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ABSTRACT: 

 

Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater. The inter-annual variability of monsoon 

rainfalls is high, which forces South Indian farmers to adapt their irrigated area extents to local water availability. We are developing 

and testing an automatic methodology for monitoring spatio-temporal variations of irrigated crops in near real time based on 

Sentinel-1 and -2 data feed over the Telangana State, South India. These freely available radar and optical data are systematically 

acquired worldwide, over India since 2016, on a weekly basis. Their high spatial resolution (10–20 m) are well adapted to the small 

size field crops that is common in India. We have focused first on drought prone areas, North of Hyderabad. Crop fraction remains 

low and varies widely (from 10 to 60%, ISRO-NRSC, Bhuvan). Those upstream areas, mainly irrigated with groundwater, are 

composed by less than 20% of irrigated areas during the dry season (Rabi, December to March) and up to 60% of the surface is used 

for crop production during the Kharif (June to November), which includes rainfed cotton and drip irrigated maize crops and 

inundated rice. A machine learning algorithm, the Random Forest (RF) method, was automatically used over 6 growing seasons 

(January to March and July to November, from 2016 to 2018) from the Sentinel-1&2 data stacked for each season, to create crop 

mapping at 10m resolution over a study area located in the north of Hyderabad (210 by110km). Six seasonal land cover field surveys 

were used to train and validate the classifier, with a specific effort on rice and maize field sampling. The lowest irrigated area extents 

were found for driest conditions in Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion. 

This confusion decreases with the increase of irrigated crops areas during Rabi 2017. For this season, 22% of rice and 9% of irrigated 

crops were detected after heavy rainfall events in September 2017, which have filled surface water tanks (3.4% of the surface area) 

and groundwater (Central Groundwater Board observations). From this abundance situation, the surface water detected for each 

season decreased regularly to less than 0.3% together with the rice and irrigated area extents respectively from 22 to 11% and 10 to 

3%, despite a good monsoon 2017. Groundwater level show similar trends, with a drop from 20 meters depth in October 2016 and 

2017 to more than 30 m in June 2018 (more recent available data). The deficit of the monsoon 2018 will certainly bring this situation 

to a hydrological drought at the beginning of 2019, probably similar to the Rabi 2016 situation. The estimated Irrigated Water 

Demand (IWD) varies from 51 to 310 mm/season, depending on water availability. This methodology shows the potential of 

automatically monitoring, in near real time, with standard computers, irrigated area extents presenting fast high resolution variability. 

As it is based on standard global satellite acquisitions, it is foreseen to be used for other regions, for any studies on farmer’s 

adaptation to climate and hydrological variability, as a proxy to estimate irrigation water needs and water resources availability. In 

Telangana for instance, it provides an inventory of crop production and irrigation practices before the implementation of mega 

project infrastructures funded by this new state: - the Kâkâtiya tank restoration program to enhance monsoon runoff capture or the 

Kaleshwaram project to divert Godavari river water toward upstream Telangana region through tunnels and canals in 20 giant 

reservoirs. 

 

 

1. INTRODUCTION 

1.1 General context 

To be efficient, environmental decisions from policy makers 

should be based on evidence and facts, being used to build fair 

and efficient environmental policies. This objective supposes to 

understand complex co-evolution of human activities and 

climatic variability and environmental resources, which implies 

to multiply environmental observations of continental surface 

dynamics. For agro-systems, quantifying and predicting 

supposes to build numerical representation of the cascade of 

processes and retroaction between climate, soil, water resources 

and agricultural practices: cultivation of land, fertilization, 

irrigation. Agro-hydrological models aims at representing those 

retroactions in space and time using numerical modelling 

approaches. These models represent the main processes 

involved in the crop growth and water and nutrient transfer 

within catchments: soil water and nutrient uptake, drainage and 

transfers to aquifer and rivers, as a function of crop calendar, 

fertilisation, irrigation, etc (Arnold et al. 1998; Breuer, Vaché, 

et Julich 2008; Engel et al. 1993; Refsgaard et al. 1999; Perrin 

et al. 2012; S. Ferrant 2009). These modelling objectives require 

spatially distributed models, where information of soil-crop 

location within slopes as well as hydrological settings 

(topography, groundwater storage, reservoir location or 
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irrigation pumping) are included to provide spatially explicit 

information on water uses: fertilisation and crop growth 

parameters (S. Ferrant et al. 2011), soil and groundwater stock 

and irrigation pumping for instance (Perrin et al. 2012).  

It pictures the situation of water resources under human 

activities, test the efficiency of designed water/agricultural 

management options(Ferrant et al. 2013) and is used to project 

the nowadays water consumption under future climate or socio-

economical situations(Ferrant et al. 2014). 

