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COLUMN GENERATION FOR MINING CUT DEFINITION WITH
GEOMETALLURGICAL INTERACTIONS

GONZALO NELIS, FRÉDÉRIC MEUNIER, AND NELSON MORALES

Abstract. In this work we propose a novel approach to solve the mining cut definition
problem in open pit mines with geometallurgical interactions. Mining cut definition deals
with the aggregation of blocks into clusters which are extracted and processed as a single
unit. The aggregation must fulfill operational considerations given by the loading equipment
selectivity and should maximize the objectives given by the mine operation.

The proposed approach utilizes mixed integer programming and a model inspired by
column generation that, contrarily to previous works, has its decision variables defined
directly on the set of all feasible cuts. The advantage of this is that the model does not
require linear approximations of the geometallurgical behavior of the cuts based on the blocks
it contains, and therefore, can utilize any non-linear function.

We apply our methodology to a real-size case study to show that the model can be solved
in reasonable time, but also that non-linear recovery functions influence the destination
policy and expected profit, i.e., that following the traditional free selection policy (based
on cut-off grade) is not the best strategy when realistic geometallurgical interactions are
considered.

1. Introduction

Mine planning is the procedure of defining the best extraction strategy subject to physical,
geological and operational constraints [Johnson, 1969]. This strategy includes selecting the
material to extract, deciding the processing route for each unit (usually referred to as a
block), and constructing a feasible extraction schedule in the planning horizon. Some common
constraints are upper and lower limits on total material extracted in the mine and processed
by the facilities, and geometrical restrictions for stability and operational reasons. Given the
decision-centered nature of mine planning, operations research has been widely used in the
extraction and development stages of mine operations [Newman et al., 2010].

Short-term mine planners deal with several problems related to the materialization of
long-term schedules: ore-waste discrimination based on the blocks properties and the loading
equipment size, the definition of block aggregates to organize the extraction in each period,
and the optimal scheduling of these units to maximize profit or metal recovered in the
short-term. A review of techniques to address these and other issues on short-term mine
planning can be found in [Blom et al., 2017].

A common assumption for applying traditional mine planning techniques is the linearity
and additivity of the block properties. Linearity is the assumption that the response variables
in the processing facilities can be modeled as a linear combination of the blocks attributes.
Additivity is the assumption that the properties of a blend of blocks can be calculated by the
sum or average over the individual properties of each block. Under these assumptions, the
response obtained by processing a single block is not affected by other blocks extracted in
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the same period. Therefore, the objective function and constraints are linear expressions of
the individual block values calculated beforehand.

Geometallurgy is the field that studies the interaction between rock properties and mining
and processing outcomes [Coward et al., 2009]. A key area of the field is related to characterize
response variables for a given set of rock attributes. Indeed, research in this area has proven
that the assumptions of linearity and additivity do not hold true for some critical block
attributes, such as metal recovery [Van Tonder et al., 2010, Nwaila et al., 2020] and grindability
[Yan and Eaton, 1994, Tavares and Kallemback, 2013]. A better assessment of the plan
feasibility, therefore, should incorporate the interaction given by the block blends. Accounting
for this behavior in the traditional mine planning framework, unfortunately, results in a
nonlinear program, rendering the usual models extremely hard to solve using exact techniques.

The issue of blending properties is specially relevant in short-term mine planning. Within
this planning horizon, engineers face the problem of selectivity : loading equipment cannot ex-
tract blocks individually given its physical limitations. Therefore, the planners define clusters
or mining cuts (also referred to as polygons or mining blocks) which are the combination of
adjacent blocks which are extracted together and processed in the same facility. This is often
a manual procedure of trial and error, where the planner must define a destination policy
and extraction sequence that maximize profit or recovered metal from the cuts.

Clusters must also be operationally compatible with the loading equipment. The definition
of what makes a cluster ‘operationally feasible’ is not clear, and we are not sure such a
mathematical rigorous definition is possible. It depends on the operator expertise and the
critical eye of the mine planner. In the literature, operational feasibility is defined with
different metrics (mining width, minimum size, basic shapes), and additional steps to fix
problematic locations are common.

Without a formal definition of a feasible cluster, we propose addressing the mining cut
definition problem by brute-force enumeration of potential candidates. Instead of imposing an
operational constraint in the model to group blocks, we generate a large set of feasible clusters
as an input (and not output) of an optimization model. The advantages of this approach are
directly related to both issues mentioned previously. Operational feasibility is achieved by
construction, i.e., the clusters shapes used as an input already fulfill operational requirements.
The problems of nonlinearity and nonadditivity on the mixing are also addressed: the cluster
properties are calculated before the optimization process, so any function of the blocks
properties is possible. Once this large set of feasible clusters is defined, the modeling of the
problem as an integer program is straightforward. We propose then an efficient and simple
column generation approach to solve the resulting integer program, which has a huge number
of variables (much larger than usual integer programs deciding how to group blocks may
have).

This forms a complete methodology to solve the mining cut definition problem in short-term
mine planning. We emphasize that it requires no assumptions on the functions used to obtain
cluster profits or properties, which contrasts with previous works that are either (i) linear, in
which case have to approximate the characteristics of the clusters; or (ii) heuristic nonlinear,
because the techniques used or the modeling cannot guarantee an optimal solution. Any
geometallurgical model can be used within our methodology as long as a single value can be
assigned for a cluster and facility combination. This flexibility shows potential to include
complex interactions not yet studied in the short-term mine planning literature. In terms of
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efficiency, the overall algorithm finds nearly optimal solutions of the problem in computation
time that is compatible with short-term applications. We illustrate this by applying our
methodology to a real-scale case study with up-to 912 blocks, three processing facilities,
and over 19 million clusters, which was solved in 23 minutes. We also show that using
linear models may lead to wrong destination policies when geometallurgical interactions are
introduced.

