, . . . , r) is Lebesgue measurable in the first variable and |f̃(·, ·, 0)|L∞((0,T )×D) <∞.

(C4). The function r 7→ f̂(t, ξ, r)(resp. r 7→ ĝj(ξ, r)) is twice continuously differentiable. Denote by f̂ ′ and

f̂ ′′(resp. ĝ′j and ĝ′′j ) the first and second order derivatives, respectively. Moreover, assume that

|f̂ ′|L∞((0,T )×D×R) + |f̂ ′′|L∞((0,T )×D×R) +

r∑
j=0

(
|ĝ′j |L∞(D×R) + |ĝ′′j |L∞(D×R)

)
≤ C.

Under conditions (C3) and (C4), by the classical well-posedness result for parabolic equations (e.g. [6], p.
535, Exam. 1) for each Lebesgue measurable function û : [0, T ] → U , there is a unique weak solution x̂(·) ∈
C([0, T ];L2(D)) ∩ L2(0, T ;H1

0 (D)) of (5.9) such that

|x̂(·)|C([0,T ];L2(D)) + |x̂(·)|L2(0,T ;H1
0 (D)) ≤ C

(
|x̂0|L2(D) + |û|L2(0,T ;L2(D))

)
. (5.11)

Put H = L2(D), H1 = L2(D), X = L6(D). It is well known that | · |X is Fréchet differentiable away from
zero. Let 

f(t, x, u) = f̂(t, ·, x(·)) + χD0
(·)u(·), ∀x ∈ H, u ∈ U,

g0(x) =

∫
D

ĝ0(ξ, x(ξ))dξ, gj(x) =

∫
D

ĝj(ξ, x(ξ))dξ, j = 1, . . . , r, ∀x ∈ H,

h(x) =
(∫

D

h̃1(ξ)x(ξ)dξ, . . . ,

∫
D

h̃k(ξ)x(ξ)dξ
)>

for all x ∈ H.

(5.12)

By the smoothing effect of the C0-semigroup generated by the homogeneous Dirichlet Laplacian, the Sobolev
embedding theorem (e.g. [6], p. 284, Thm. 6) and (5.11), we get (S1).

By (C3) and (C4), it is clear that (S2) holds. Now we prove (S3). For any δx(·) ∈ L6(D), we have that

∣∣f̂(t, ·, x̂(·) + δx(·))− f̂(t, ·, x̂(·))− f̂ ′(t, ·, x̂(·))δx(·)
∣∣
L2(D)

=
∣∣∣ ∫ 1

0

f̂ ′(t, ·, x̂(·) + θδx(·))dθδx(·)− f̂ ′(t, ·, x̂(·))δx(·)
∣∣∣
L2(D)

=
∣∣∣ ∫ 1

0

[
f̂ ′(t, ·, x̂(·) + θδx(·))− f̂ ′(t, ·, x̂(·))

]
dθδx(·)

∣∣∣
L2(D)

≤
∣∣∣ ∫ 1

0

[
f̂ ′(t, ·, x̂(·) + θδx(·))− f̂ ′(t, ·, x̂(·))

]
dθ
∣∣∣
L3(D)

∣∣δx(·)
∣∣
L6(D)

.
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This implies that

lim
|δx|L6(D)→0

∣∣f̂(t, ·, x̂(·) + δx(·))− f̂(t, ·, x̂(·))− f̂ ′(t, ·, x̂(·))δx(·)
∣∣
L2(D)

|δx|L6(D)

≤ lim
|δx|L6(D)→0

∣∣∣ ∫ 1

0

[
f̂ ′(t, ·, x̂(·) + θδx(·))− f̂ ′(t, ·, x̂(·))

]
dθ
∣∣∣
L3(D)

= 0.

Thus, for any δx(·) ∈ L6(D) and (x, u) ∈ X × U , from (5.12), we see that

fx(t, x, u)δx = f̂ ′(t, ·, x(·))δx(·)

and

|fx(t, x, u)|L(X;H) ≤ |f̂ ′(t, ·, x(·))|L3(D) ≤ C for a.e. t ∈ [0, T ] and for all (x, u) ∈ X × U.