 

1.2 Limitations: the lack of spatio-temporal variables 

These spatially distributed agro-hydrological models are 

simulating a cascade of many processes, involving numerous 

parameters to represent the spatial and temporal dynamic of 

water, nutrient cycle, crop growth, which are calibrated using 

available observations: water and nutrients stream fluxes at the 

outlet, average yield(Ferrant et al. 2011; Moreau et al. 2013), 

aquifer recharge(Perrin et al. 2012) or satellite based 

evapotranspiration with MODIS at 500 meters (Cheema, 

Immerzeel, et Bastiaanssen 2014). The lack of observation of 

soil, crop, and climatic variables leads to a lack of spatial 

processes calibration which may result in equifinality problems, 

e.g. more than one parameter set leading to similar results 

(Beven 2001) or compensation between processes leading to 

similar stream water fluxes (Ferrant et al. 2011). Uncertainties 

raised by these modelling approaches at the watershed level are 

mainly related to the lack of agricultural operations data and 

soil-crop conditions encountered within the catchment, i.e. 

saturated conditions within slopes and their feedback on crop 

productivity. For instance, the timing of fields operations (first 

fertilization and sowing date) detected by monitoring crop 

growth using satellite derived Leaf Area Index, has a strong 

impact on the winter wheat growth simulated in temperate area 

(Ferrant et al., 2014), with a non negligible impact on soil water 

shortage estimates in summer (Martin et al., 2016). These crop 

growth dynamics are crucial input parameters to accurately 

simulate crop growth dynamics and interaction with water 

resources (Ferrant et al., 2014). 

 

1.3 Contribution of Earth observation to Indian agro-

hydrology 

The Indian space program provides several high-resolution 

satellite missions (1 to 56 meter spatial resolution) that have 

been used to measure seasonal land cover. In 2016, the National 

Information System for Climate and Environment Studies 

(NICES) project released a national database of seasonal net 

sown areas (http://bhuvan.nrsc.gov.in/data/download/index.php) 

which highlights the high spatio-temporal heterogeneity of land 

cover and its temporal dynamics. This dataset is published as a 

fraction of crop sown at 5km resolution by the National Remote 

Sensing Center (NRSC), part of the Indian Space Research 

Organization (ISRO). A similar program, called Water Bodies 

Fraction (WBF) and based on the same optical data, produces 

the areal fraction of surface water every 15 days since 2012. 

The short-term variations of sown areas show a high temporal 

variation over recent decades in the Hyderabad region, with 41 

to 58% of sown areas in Kharif and 8 to 22% in Rabi between 

2005 and 2016. However, the irrigated fraction is an essential 

environmental variable to be retrieved for water management 

issues.  

The recently launched Sentinel satellites are especially of 

interest for their acquisition strategies. Sentinel-1 (satellite S1A, 

launched in 2014 and S1B in 2016) and Sentinel-2 (S2A 

launched in 2015 and S2B in 2017) are the first generation of 

operational satellite EO missions for both optical multi-spectral 

and radar C-band detection of continental surfaces at a global 

scale, with high spatial and temporal resolutions (10 to 20 m; 5 

to 10 days revisit interval), under a free access licence.  

 

1.4 Objectives of the study over Hyderabad region 

The aim of this paper is to present the methodology, based only 

on those new observations from the Sentinel-1 and Sentinel-2 

satellites for monitoring the essential agro-hydrological 

variables of the Indian context. It presents an update of a 

previous work where synergy and spatial and spectral resolution 

of Sentinel-1&2 products were evaluated regarding the irrigated 

crop detection accuracy for 3 growing seasons 2016 and 2017 

(Ferrant et al. 2017). Following the conclusions of this study, 

we used the only 10m resolution Sentinel-1&2 bands and ratios. 

The main difference in this study is the use of surface 

reflectance Sentinel-2 produced from the MAJA workflow 

(MACCS ATCOR joint Algorithm, O. Hagolle, 

https://github.com/olivierhagolle/Start_maja) which produces 

accurate cloud mask based on image time series. An automated 

workflow, presented in this manuscript, used those masks to 

reject Sentinel-2 images based of haze and cloud presence. 