A second contribution is a simple method to generate a set of possible shapes that are
relevant from a practical point of view. It also illustrates a possible way to generate the clusters
used as input of the optimization model we propose to solve the mining cut definition problem.
This method can address different operational rules based on minimum and maximum mining
cut dimensions depending on the loading equipment selectivity and the planners criteria. It
has been used in the experiments mentioned above and the resulting clusters are compatible
with our selectivity considerations.

The rest of the paper is organized as follows. A review of the literature on short-term
mine planning and geometallurgy is presented in Section 2. Section 3 formalizes the mining
cut definition problem addressed in the paper. The method we propose to solve the mining
cut definition problem is described in Section 4. Section 5 proposes a method for generating
practically relevant clusters. Section 6 shows the results in a real case study, and final
conclusions are discussed in Section 7.

2. Literature Review

2.1. Short-term scheduling and selectivity. A usual approach to incorporate selectivity
into short-term mine planning is the definition of boundaries between blocks according to their
processing destination. Such problems are referred to as dig-limit definition or optimization,
and are based on a metric of operational space defined as the number of blocks that need to be
extracted together and sent to the same destination. The goal is to make such a destination
definition while maximizing a profit function and fulfilling operational requirements.

Isaaks et al. [2014] use a mining width as the base unit to differentiate between destinations.
A heuristic approach is used to define the best dig-limit between materials while minimizing
a loss-function related to the equipment selectivity. Sari and Kumral [2017] propose a
mixed-integer program to solve the dig-limit optimization problem based on valid frames:
each block must belong to a pre-defined valid frame, and all the blocks belonging to the same
frame must be sent to the same destination.

Ruiseco et al. [2016] also propose a heuristic approach to the dig-limit problem. The
authors penalize sectors that do not comply with operational constraints. The penalization
function is nonlinear, so they rely on a genetic algorithm to solve the model. This tool was
later used to evaluate the relationship between selectivity, equipment size and dig-limits
definitions [Ruiseco and Kumral, 2017]. Williams et al. [2021] propose a neural network to
evaluate the dig-limits definition made by the genetic algorithm in order to improve the
efficency of this approach.

Vasylchuk and Deutsch [2019] tackle this problem with an iterative heuristic based on an
initial classification using a fixed grid to maximize the expected profit, and additional steps
to solve problematic locations related to operational restrictions.

A common downside of the dig-limit definition problem is the absence of a mining cut
definition. While a boundary between materials is well-defined, additional steps are required
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to organize the extraction of the blocks and fulfill capacity constraints. Moreover, local
mixing and nonlinear properties of blocks are usually ignored in the literature.

Other works have dealt with the mining cut definition problem in short-term mine planning.
Tabesh and Askari-Nasab [2011, 2013] propose a clustering procedure with shape control
based on hierarchical clustering. This technique aggregates blocks based on several similarity
indices such as rock type, grade, destination, closeness, among others. The authors note that
some problematic shapes can be generated, so a post-processing step is needed to obtain
mineable clusters. This work was extended by Tabesh and Askari-Nasab [2019] to introduce
geological uncertainty.

The algorithm generates a feasible mining cut definition, but scheduling constraints are
introduced as a posterior step [Tabesh et al., 2014]. The clustering process is based solely on
similarity indices and therefore geometallurgical interactions of the blocks attributes in the
processing facility are ignored.

Nelis and Morales [2021] propose an optimization model based on representative SMUs.
These SMUs are used as anchor points where precedence arcs are defined to obtain connected
shapes. However, imposing the shape feasibility through precedence constraints could still
produce problematic shapes. The model allows multiple processing facilities, but the cluster
properties are assumed to be linear and therefore gerometallurgical interactions are ignored.

2.2. Mine planning and geometallurgy. Literature dealing with mine planning and
geometallurgy is limited. While some works have dealt with geometallurgical variables, they
tend to omit nonlinearity and nonadditivity interactions. A common approach is estimating
some geometallurgical attributes at the block level, but assuming there is no complex
interaction between blocks [Morales et al., 2019, Maleki et al., 2020]. Another common
approach is considering a processing facility flexibility to change the operational mode to deal
with different geometallurgical properties [Navarra et al., 2018, Gerald Van Den Boogaart et al.,
2011]. But works that deal directly with the nonlinearity and nonadditivity of geometallurgical
variables are scarce and mostly focused on the long-term mine planning horizon. We briefly
discuss these works to present current approaches for complex geometallurgy variables.

Goodfellow and Dimitrakopoulos [2016] declare the importance and challenging nature of
incorporating nonlinear and nonadditive geometallurgical interactions in the optimization
process. The authors propose a metaheuristic approach to obtain a mine plan for a mining
complex considering nonlinear recovery curves. Since the planning horizon is long-term, they
do not deal with local mixing and operational space needed in the short term. Zhang and
Dimitrakopoulos [2018] presents similar shortcomings, as they propose an iterative heuristic
to incorporate nonlinear recovery in a mineral value chain optimization in the long-term mine
planning.