Next, for any δx(·), δ̃x(·) ∈ L6(D), we have that∣∣f̂ ′(t, ·, x̂(·) + δx(·))δ̃x(·)− f̂ ′(t, ·, x̂(·))δ̃x(·)− f̂ ′′(t, ·, x̂(·))δx(·)δ̃x(·)
∣∣
L2(D)

≤
∣∣f̂ ′(t, ·, x̂(·) + δx(·))− f̂ ′(t, ·, x̂(·))− f̂ ′′(t, ·, x̂(·))δx(·)

∣∣
L3(D)

|δ̃x(·)|L6(D)

=
∣∣∣ ∫ 1

0

f̂ ′′(t, ·, x̂(·) + θδx(·))dθδx(·)− f̂ ′′(t, ·, x̂(·))δx(·)
∣∣∣
L3(D)

|δ̃x(·)|L6(D)

=
∣∣∣ ∫ 1

0

[
f̂ ′′(t, ·, x̂(·) + θδx(·))− f̂ ′′(t, ·, x̂(·))

]
dθδx(·)

∣∣∣
L3(D)

|δ̃x(·)|L6(D)

≤
∣∣∣ ∫ 1

0

[
f̂ ′′(t, ·, x̂(·) + θδx(·))− f̂ ′′(t, ·, x̂(·))

]
dθ
∣∣∣
L6(D)

∣∣δx(·)
∣∣
L6(D)

|δ̃x(·)|L6(D).

This implies that

lim
|δx|L6(D)→0

∣∣f̂ ′(t, ·, x̂(·) + δx(·))δ̃x(·)− f̂ ′(t, ·, x̂(·))δ̃x(·)− f̂ ′′(t, ·, x̂(·))δx(·)δ̃x(·)
∣∣
L2(D)

|δx|L6(D)|δ̃x|L6(D)

≤ lim
|δx|L6(D)→0

∣∣∣ ∫ 1

0

[
f̂ ′′(t, ·, x̂(·) + θδx(·))− f̂ ′′(t, ·, x̂(·))

]
dθ
∣∣∣
L6(D)

= 0.

Consequently, for any δx(·), δ̃x(·) ∈ L6(D) and (x, u) ∈ X × U ,

fxx(t, x, u)(δx, δ̃x) = f̂ ′′(t, ·, x(·))δx(·)δ̃x(·)

and

|fxx(t, x, u)|L(X,X;H) ≤ |f̂ ′′(t, ·, x(·))|L6(D) ≤ C for a.e. t ∈ [0, T ] and for all (x, u) ∈ X × U.

Similarly, we can prove that

|gj,x(x)|H + |gj,xx(x)|L(X;H) ≤ C for all x ∈ X, for j = 0, . . . , r
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and

|hx(x)|L(X;Rk) + |hxx(x)|L(X,X;Rk) ≤ C for all x ∈ X.

Next, similarly to the proof in Section 5.1, we can show that (S5) holds. As before, if ũ ∈ L∞(0, T ;L2(D))
is such that ũ(t) ∈ T bU (¯̃u(t)) for a.e. t ∈ [0, T ] and for some δ > 0 and a.e. t ∈ [0, T ]

|¯̃u(t)|L2(D) > 1− δ =⇒ 〈¯̃u(t), ũ(t)〉L2(D) ≤ 0,

then V 2(ū, ũ) ∩ L2(0, T ;H1) 6= ∅.
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[8] H. Frankowska, On second-order necessary conditions in optimal control of problems with mixed final point con-

straints. In Proceedings of 58th IEEE Conference on Decision and Control, Nice, France, December 11-13 (2019), DOI:
10.1109/CDC40024.2019.9029546.

[9] H. Frankowska, D. Hoehener and D. Tonon, A second-order maximum principle in optimal control under state constraints.
Serdica Math. J. 39 (2013) 233–270.

[10] H. Frankowska and N.P. Osmolovskii, Second-order necessary conditions for a strong local minimum in a control problem with
general control constraints. Appl. Math. Optim. 80 (2019) 135–164.

[11] H. Frankowska and N.P. Osmolovskii, Distance estimates to feasible controls for systems with final point constraints and
second order necessary optimality conditions. Syst. Control Lett. 144 (2020) 104770.

[12] H. Frankowska, H. Zhang and X. Zhang, Necessary optimality conditions for local minimizers of stochastic optimal control
problems with state constraints. Trans. Amer. Math. Soc. 372 (2019) 1289–1331.

[13] X. Li and J. Yong, Optimal control theory for infinite dimensional systems. Birkhäuser Boston, Inc., Boston, MA (1995).
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[19] A. Rösch and F. Tröltzsch, Sufficient second-order optimality conditions for a parabolic optimal control problem with pointwise
control-state constraints. SIAM J. Control Optim. 42 (2003) 138–154.
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