The algorithm has been developed for standard computers to be 

used by lay users and deliver near real time restitution of 

Essential Environmental Variables (EEVs) for each season: 1- 

inundated rice areas, 2- irrigated crops areas, 3- rainfed crop 

areas, 4- surface water areas. These four variables involve only 

a few percent of the total area and vary rapidly from season to 

years with water availability. The seasonal land covers 

produced in this study have been used to estimate the seasonal 

Irrigated Water Demand (IWD), based on irrigation practices 

observed in previous studies (Dewandel et al. 2010; Ferrant et 

al. 2014; Perrin et al. 2012; Dewandel et al. 2017). This study 

considers one spatial resolution, 10 meters, and explores the 

benefit of the synergy between Sentinel-1’s radar backscatter 

advantages (not sensitive to the persistent cloud cover during 

the Kharif season, highly impacted by crop growth and surface 

water) and the Sentinel-2’s multi-spectral detection, both at an 

appropriate spatial resolution to the small extent of crop field 

and water bodies. EEVs variations are discussed regarding 

contextual data (rainfall and groundwater level) to discuss their 

interest in a better understanding of farmer’s adaptation to 

climatic and hydrologic variability. We have chosen the 

Random Forest algorithm (RF) provided with the Orfeo 

ToolBox (OTB) because it is a fast, open-source processor of 

high-resolution optical, multispectral and radar images at the 

terabyte scale. Highly appropriate for building a processing 

chain, it is suitable for automatically producing agro-

hydrological variables at a large scale (Pelletier et al. 2016).  

 

2. MATERIAL AND METHODS 

2.1 Study area 

The Kudaliar river catchment (983 km2) is shown in Figure 1 

and 2. It is located in Telangana State, South India. Figure 1 

shows the fraction crop cover in India for two seasons, Kharif 

2015 (Figure 1a) and Rabi 2016 (Figure 1b). The catchment is 

50 km north of Hyderabad (Figure 1c). This catchment is an 

upstream watershed unconnected to the perennial regional rivers 

and is representative of the northern part of the Deccan plateau 

region in terms of irrigated agriculture, climatic variability and 

hydrogeological settings. It is characterized by a flat topography 

(from 430 to 640 meters above sea level) and an absence of 

perennial streams. The region has a semi-arid climate controlled 

by the periodicity of the Southwest monsoon: a rainy “Kharif” 

(local name) season from June to November and a dry “Rabi” 
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(local name) season from December to March. In contrast with 

these two seasons, the summer season (April and May) is 

mainly free of cultivation. Annual precipitation (1980–2000) 

ranges from 540 mm to 1300 mm with a mean of 879 mm 

according to the Indian Meteorological Department, 88% of the 

rain falls during the monsoon season. The annual mean 

temperature is 26°C, although in summer (April to May) the 

maximum temperature may reach 45°C.  

The catchment is mainly rural and densely populated (300,000 

inhabitants in 983 km2), with only one small town (Gajwel, 

30,000 inhabitants), located in its southwestern portion (see 

Figure 1c, purple area). Approximately 60% of the watershed is 

covered by semi-arid natural vegetation (bush). Rain-fed crops 

(mainly maize and cotton) are sown only during the monsoon 

period (Kharif, Figure 1a). The irrigated area varies widely with 

climatic and hydrological conditions since irrigation mainly 

depends on groundwater availability. The main aquifer is 

composed by a weathered and fractured Archean granitic unit. 

Thus, the groundwater availability is controlled by the thickness 

of the weathered profile and the density of fractures (Boisson et 

al. 2015). This shallow heterogeneous aquifer is characterized 

by strong and fast water table fluctuations caused by 

recharge/pumping cycles (Maréchal et al. 2006). A Water 

Harvesting System (WHS) consisting of many small dams in a 

mound of soil materials along the drainage network is 

maintained by the farmers. They are generally non-permanent 

lakes: they can be refilled by heavy monsoon rainfall and dry 

out in a few months through evaporation, infiltration and use for 

irrigation (Massuel et al. 2014). This area will be used to 

compute surface area extents from seasonal land covers. 

  

2.2 Sentinel-1 and 2 data sets 

Sentinel-1 and 2 acquisitions over India started at the end of 

2015. They were stacked into a single file for each six growing 

season to be analyzed by the RF algorithm. The study area is 

embedded in two Sentinel-2 tiles (44QKE and 44QKF) located 

north of Hyderabad (Figure 1, orange).  

 

2.3 Sentinel-1 and 2 pre-processing 

The Sentinel-2 dataset downloaded in this study is the surface 

reflectance produced by PEPS web platform and Theia land 

data center (Level-2A). It provides a cloud mask and a surface 

reflectance corrected from the atmospheric effects, based on the 

MAJA workflow (Hagolle et al. 2015). In this semi-arid Indian 

area, this correction is crucial as the seasonal variations of 

aerosol concentrations in the form of dry dust is high 

(Sivaprasad et Babu 2014) and alters the reflectance. 