An application of the heuristic used in Goodfellow and Dimitrakopoulos [2016] is presented
in Kumar and Dimitrakopoulos [2019]. However, instead of dealing with a nonlinear recovery
curve, they introduce nonadditive attributes related with grindability. To deal with the
nonadditive nature of these attributes, the authors impose blending restrictions over blocks
based on “soft” and “hard” categories according to their grindability. The use of categories
simplifies the blend properties and allows the authors to use linear blending constraints in
the model.

Del Castillo and Dimitrakopoulos [2016] also deal with mining complexes and geometallurgy,
but their focus is on the destination decision for a given mining sequence. They proposed
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a coalition formation clustering procedure to define processing destinations of groups of
similar blocks. The definition is made by considering a cooperative group value in order
to cluster blocks that yield a high value blended together. The coalition process does not
account for spatial considerations and, as the authors note, works under the assumption that
all blocks sent to a given processing facility are blended in a yearly time-span, which is an
oversimplification. They declare that adapting this approach to deal with local blending
phenomena could provide more realistic results.

As noted in this review, there are no works dealing with the mining cut definition problem (or
its coarse version formed by the dig-limit definition problem) and geometallurgical attributes
in short-term mine planning simultaneously. Works that incorporate geometallurgy tend to
rely on heuristics to deal with the nonlinear or nonadditive behavior of such variables, or they
ignore mixing interactions altogether. In operational aspects, the definition of ‘feasible shape’
varies between works, and there is not a clear consensus in the literature. Our approach to
tackle these issues is described in the next section.

3. Problem formulation

The problem we address consists in partitioning the blocks in a bench in an open pit mine
into clusters, i.e., each block must be assigned to one and only one cluster. Also, blocks
belonging to the same cluster have to be sent to the same processing facility (or to a stockpile,
a waste dump, etc.).

The selection of the clusters and their destination depend on the profit of processing a
cluster at a given facility. We assume that extracting a cluster and processing its blocks in a
facility has a profit that may depend in a nonlinear and nonadditive way on the blocks in the
cluster and on the facility.

Each facility has a processing capacity which limits the number of clusters that can be
processed. This capacity is imposed over a given attribute of the clusters (weight, throughput,
etc.). As in the case of the profit, we assume this attribute can be evaluated at the cluster
level and does not need to be linear on the block’s attributes.

We assume there is a procedure to generate a feasible cluster set. We provide an example on
how this set might be generated in Section 5, but any procedure that fits with the operational
requirements on the mine operation is allowed.

Formally, we are given a set B of blocks, a set F of facilities, a mine capacity K ∈ R+, and
a facility capacity Qf ∈ R+ for each f ∈ F . The collection of all possible clusters is denoted
as C ⊆ 2B. We are also given a weight function w : C → R+ that models the utilization of the
mining capacity and a function q : C ×F → R+ such that q(c, f) is the utilization of capacity
Qf by cluster c. The profit of processing cluster c at facility f is given by a known function
v : C × F → R.

The problem consists in selecting a subset S of C forming a partition of B, and a map
φ : S → F , assigning the selected clusters to the facilities, which maximize:∑

c∈S

v(c, φ(c))

and which satisfy the following constraints:

(1)
∑
c∈C

w(c) 6 K and
∑

c∈C∩φ−1(f)

q(c, f) 6 Qf , ∀f ∈ F .
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We call this problem the mining cut definition problem. If the constraints of Eq. (1) are
discarded, solving this model provides a solution for the dig-limit definition problem.

The following mathematical program models the mining cut definition problem. We denote
by Cb the set of all clusters c ∈ C such that b ∈ c. Binary variable xc,f equals 1 if cluster c is
sent to facility f , and 0 otherwise.

(MCDP)

max
∑
c∈C

∑
f∈F

v(c, f)xc,f

s.t.
∑
c∈Cb

∑
f∈F

xc,f = 1 b ∈ B∑
c∈C

∑
f∈F

w(c)xc,f 6 K∑
c∈C

q(c, f)xc,f 6 Qf f ∈ F

xc,f ∈ {0, 1} c ∈ C, f ∈ F .

4. Method for solving the problem

We propose to address Problem (MCDP) with an approach based on column generation.
Column generation is a technique used to solve a continuous linear problem with a large
number of variables. The variables, or their indices, are usually called columns in this context
(actually referring to the columns of the constraint matrix). The problem is solved iteratively,
first restricted to a small subset of variables. This restricted version is the master problem. In
each iteration, an auxiliary problem—the pricing subproblem—is solved to find new columns
to add to the master problem. The pricing subproblem uses the reduced costs of the columns
to make its decision. A detailed explanation of this method can be found in Lübbecke and
Desrosiers [2005].

We use a special version of column generation, called sifting or sprint and introduced
by Forrest [1989] to solve the linear relaxation of Problem (MCDP). While the pricing
subproblem usually generates columns on-the-fly, the sifting method generates the whole set
of columns beforehand and vectorization is usually used to calculate the reduced cost of all
columns simultaneously [Bixby et al., 1992]. Finally, as in any column generation method, the
reduced cost is used to select the best columns to add to the master problem. This technique
has been applied successfully to very large-scale programs, specially to solve crew-pairing
problems [Bixby et al., 1992, Chu et al., 1997, Anbil et al., 1998].