The Sentinel-1 dataset comprises Level-1 Ground Range 

Detected (GRD) data in Interferometric Wide swath mode (IW) 

consisting of focused SAR data that has been multi-looked and 

projected to ground range using the WGS84 Earth ellipsoid 

model. The resulting images in dual polarization (VH and VV) 

have a dimension of 270x270km and a resolution of 10 m. The 

terrain correction was then applied to geocode the images by 

correcting SAR geometric distortions (foreshortening, layover 

and shadow) using the digital elevation model from the Shuttle 

Radar Topography Mission, producing ground-projected 

images. To do this, the Orfeo ToolBox (OTB) was used. Each 

image was cropped and superposed on the Sentinel-2 tiles. A 

multi-temporal speckle filter (Bruniquel et Lopes 1997) was 

preferred to the more classical spatial filter in order to preserve 

spatial resolution and the fine structure of Sentinel-1 images. As 

shown previously in (Mermoz et Le Toan 2016; Mermoz et al. 

2014), this method produces images with reduced speckle 

effects from the whole sentinel-1 acquisition time series (30 

dates since February 2015) and multi-polarized (VH and VV) 

images. The speckle filter is expressed as follows: 

where Jk(υ) is the radar intensity of the output image k at pixel 

position υ, Ii(υ) is the radar intensity of the input image i, 

<Ii(υ)> is the local average intensity of the input image k 

(window size of 5x5) and N is the number of images (N=30 

dates * 2 polarizations). The resulting theoretical number of 

looks is 71. 

 

2.4 Sentinel Bands and derived indexes selection 

We selected Sentinel-2 bands at 10 m: the blue (B2 = 490 nm), 

green (B3 = 560 nm), red (B4 = 665 nm), and near infra-red (B8 

= 842 nm) bands and have computed the NDVI for each images 

(Eq. 2). VV and VH backscatters from Sentinel-1 IW 

acquisition mode and the ratio based on VV and VH (Eq. 3) 

were computed at 10 meter resolution and both Sentinel bands 

and indexes were stacked together by growing seasons. The 

sizes of these stacks of data obviously vary with the number of 

images in a season. 

 (Eq. 2) (Eq. 3) 

Acquisition dates were selected using a number threshold of 

valid pixels, based on merge edge mask and cloud mask. Each 

acquisition dates which are not covering 90% of the pixel zone 

are not used for the classification. The number of bands and 

sampling dates varies highly from a season to another, with both 

the cloud mask between Kharif and Rabi seasons, and with the 

increase of Sentinel acquisitions from 2016 to now. The 

workflow for automated selection of data and supervised 

classification is described in Figure 2. 

 

2.5  Land cover surveys for learning samples 

Six seasonal surveys of land cover were carried out in February 

and October, from 2016 to 2018, corresponding to 428 plots of 

non-irrigated areas: bare ground or natural vegetation cover, 

rainfed and tree plantations (eucalyptus and teak), 1455 

irrigated areas: orchards (mainly mango trees), maize crops and 

vegetables (beans, lentils) and 192 flooded rice crop areas. The 

dataset was especially scrutinized for rice as the main water-

consuming crop. A USB GPS receiver (G-STAR IV) was 

connected to GIS software (QGIS) on a laptop to position the 

operator in the landscape. The operator used the latest Sentinel-

2 acquisition to delineate polygons containing both 

homogeneous land cover and reflectance observed in the field 

and on the Sentinel-2 image. The dataset created from the field 

surveys was used to create six seasonal datasets: perennial land 

cover such as orchard, forest and natural land use are preserved 

across the three datasets together with the irrigated, flooded and 

rain-fed crop fields observed during one season. These 

reference data comprise nine land cover classes: inundated rice, 

irrigated vegetables, irrigated maize, orchards, forested area, 

bare ground and natural bushes, urban areas, surface water and 

rain-fed cotton (only in Kharif). Surface water areas are those 

always covered by water during the season. Each seasonal data 

set is then split into two separate training and validation sets of 

polygons. Seasons are named following the ISRO labelling 

convention adopted for NICE programs: Rabi 2016 (Jan-Mar 

2016), Kharif 2016 (Aug-Nov 2016), respectively R2016, 

K2016, R2017, K2017, R2018, K2018.  

𝐽𝑘(𝜐) =
 𝐼𝑘(𝜐) 

𝑁
 

𝐼𝑖(𝜐)

 𝐼𝑖(𝜐) 
 𝑁

𝑖=1   with  k=1,…,N         (eq. 1) 
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Figure 1. Location of the study area in Telangana State, South India. The Kudaliar watershed area is embedded in two Sentinel-2 tiles 

(orange outline). (a) Fraction crop cover in wet Kharif season 2015 (July to November); (b) Fraction crop cover in dry Rabi season 2016 

(December 2015 to March 2016); (c) Fraction crop cover for the study area in Rabi 2016. This product is provided at 5 km resolution from 

optical remote sensing at 56 m resolution. 