In order to solve the original integer problem, column generation has to be combined with
other techniques from operations research, e.g., branch-and-bound. Here, we use another
approach, which is quite useful when the optimal value of the problem is close to that of its
linear relaxation. This approach uses an idea of Nemhauser and Wolsey [1988, Proposition
2.1, p. 389] for checking if any column not added during the algorithm may improve a given
integer solution. If the number of such columns together with those generated when the linear
relaxation is solved is not too big, then an off-the-shelf solver can be used. This strategy has
been recently used by Cacchiani and Salazar-González [2017] and Parmentier and Meunier
[2020] for airline scheduling and crew pairing problems.
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The overall method can be summarized as follows. Generate the collection C of all possible
clusters. Solve the linear relaxation of Problem (MCDP) with the sifting approach, where
the columns are the pairs (c, f), with c ∈ C and f ∈ F . Solve Problem (MCDP) restricted
to the columns generated during the previous step with an off-the-shelf solver. Generate all
columns that may improve the current integer solution. Solve Problem (MCDP) restricted
to this extended set of columns, again with a solver.

Complementary details are given hereafter.

4.1. Column generation approach. We explain how we solve the linear relaxation of
Problem (MCDP).

4.1.1. Pricing subproblem. The dual problem of the linear relaxation is the following opti-
mization problem:

min
∑
b∈B

λb +Kµ+
∑
f∈F

Qfωf(2)

s.t. w(c)µ+ q(c, f)ωf +
∑
b∈c

λb > v(c, f) c ∈ C, f ∈ F(3)

µ, ωf > 0 f ∈ F .(4)

Given values of the dual variables λb, µ, and ωf , the reduced cost of a column (c, f) is

(5) p(c, f) = v(c, f)− w(c)µ− q(c, f)ωf − λ(c) ,

where λ(c) is defined as
∑

b∈c λb. A column (c, f) may improve the current optimal value of
the master problem only if p(c, f) > 0. (This fact is the classical result on which any column
generation is based.) The pricing subproblem consists thus in finding such columns.

As the efficiency of this step is critical, we opt for a vectorized approach: we calculate the
reduced cost (Eq. (5)) for all columns simultaneously. Then, the columns with the highest
reduced costs are added to the master problem in each iteration.

4.1.2. Column generation algorithm. Algorithm 1 describes our column generation approach
(the sifting or sprint version we mentioned above). Three auxiliary functions are used.
Clusters(B) generates the cluster set for a given block model B. InitialFeasibleSet(B)
generates a feasible solution for Problem (MCDP), since it is required for the initial iteration
of the algorithm. In this work, we get an initial feasible solution by partitioning the bench
with regular squares or rectangles. This initial solution is easy to generate and in our
case studies provides a good starting point for the algorithm. Finally, MCDP(Cinit,F) builds
problem (MCDP) using the initial feasible set Cinit and the set of facilities F .

We use Cols as the set of columns represented by the pairs (c, f) obtained from the cluster
set C and the set of facilities F . The set Ĉ+ is used to store the best columns found in each
iteration based on their reduced cost.

The main control variable of the algorithm is Nmax, the upper limit on the number of
columns added to the master problem in each iteration. While adding a large number of
columns could reduce the number of iterations needed to find the optimal solution, it could
also increase the runtime of the master problem. For this reason, we test different strategies
for the Nmax parameter in Section 6.5.
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Algorithm 1 Column Generation Algorithm
1: initialize F , v,K,Qf , Nmax

2: C ← Clusters(B)
3: Cols← C ×F
4: Cinit ← InitialFeasibleSet(B)
5: m← MCDP(Cinit,F)
6: while Cols 6= ∅ do
7: solve linear relaxation of m
8: Ĉ+ ← ∅
9: for f ∈ F do
10: for c ∈ C do
11: p(c, f)← v(c, f)− w(c)µ− q(c, f)ωf )− λ(c)
12: end for
13: add {(c, f) ∈ Cols} to Ĉ+ if p(c, f) > 0

14: if |Ĉ+| > Nmax then
15: sort Ĉ+ by p(c, f)
16: Ĉ+ ← first Nmax elements of Ĉ+
17: break for
18: end if
19: end for
20: if Ĉ+ = ∅ then
21: No column with positive reduced cost found
22: break while
23: end if
24: Ĉ ← Ĉ ∪ Ĉ+
25: remove (c, f) ∈ Ĉ+ from Cols

26: update m with columns in Ĉ+
27: end while
28: return m.solution

4.2. Obtaining an integer solution. Column generation only permits solving to optimality
the linear relaxation of (MCDP). An additional step is thus required to find an optimal—or
at least good—integer solution. A simple approach to achieve this is performing classical
branch-and-bound; yet we follow the other method mentioned above.

A feasible solution of the original integer problem can be found by imposing the variables
to be binary in the master problem with the columns added during the column generation
algorithm (referred to as Restricted IP). Since we start the column generation with an
initial feasible solution of the mining cut definition problem, this method always provide a
feasible integer solution. This integer solution may not be optimal for the complete master
problem (MCDP). However, it provides a lower bound for the optimal value of (MCDP).

We perform one last iteration through the cluster set. We look for columns with reduced
cost larger than the gap between our lower bound (restricted IP solution) and the linear
relaxation solution of problem (MCDP). These columns are added to the master problem
and it is finally solved to optimality (referred to as Final IP). Nemhauser and Wolsey noted
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that any optimal solution of Final IP is an optimal solution of Problem (MCDP), and the
method is thus exact.

Algorithm 2 shows these steps, and it is performed after solving the linear relaxation
through Algorithm 1.