 
Figure 2. Automatic seasonal land cover workflow. 
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2.6 Irrigated crop classification methods and strategy 

The RF algorithm is a supervised classification method based 

on ensemble learning theory (Breiman, 2001). It has been 

widely used to identify land cover using one or more satellite 

images (Pelletier et al. 2016). The algorithm builds binary 

decision trees that are decorrelated by using bootstrap samples. 

The split process also decorrelates the various trees by first 

randomly selecting at each node a subset of input variables (also 

called features), and by then performing a variable value test 

based on the Gini impurity criterion or entropy loss. Ideally, this 

process is repeated recursively on each derived subset until the 

node contains very similar samples, or when the splitting no 

longer adds value to the predictions. During the decision phase, 

each tree classifies the input data. Then, a majority vote is 

performed to output the class label. 

 

The RF algorithm requires two main parameters to tune: 1) the 

number of trees 𝐾, and 2) the number of variables randomly 

selected to split a node 𝑚𝑡𝑟𝑦. In this study, classical parameter 

values are used: K = 100; mtry = 25.  

 

All the pixels located in the training and validation polygons are 

used to respectively train the RF learning algorithm and to 

assess the accuracy of the resulting land-cover maps. The unit 

of assessment is therefore the pixel for the validation procedure, 

the number varying with the cropfield polygon, from tens to 

thousands of pixels. Non-agricultural areas cover 60 to 70% of 

these rural areas and are sampled using large polygons, 

implying thousands of learning and validation pixels, whereas 

rice and irrigated areas consist of hundreds of small polygons 

with limited numbers of pixels in each. 

 

The accuracy of the land cover map produced is evaluated with 

the precision, recall and F-score of the targeted irrigated and 

inundated crop class from the confusion matrices. F-score is the 

harmonic mean of the user’s accuracies and the producer’s 

accuracies. The best value of the F-score is 1, and the worst 0. 

We use the inundated and irrigated area estimates to compare 

the methods and seasons. The overall land-cover accuracy is 

given by the Kappa index for all classes. The size of each 

satellite time series dataset analyzed is also given, to illustrate 

the basic informatics settings required by this method.  

 

2.7 Estimation of Irrigated Water Demand (IWD) 

The water demand corresponding to the inundated and irrigated 

area extents is estimated from previous estimates based on field 

work and the DST-GW model developped and calibrated in this 

area (Dewandel et al. 2010) which were used in the agro-

hydrological modeling study (Ferrant et al. 2014). Daily rice 

and vegetable irrigation rates were estimated from field surveys 

(measurements of instant well discharges, irrigated field areas, 

and monitoring of daily pumping durations). Daily irrigation 

rates for rice are 12 mm/day and 9 mm/day for Rabi and Kharif 

respectively (Massuel et al. 2008). The IWD will be expressed 

in mm/season as a water thickness divided by the watershed 

area, same unit used for rainfall and aquifer recharge.  

 

 

3. RESULTS AND DISCUSSION 

3.1 Random Forest crop detection accuracy 

The scores of the classification are presented in Table 1, for 

irrigated crops and cotton. As expected, rice detection using 

Sentinel-2 for Rabi seasons (cloud free period) yields high F-

Scores (Fscores from 0.77 to 0.96) and intermediate F-scores in 

Kharif (0.35 to 0.83). Very lower F-scores are found for others 

irrigated crops (maize and vegetables, from 0.03 to 0.68), 

depending, but not only, on the number of valid acquisition 

dates. Indeed, the number of Sentinel acquisitions progressively 

increased over the world from 2016 to now, with the launch of 

twin satellites. But specific period, if sampled with a Sentinel-2 

acquisition, are determinant to avoid confusion between 

irrigated classes and improve the detection accuracy, especially 

during Kharif period.  

 

Nevertheless, the K2017 shows really low F-Scores for irrigated 

crops and high confusions between rice and other crops. As for 

other Kharif period, only one cloud free Sentinel-2 is available, 

yet in 2017, this image comes very late in the season, at the end 

of November. Sentinel-1 time series, used alone for this season, 

gives the same low F-scores. For this season, Sentinel 

acquisitions do not sample properly the cropping pattern 

reflected by the seasonal field data set. On the contrary, the 

relatively high Kappa indices (from 0.58 to 0.92) are consistent 

with a good accuracy over natural land use, urban areas and 

surface water. For instance, Water F-scores are above 0.9 for all 

seasons, even K2017.  

 

3.2 Seasonal variability of inundated and irrigated areas 

Table 2 shows the areas estimated for each classification. Rice 

areas are varying from around 5 to 23% in Rabi and 4 to 11% in 

Kharif. This is consistent with previous study over this study 

area (Ferrant et al. 2017, 2014). The high uncertainty behind the 

K2017 estimates, with a low precision and high confusion 

between rice and other crops, raise doubts about the high rice 

area extent estimated (More than 40%). The same classification 

using only Sentinel-1 time series provides an estimate of 34% 

of rice irrigated area, with similar classification accuracy 

(results not shown). We shall notice that the success of irrigated 

area retrieval is highly dependent on an existing cloud free 

Sentinel-2 observation within the crop growth period. Another 

possible cause of this result is the high heterogeneity of rice 

stages found during the field trip, compare to the two other 

Kharif. Random forest classifier cannot handle so many 

heterogeneities for one class with only one optical image at the 

end of the crop growth period. 

 

3.3 Seasonal hydrological variables 

As part of landuse classes, surface water areas are retrieved 

from this seasonal land cover classification. They vary from 

0.07 to 3.4% of the catchment area (table 2), distributed in 

hundreds of small tanks spread along the river network. Table 2 

shows cumulative seasonal rainfall measured in the north of 

Hyderabad, with higher rainfall accumulation than average 

monsoon for this area (Patancherru, source: ICRISAT). R2016 

meets the driest hydrological conditions, with less than 0.1% of 

surface water in the Kudaliar watershed, consisting in mainly 

small remainders of muddy pool found in biggest tanks of the 

area. Aquifer water levels were low (around 35 meters depth) 

since the previous monsoon rainfalls were low (600 and 700 

mm for 2014 and 2015, respectively). The 2016 monsoon came 

late so July and August were still dry, but there was extremely 

heavy rainfall in September 2016. Hyderabad received 425.2 

mm of rain compared with its monthly mean of 132.9 mm, 

surpassing the decade’s highest rainfall of 266.6 mm (Sept., 

2007).  

 

In January and July 2016, farmers have had to restrain rice area 

extents to a minimum (less than 5%), to face this groundwater 
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and surface water shortage context. Irrigated rice paddies were 

located around borewell that were still providing enough 

irrigated water (around 60 to 50 mm of water at the catchment 

scale). 
 Sensor Sentinel-1&2 

Class Season 
Rabi 
2016 

Kharif 
2016 

Rabi 
2017 

Kharif 
2017 

Rabi 
2018 

Kharif 
2018 

Flooded 

Rice 
Precision 0.87 0.98 0.96 0.29 0.95 0.95 

  Recall 0.95 0.51 0.96 0.44 0.65 0.73 

  F-score 0.90 0.68 0.96 0.35 0.77 0.83 

Irri-

gated  
Precision 0.22 0.45 0.59 0.1 0.71 0.31 

 Maize Recall 0.11 0.17 0.74 0.16 0.65 0.15 

 Vege-

tables 
F-score 0.15 0.03 0.66 0.12 0.68 0.2 

Rainfed  Precision - 0.84 - 0.24 - 0.66 

Cotton Recall - 0.72 - 0.28 - 0.88 

  F-score - 0.78 - 0.26 - 0.76 

 Overall Kappa 0.82 0.58 0.88 0.84 0.92 0.87 

Tech-
nical 

Nb dates 
5 S1,  
2 S2 

12 S1, 
1 S2 

10 

S1,  

4 S2 

17 S1, 
1 S2 

13 

S1, 

9 S2 

14 S1, 
1 S2 

Details Nb bands 25 41 50 56 84 47 

  
Size (Go)  

for 2 tiles 
23 37.8 46.1 51.6 77.4 43.3 

Table 1. Results of Random Forest classification using multi-

temporal Sentinel-1 and 2 imagery at 10 meters, for five 

growing seasons: Rabi 2016 (Jan. to March 2016), Kharif 2016 

(July to Nov. 2016), Rabi and Kharif 2017 and 2018. Precision 

and recall respectively stand for the predicted fraction of pixels 

classified as the appropriate class and the fraction of validation 

pixels that have been correctly classified. The F-score is the 

harmonic mean of both metrics and evaluates the relevance of 

the classifier. The Kappa index is an estimation of this 

relevance for all nine crop classes considered: rice, vegetable, 

maize, forest, orchard, bare ground dry areas or bush, urban 

area, water and cotton (if any). Technical details on the size of 

images stacks are detailed. Kharif 2017 column is colored in 

grey, to highlight the low F-scores obtained, and mark the low 

confidence we have on the irrigated area extents and 

corresponding IWD estimates. 