Algorithm 2 Integer Solution
Require: m.solution: Optimal solution from Algorithm 1
Require: Cols: Unused columns from Algorithm 1
1: UB ← Optimal value of the linear relaxation of m
2: impose: m.variables ∈ {0, 1}
3: solve m (Restricted IP)
4: LB ← Optimal value of m
5: Ĉ+ ← ∅
6: for f ∈ F do
7: for c ∈ C do
8: p(c, f)← v(c, f)− w(c)µ− q(c, f)ωf − λ(c)
9: end for
10: add {(c, f) ∈ Cols} to Ĉ+ if p(c, f) > LB − UB
11: end for
12: update m with columns in Ĉ+
13: solve m (Final IP)
14: return m.solution

The overall method is thus Algorithm 1 followed by Algorithm 2.

5. Generating a collection of clusters

In this section, we propose a procedure to generate a possible collection C, which is relevant
from a practical point of view. We remind the reader that this procedure is used as input of
the mining cut definition problem. The method of Section 4 is in no way restricted to this
procedure of generating clusters; in principle, any procedure of generating them is a valid
input.

The main idea for the generation of clusters is to consider a set of rectangles of predefined
dimensions and then considering all their possible locations. To enrich the set, we also
consider extensions of the base rectangles which are obtained by others, smaller rectangles
that are adjacent to each side.

An example of this procedure is shown in Figure 1. The design parameters are highlighted
in the figure, and must be defined by the mining engineer. The minimum size of the base and
sides rectangles are given by the equipment selectivity to ensure there is enough operational
space to extract the material. Smaller minimum sizes lead to less regular mining shapes,
which tends to be more suitable to smaller loading equipment. A maximum cluster size is
also given by the engineers depending on the planning horizon and the mixing span in the
processing facility.

The parameters for the cluster generation algorithm are:
• bx: Base rectangle size along the X coordinate. Limits are [bmin

x , bmax
x ]

• by: Base rectangle size along the Y coordinate. Limits are [bmin
y , bmax

y ]
9
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Figure 1. Shape generation example. Left side shows the control parameters
and right side shows a possible permutation with the same side shapes but
different location

• sc: Side rectangle size along the axis parallel to the base side. Limits are [smin
c , smax

c ]
• sf : Side rectangle size along the axis perpendicular to the base side. Limits are
[smin
f , smax

f ]

After generating the set of shapes, they are applied through the bench to define the cluster
set. Therefore, in our column generation algorithm a cluster is defined by a shape applied to
a specific location of the bench. The total number of clusters is roughly the number of shapes
times the number of blocks (some clusters are not created since they exceed the borders of
the bench). Using this procedure, we are able to produce realistic cluster definitions for our
case study.

All the properties needed for each cluster (value, weight, throughput, hardness, etc.) are
calculated before the optimization process, and therefore, any complex relationship can be
incorporated. The cluster set is then used as an input in the method described in Section 4.

6. Experiments

6.1. Case Study. The case study corresponds to a real copper mine. Drillhole data is used
to simulate short-term blasthole information. Four benches with different sizes (216, 432,
720, and 912 blocks respectively) are selected to test the algorithms. A large set of 32,764
shapes is generated using the approach described in Section 5, with a minimum operational
size of 2× 3 blocks and maximum size of 40 blocks.

Using the largest set of shapes would be recommended to obtain the best feasible schedule.
However, we select smaller subsets to show the algorithm behavior at different scales. The
sizes of these subsamples are 8,000, 15,000, and 24,000 shapes, all drawn randomnly from the
largest set of 32,764 shapes.

We denote each instance by “Number of blocks-Number of shapes.” Therefore, case “432-24”
corresponds to 432 blocks and 24, 000 shapes. A comprehensive list of these sets can be found
in Nelis [2021].
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The number of processing facilities is three. The cluster tonnage is used as the weight
parameter for the mining and processing capacities (i.e., q(c, f) = w(c)). Table 1 describes
the economic parameters used in all cases. Facility 3 represents the waste dump, where
non-profitable material is discarded.

Nonlinear recovery curves R(g, f), depending on the copper content, are used for Facilities
1 and 2, while no material is recovered in Facility 3 (Figure 2).

To incorporate mixing effects on the profit valuation, metallurgical recovery is assigned
based on the mean copper content for each cluster, g(c). Eq. (6) shows the cluster profit
calculation. Note that the same expression can be used to compute block profit (v(b, f)),
replacing w(c) by w(b) (block weight) and g(c) by g(b) (block grade).

(6) v(c, f) = w(c)
(
(P − Cs(f)) g(c)R(g(c), f)− Cp(f)− Cm

)
.

Table 1. Economic parameters

Parameter Facility 1 Facility 2 Facility 3

Processing Cost (Cp(f)) ($/t) 7.0 11.0 0
Selling Cost (Cs(f)) ($/lb) 0.5 0.5 0
Facility Capacity (Qf )1(kt)

216 49.6 49.6 179.9
432 101.2 101.2 349.9
720 170.1 170.1 538.2
912 226.8 226.8 738.7

Copper Price (P )($/lb) 2.0
Mining Cost (Cm) ($/t) 1.5
Mining Capacity (K)1(kt)

216 174.9
432 349.9
720 538.2
912 738.7

1 Capacities vary according to the block model size.

The algorithm has been implemented using Python 3.8.6 and the Numpy library, version
1.19.2. Optimization problems are solved using Gurobi 9.1.0 on an AMD Ryzen 5 3600
processor with 16 GB of RAM. MIP Gap parameter has been fixed at 0.01% for all integer
problems. Nmax parameter is also fixed at 1,000 columns for all instances. A detailed analysis
of the effect of this parameter is shown in Section 6.5.