Season 
Rabi 
2016 

Kharif 
2016 

Rabi 
2017 

Kharif 
2017 

Rabi 
2018 

Kharif 
2018 

Flooded 

(% - ha) 

4.95 – 

4770 

3.75 – 

3565 

22.73 - 

22418  

43.7 – 

42679 

11.2 – 

11088 

10.9 – 

10761 

irrigated  
1.48 – 

1434 

2.26 – 

2150 

9.7 - 

9607 

3.9 – 

3801 

11.85 – 

11690 

3.14 – 

30103 

Cotton  11.6 - 
11053 

 15.37 – 
15004 

 21.9 - 
21684 

Seasonal 

permanent 

Water surface 
(% - ha) 

0.07 - 

73 

3.4 - 

3234 

1.4 - 

1413 

1 –  

977 

0.36 - 

361 

0.27 – 

267 

Water 

Demand (Rice 
- others) mm 

62.8 – 

3.1 

46.9 -  

4.7 

295.4 – 

21.1 

562.4 – 

8.34 

146.1 – 

25.6 

141.8 – 

6.8 

Seasonal 

Rainfall (mm) 

Source: Icrisat 

207.5 1031.4 18.4 1108.5 47.2 578 

Table 2. Areas of irrigated and flooded crops and corresponding 

Irrigated Water Demand (IWD) inside the watershed (around 

1000km2). Crop areas are expressed both in % of the total 

watershed area and in ha. IWD are expressed in mm/season, the 

corresponding water total over the watershed area. This total 

should be compared to rainfall, also expressed in mm. Surface 

water is expressed in percent of the total area. 

 

a) 

 
b) 

 
Figure 3: Sentinel-2 Tiles 44QKE and 44QKF Land cover (a) 

and extracted for the Kudaliar watershed (b), produced for 6 

seasons from the workflow presented in figure 2. The black 

polygon is the watershed where all the statistics have been 

computed. White areas are nodata where clouds were detected. 

Hyderabad city is in the south-west corner, rice command area 

of the Musi river is located at the east of the city. Karimnagar 

dam is in the north east corner. 

 

The situation changed in R2017, after the heavy rainfall of 

September. The surface water harvesting system is full, surface 

water have reached 3.4% of the catchment area, decreasing to 

1.4% at the end of April 2017 with the cumulated effect of 

ground water recharge, evaporation and pumping for irrigation. 

Rice area reaches the highest extent : 22.73%, table 2, vs 

17.11% estimated in Ferrant et al. (2017). Rice paddies are 

mainly located downstream of the tanks, benefiting from this 

surface water abundance. 

 

The following monsoon season was abundant, with 1108mm of 

rainfall, but lower rainfall intensities than the previous 

monsoon. As a consequence, surface water reservoirs were not 
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fully refilled, the surface water area reached 1% only, after 

being reduced from 3.4 to 1.4% since the two previous 

monsoons. Contrary to the accurate estimates of surface water, 

confidence in irrigated crop area estimates is low and rice 

inundated area extent are certainly overestimated, so is the 

IWD. The next R2018 is composed by 11.2% of rice and 11.8% 

of irrigated maize and vegetables with limited surface water 

resources (0.36%). Both irrigated crops are mainly fed with 

groundwater. With a drop of rice inundated area by 2 compare 

to R2017, IWD is divided by 2, as an adaptation to the 

limitation of water availability. This trend brings irrigated crop 

area to a drastic drop in the next Kharif season, together with a 

drop of surface water areas. On the contrary, rice irrigated areas 

are maintained at the same level so as the associated IWD. 

These three area extents remain higher than those observed in 

the driest season in R2016, indicating that groundwater is still 

available. Rice area extent, as the prioritized crop, remains 

stable, but will start to drop by the next dry season 2019, with 

the drop of groundwater resources. 

 

3.4 Essential Agro-Hydrological variables co-variation 

This application of automatic restitution of irrigated/inundated 

crop areas and surface water fluctuations within heterogeneous 

agro-systems illustrates the innovative use of emergent 

combined tools: exploration of big data from high spatial and 

temporal resolution remote sensing using cloud computing 

architecture and machine learning based scripts. It is used here 

to explore the co-variation of climate variables with 

hydrological and agricultural related variables. It is a way to 

quantify the short term adaptation of farmers to water 

availability or the feedback of drought on agriculture over large 

region.  

 

In this application, we can highlight the farmer memory effect 

based on groundwater scarcity. The dry situation in July 2016 

forced farmers to keep their rice areas to a minimum, to match 

low availability of water at the time of sowing, and lacking 

foreknowledge of the heavy rains that occurred the following 

September. Farmers’ decision to massively sow flooded rice 

and drip-irrigated corn for the R2017 is explained by the 

abundance of surface and groundwater and a need to recover 

from low revenue. From this situation of abundance in January 

2017 to the end of 2018, surface and groundwater drop down 

regularly, followed by the rice IWD which decreased from 295 

mm (between 208 to 338mm estimated in previous Ferrant et 

al., 2017) to 146 mm in K2018.  

 

This temporality of the water resources status is fundamental in 

farmers’ decisions regarding the use of irrigated water. A 11 

meters drop of groundwater levels, measured by the Central 

Groundwater Board measurements, occurred between Oct. 2016 

and June 2018, reaching 32 meters depth. The low recharge that 

should have occurred with the rainfall deficit of 2018 monsoon 

will probably bring those level to the January-March 2016 

situation (39 meters depth), in the fractured layers of the 

crystalline aquifer (Dewandel et al. 2017). In those upstream 

areas, chosen for not being part of surface water irrigation 

scheme, irrigation is highly hinging on groundwater and small 

agricultural surface water. The accurate restitution of rice area 

extent is also a good proxy of groundwater abundance. This is 

not the case nearby the Musi River, downstream Hyderabad 

area for instance, where rice is flooded with sewage water from 

the river twice a year (Figure 3a). 

  

3.5 Other land cover changes detected 

Two mega structures in circle shape are observed since 2017 in 

the Kudaliar river basin surrounding Gajwel town (10 and 17 

km2, Figure 4). These two future lakes (named Konda 

Pochoma) are part of the 10 Billions euros Kaleschwaram 

project. It aims at pumping and bringing Godavari water located 

160km away from these upstream areas to a network of big 

canals up along with 20 mega reservoirs. The construction site 

consists at both digging the ground for about 20m inside the 

circle delineated by walls and building this few hundred meter 

large and 30m tall wall using extracted saprolite, consolidated 

on the basement with granite rocks, impermeability made with a 

vertical layer of Black soils 50 to 100 meters thick located in the 

middle of the walls from the basement to the top. Big canals 

connecting those reservoirs are dug to bring water from 

Kaleschwaram town, located 200km north of Gajwel, on the 

bank of the Godavari River, where the river water will be 

pumped. Billions of cubic meters will be routed to the North 

Telangana to dispatch Godavari water into rural areas, for 

irrigated water, and the Hyderabad urban areas to fulfil its 

exponential growing domestic water needs. This big change will 

probably bring deep mutation in local farmer’s practices, by 

certainly increasing the rice cultivation as observed in command 

irrigated areas like Karimnagar dam (Figure 3a, North east). 

 

 
Figure 4: Konda Pochoma reservoir under construction, Gajwel 

Town, seen with Sentinel-2 satellites. Big reservoirs connected 

by canals. Highway surrounding Gajwel town were constructed 

in 2018. 

 

4. CONCLUSION 

Flooded rice areas and surface water dynamics are both 

essential variables in predicting groundwater usage in a small 

South Indian watershed. An automated workflow, presented in 

this manuscript, used level-2A Sentinel-2 images with masks of 

haze and cloud using MAJA algorithm (downloaded in 

www.theia.cnes.fr). Less Sentinel-2 were used in comparison 

with the previous work published over the same area for the 3 

first growing seasons (Ferrant et al., 2017). Differences between 

both studies for those 3 seasons are low compare to the 

uncertainty of EEVs retrieval presented in Ferrant et al., 2017.  

Small irrigated areas are detected during the dry conditions of 

R2016 and K2016, with around 5% of irrigated areas, with 

moderate classification confusion. A large increase of irrigated 

areas (around 30%) is estimated with low classification 

confusion in R2017. This is explained by the replenishment of 

surface water resources during the 2016 monsoon. From this 

point, surface water and irrigated area extent, together with 

groundwater level, drop regularly from respectively 3 to 0.27% 

and from 20 to 13% in R2018 and K2018, despite a good 

monsoon 2017. The rainfall deficit of 2018 monsoon (10%) 

explains a drop in irrigated area extent and surface water 

extents, even if rice area remains stable at around 10%, the rice 

production being a priority for farmers. This high seasonal 
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variability represents the direct impact of the farmers’ strategy 

of adaptation to water storage. 

 

The automatic classification presented here shows a weakness 

for one season in K2017. Due to a lack of cloud free Sentinel-2 

images, the radar data from Sentinel-1, together with a training 

sample extracted from field work was not enough descriptive to 

obtain satisfactory classification results. Other strategy will be 

explored, such as splitting rice samples into different growing 

stages, and rice detection methods based on radar backscatter 

threshold (Bouvet, Le Toan, et Lam-Dao 2009; Phan et al. 

2018) rather than machine learning algorithms. 
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