6.2. Mining cut and destination policy. Figures 3.b and 3.c show a mining cut definition
and destination policy obtained by the proposed approach. As a reference, the free selection
destination policy with capacity constraints is also shown (Figure 3.a), where selectivity
restrictions are ignored (the loading equipment is unable to extract blocks individually).

The mining cut definition (Figure 3.b) contains 34 clusters selected from a pool of 7.29
million candidates and three possible destinations for each one of them. The resulting
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mining cut definition only contains clusters from the collection of feasible shapes described
in Section 5. Other mining operations might define different feasible shapes and the main
method presented in Section 4 would still provide the optimal solution.
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Figure 3. Mining cut definition for 432-33

Table 2 shows the profit achieved by our algorithm for all the block models and set of
shapes tested. Columns shows the profit achieved for the different sets of shapes (“8” refers
to the sample with 8,000 shapes, etc. and “33” refers to the full sample). As a reference
value, the free selection policy is reported as well. This value was computed as the sum of
the individual profit for each block, v(b, f), for each block model. Since this policy ignores
selectivity restrictions, its profit is often considered as an upper bound for the mining cut
definition problem.
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Table 2. Profit

Set of Shapes
Block Model Free Selection (k$) “8” (k$) “15” (k$) “24” (k$) “33” (k$)
216 5,343.9 5,014.8 5,042.0 5,078.3 5,102.9
432 12,079.4 11,675.0 11,707.4 11,748.8 11,759.0
720 19,397.4 18,838.3 18,876.2 18,917.6 18,939.7
912 22,749.9 22,239.8 22,285.6 22,331.8 22,359.1

In this case, the profit depends on the number of shapes used by our approach. The larger
the set, the higher the total profit because a richer set of shapes extends the possibilities of
the algorithm. In all cases, a lower profit is achieved when selectivity is introduced. The
difference compared to the free selection policy, however, is small. For the largest set of
shapes, it ranges between 4.51% lower for the smaller block model, to 1.72% lower for the
largest, which is in line with other dig-limits or mining cut definition algorithms.

While a decrease in profit compared to the free selection policy is expected when selectivity
is considered, geometallurgical interactions among blocks play a critical role in the short-term.
Next section shows a case where the nonlinear recovery curve introduces unexpected behaviors
in terms of profit and destination policy.

6.3. Nonlinear recovery effect. We show an example on the effect of mixing and nonlinear
recovery for the dig-limits definition problem. We remind that Problem (MCDP) provides a
solution for the dig-limit definition problem if capacity constraints are ignored.

Recovery is a well-known nonadditive attribute in the block valuation. In the literature,
the assumption of independency between adjacent block recoveries is common [Morales et al.,
2019, Maleki et al., 2020], and any mixing interaction is usually ignored. For this case study,
we incorporate geometallurgical interactions assuming a perfect mixing of the blocks inside
each cluster, with a nonlinear recovery curve.

Figure 4 shows the destination policy obtained by solving Problem (MCDP) for instance
720-33 with and without mixing interactions.

Figure 4.a depicts the free selection policy. This definition, however, does not fulfill
selectivity restrictions. A typical dig-limit algorithm would ignore mixing interactions of
blocks extracted together. For our optimization problem, this is equivalent to define the
cluster profit as the sum of the individual blocks profit, i.e., v(c, f) =

∑
b∈C v(b, f). Under

this assumption, and ignoring capacity constraints, our method results in the solution shown
in Figure 4.b.

The introduction of selectivity considerations (given by the clusters shapes) regularizes
the free selection policy. In broad terms, however, both the free selection and the dig-limit
definition without mixing interactions follow the same structures. However, if we introduce
mixing effects on the cluster profit, the dig-limit definition changes. Figure 4.c depicts the
results of our method and using Eq. (6) to introduce mixing effects into the profit. Facility 1
becomes much more prevalent than Facility 2, while the waste remains relatively unchanged.

Table 3 shows the profit for the destination policies. For this case, the free selection policy
achieves the highest profit as expected if we ignore mixing interactions. But this result
changes if we introduce mixing interactions: the profit obtained by the clusters is higher than
the free selection policy profit. This is a counter-intuitive result due to the recovery function
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Table 3. Profit and destination policies with and without mixing interactions.

Destination Policy Profit without mixing (k$) Profit with Mixing (k$)
Free Selection (Figure 4.a) 20,815.5 -
Clusters without mixing (Figure 4.b) 20,570.9 20,817.7
Clusters with mixing (Figure 4.c) 20,433.4 20,976.8

shape (Figure 2), which favors mixing blocks of low and high grade to yield a higher metal
recovered content compared to processing these blocks independently. Profit with mixing is
not calculated for the free selection policy since it is unclear how blocks are mixed locally
without a mining cut definition.

While the value gap is rather small, obtaining a dig-limit definition with higher estimated
profit than the free selection policy is a notable result. This is a clear example of how
incorporating mixing effects and nonlinear recovery functions produces counter-intuitive
results. More importantly, it shows that basing the dig-limit definition on the free selection
policy is not the best methodology when nonadditive mixing effects are expected. The recovery
curve used in this work is rather simple, and we expect seeing more sizable differences with
more complex geometallurgical interactions.

6.4. Algorithmic performance. Table 4 summarizes our column generation algorithmic
performance solving the linear relaxation of Problem (MCDP). We compare runtimes and
objective function values against solving the full model with Gurobi, if possible. Reported
fields are described next:

• Clusters:
– Time: Time to generate the cluster set (given by function Clusters(B)).
– N: Number of clusters generated.

• Column Generation:
14



– Overhead: Time to calculate the membership matrix, and value and weight
vectors described in Section 4.1. It also includes the time to build the optimization
model with the initial cluster set.

– # Cols.: Number of columns added to the master problem.
– # Iters.: Iterations of the algorithm.
– Time: Time to obtain the linear relaxation solution.
– Value: Optimal value of the objective function.

• Full Model:
– Overhead: Time needed to build the optimization model.
– Time: Time to obtain the linear relaxation solution.
– Value: Optimal value of the objective function.

Table 4. Numerical results for the linear relaxation

Clusters Column Generation Full Model

Id N Time Overhead # # Time Value Overhead Time Value
(s) (s) Cols. Iters. (s) (k$) (s) (s) (k$)

216-8 600,017 19 3 9,098 13 2 5,014.8 55 248 5,014.8
216-15 1,120,597 35 5 14,437 19 5 5,042.0 107 351 5,042.0
216-24 1,790,731 57 8 19,190 24 6 5,078.3 177 571 5,078.3
216-33 2,447,373 78 11 18,313 23 6 5,102.9 235 630 5,102.9

432-8 1,785,611 58 8 31,100 30 29 11,675.0 182 791 11,675.0
432-15 3,341,299 104 16 42,959 40 42 11,707.4 349 1,980 11,707.4
432-24 5,342,551 173 26 54,374 50 53 11,748.8 618 - -
432-33 7,297,725 236 42 72,170 59 66 11,759.0 1,105 - -

720-8 3,547,277 113 17 49,995 55 119 18,383.3 366 8,137 23,257
720-15 6,642,073 218 34 67,919 71 172 18,876.2 864 - -
720-24 10,622,443 338 83 88,358 90 204 18,917.6 - - -
720-33 14,507,157 464 136 101,899 103 211 18,939.7 - -

912-8 4,806,006 153 23 59,288 61 155 22,239.8 539 - -
912-15 9,002,674 290 65 83,389 85 229 22,285.6 1,525 - -
912-24 14,399,046 491 144 102,912 104 278 22,331.8 - - -
912-33 19,662,940 780 375 119,128 121 295 22,359.1 - - -

Table 5 shows the integer results for both approaches. As seen in Section 4.2, the column
generation algorithm requires solving two integer problems to get the optimal solution: the
reduced problem to get a feasible lower bound for the optimal value, and the final problem
that adds several columns (reported under the ‘Columns’ field) to find the optimal solution
of Problem (MCDP).

The optimization software does not allow starting the branch-and-bound algorithm using a
pre-calculated linear relaxation solution. For this reason, the master problem is solved again
with the subset of columns added during the Column Generation process before starting the
branch-and-bound algorithm. Runtimes reported in Table 5 include this re-solving time in
the Restricted IP and Final IP fields.
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In contrast, solving the full model only requires solving a single integer problem dealing
with all possible columns.

Table 5. Comparison of solutions obtained by the column generation approach
and full model

Restricted IP Final IP Full Model

Id Time1 Value # Runtime1 Value Time Value
(s) (k$) ColS. (s) (k$) (s) (k$)

216-8 3 4,962.1 49,761 6 4,972.5 104 4,972.5
216-15 5 4,992.6 102,209 31 5,018.9 205 5,018.9
216-24 2 5,068.0 25,231 3 5,068.9 189 5,068.9
216-33 1 5,100.2 2,497 1 5,100.2 264 5,100.2

432-8 21 11,643.1 26,551 70 11,654.5 728 11,654.5
432-15 15 11,699.8 101,887 40 11,701.6 508211,699.72
432-24 19 11,739.0 226,441 39 11,739.0 - -
432-33 16 11,750.8 213,956 63 11,750.8 - -

720-8 289 18,796.8 943,768 582 18,818.7 2,986218,672.92
720-15 27 18,862.8 282,256 139 18,865.7 - -
720-24 30 18,910.3 296,589 100 18,912.6 - -
720-33 30 18,935.0 237,250 90 18,937.9 - -

912-8 1,192 22,203.6 1,886,927 2,721 22,224.9 - -
912-15 286 22,276.6 647,034 805 22,279.0 - -
912-24 99 22,324.0 925,938 543 22,325.7 - -
912-33 120 22,353.8 884,984 541 22,353.8 - -

1 Includes linear relaxation re-solving time.
2 Last runtime and value reported before “out of memory” error.
“-” denotes instances where an “out of memory” error was raised
before a feasible solution was found.

As a final comparison, Figure 5 shows the overall method runtime, from building the initial
model to finding the optimal integer solution. Overhead times differ between algorithms, so
they are included as well.

According to the results shown in Table 4, our method outperforms the full model approach
in every instance. The full model runtimes are between 27 and 111 times longer than our
approach. In fact, setting up the full optimization model (Overhead Time) takes more
time than getting the optimal solution with column generation in all instances tested. The
structure of Problem (MCDP), where the optimal solution contains just a small subset of all
columns, favors the column generation approach as shown in these instances.

Moreover, our algorithm is not only faster but also memory-efficient. Dealing with the
complete set of columns in the full model severely limits the instance size we are able to
solve. In our tests, the largest instance the full model approach is able to solve consisted on
3.55 million clusters (10.64 million variables) and is solved in 8,137 seconds. In comparison,
our column generation algorithm is able to solve an instance of 19.7 million columns (59
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seconds) is displayed at the top of each bar. ‘*’ denotes instances not solved
to optimality. Absence of transparent bars denotes instances where an “out of
memory” error was raised before a feasible solution was found.

million variables) in less than 5 minutes. On average, the column generation algorithm finds
the optimal solution adding just 0.36% of the total columns to the master problem, which
explains the large difference in performance for all instances.

In terms of objective function value, the differences between sets of shapes are small. This
might be related to the profit structure used for this case study, where Facilities 1 and 2 are
similar. Therefore, changes in destinations do not impact the objective function value in a
significant way. More complex profit structures are expected to show larger differences.

In terms of the integer solution (Table 5), our method outperforms the full model approach
in every instance as well. Full model runtimes are between 5.7 to 120 times larger than our
method’s. On average, however, the difference is not as wide as in the linear relaxation case.
This is mostly because, in some instances, the lower bound provided by the Restricted IP is
not strong enough to limit the number of columns added to find the optimal solution. For all
instances, however, our algorithm was able to provide the optimal solution, which was not
the case for the full model approach.

The difference in profit between the restricted and final IP solutions is also notably small,
and ranges between 0% and 0.53% in every instance. The value provided by the restricted IP,
therefore, might be enough for practical uses of this approach.

Interestingly, the smaller set of shapes poses the biggest challenge for the algorithm. With
a restricted set of shapes, the runtimes for both integer problems increase compared to
larger set of shapes. Limiting the number of shapes also limits the number of feasible cluster
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combinations that deliver a feasible partition. A well populated set of shapes certainly
increases the problem size, but simultaneously, presents more alternatives to get a feasible
integer solution. For the current case study, results show that a larger set of shapes provides
a meaningful performance advantage.

In terms of total runtime (Figure 5), our algorithm is between 13 and 59 times faster
among instances solved to optimality. In practice, the short-term schedule is prepared on
daily, weekly, or monthly basis. For all these instances, total runtimes are acceptable and
could provide optimal solutions in real applications.

6.5. Number of columns per iteration. Finally, we discuss the influence of the control
parameter Nmax in our algorithm. An iteration in the column generation algorithm consists
of three main tasks: finding columns with positive reduced cost, adding these columns to the
master problem and then solving the master problem to get a new solution.

There is a direct relationship between Nmax (the maximum number of columns to be added
to the master problem at each iteration) and the algorithm runtime. This relationship is
mainly driven by the solving time of the master problem. Adding a small set of columns
keeps the problem size limited, and the warm start provided by the current solution is useful
in each iteration. For larger values of Nmax, the problem size and runtimes grow rapidly, and
the warm start is less useful. However, the number of iterations needed to reach the optimal
solution also decreases with larger values of Nmax, which suggests the existence of a trade-off
between the total number of iterations and each iteration runtime.
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Figure 6. Algorithm runtime for different values of Nmax

Figure 6 shows the linear relaxation and total runtimes for four instances by different
values of Nmax. For the linear relaxation runtimes, all instances show the worst performance
for Nmax = 10. Having a faster solving time per iteration does not offset the large amount of
iterations needed to reach the optimal solution. Runtimes decrease rapidly, though, and the
best performance is around Nmax = 1, 000. At higher values, a subtle trend towards higher
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runtimes appears, indicating that increasing the problem size too fast is detrimental to the
algorithm global performance.

The trend becomes much more evident when we analyze the total runtime (which includes
the integer problems). Worst performance is still achieved by the lowest value of Nmax, and
the best runtimes are still found around Nmax = 1, 000. But the total runtime increases
rapidly with higher values of Nmax driven by the integer problems runtime. Higher values on
Nmax tends to reach the optimal solution with more columns added to the master problem.
This makes both integer problems harder to solve due to the large number of variables. The
number of columns added to solve the Final IP does not seem to decrease with larger values
of Nmax. Therefore, a possible solution for this issue might be dropping unused columns from
the master problem to reduce its size; see, e.g., Bixby et al. [1992]. Since we did not face this
issue with lower values of Nmax, this step was not incorporated in the current implementation.

7. Conclusions

We present a novel approach to tackle the short-term scheduling problem. Our approach is
able to obtain feasible mining cut definition for real case studies. Our resolution strategy
based on column generation outperforms general solvers and allows solving real-size instances
in reasonable runtimes for daily, weekly or monthly short-term horizons.

Also, the approach allows the incorporation of complex, nonlinear or nonadditive geomet-
allurgical interaction in each cluster. We show how a simple interaction on the metallurgical
recovery results in different dig-limits definitions compared to the traditional linear approach.
Moreover, we show that following the free selection policy is not the best strategy to define
operational mining cuts when nonlinear interactions are expected.

Several extensions of this approach are possible. The definition of operational shapes is
performed by a simple heuristic, but other methodologies can be studied to incorporate
different operational rules. Also, the proposed optimization model is currently limited to
a single time period. Horizontal precedence constraints are needed to obtain multi-period
schedules, and an efficient way to describe these arcs for a large set of clusters remains an
open challenge.
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