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Abstract
We study online logistic regression with binary labels and general feature values in which a learner
sequentially tries to predict an outcome/ label based on data/ features received in rounds. Our goal
is to evaluate precisely the (maximal) minimax regret which we analyze using a unique and novel
combination of information-theoretic and analytic combinatoric tools such as Fourier transform,
saddle point method, and Mellin transform in the multi-dimensional settings.

To be more precise, the pointwise regret of an online algorithm is defined as the (excess) loss
it incurs over a constant comparator (weight vector) that is used for prediction. It depends on the
feature values, label sequence, and the learning algorithm. In the maximal minimax scenario we seek
the best weights for the worst label sequence over all label distributions. For dimension d = o(T 1/3)
we show that the maximal minimax regret grows as

d

2
log(2T/π) + Cd +O(d3/2/

√
T )

where T is the number of rounds of running a training algorithm and Cd is explicitly computable
constant that depends on dimension d and data. For features uniformly distributed on a d-dimensional
sphere or ball we estimate precisely the constantCd showing thatCd ∼ −(d/2) log(d/

√
2π) leading

to the minimax regret growing for large d as (d/2) log(T/d)− (d/2) log(
√

8π) +O(1). We also
extend these results to non-binary labels. The precise maximal minimax regret presented here is the
first result of this kind for any feature values and wide range of d. This provides a precise answer to
the challenge posed in McMahan and Streeter (2010).

1. Introduction

In online learning sequentially received data must be used to update the predictor for subsequent
data. In a supervised online setup, a model is trained to learn parameters from examples/ samples
whose outcomes are already labeled. The training algorithm consumes data in rounds, where at each
round t ∈ {1, 2, . . . , T}, it is allowed to predict the label based only on the labels it observed in the
past t− 1 rounds. The prediction algorithm incurs for each round some loss and updates its belief of
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MINIMAX REGRET FOR LOGISTIC REGRESSION

the model parameters. In this paper we study a more specific setting of online logistic regression for
binary classification. Logistic regression has recently received a lot of attention in machine learning
(Cesa-Bianchi and Lugosi (2006); Shalev-Schwartz and Ben-David (2014)) due to several important
applications from category classification to risk assessment.

More precisely, we phrase our learning problem in terms of a game between nature/ environment
and a learner. At each round the learner obtains a d dimensional input/ feature vector xt and makes
prediction ŷt. Then the nature reveals the true output/ label yt. Throughout we assume binary labels
yt ∈ {−1, 1} (however, see Section 3.2 for extension to non-binary labels) and bounded features
xt living in a space of dimension d. Thus at round t the learner incurs some loss which we denote
as `(ŷt, yt). For t ∈ {1, . . . , T} we write yT = (y1, . . . , yT ) and xT = (x1, . . . ,xT ). Then the
cumulative relative loss or better pointwise regret is defined as in Hazan et al. (2014); Foster et al.
(2018); Shamir (2020)

RT (ŷT , yT |xT ) =

T∑
t=1

`(ŷt, yt)− inf
f∈F

T∑
t=1

`(f(xt), yt)

where F is a reference class of functions. More interestingly, it is more rewarding to consider the
maximal minimax regret defined as

rT (xT ) = inf
ŷT

max
yT

RT (ŷT , yT |xT ). (1)

In Rakhlin and Sridharan (2014) the worst case minimax regret is studied for all feature vector xT ,
that is, maxxT rT (xT ).

In this paper we consider a more specific model, namely logistic regression with logarithmic
loss function and linear reference class. More specifically, we restrict the reference class F to
linear functions, that is, f(xt) = 〈xt,w〉 where 〈xt,w〉 =

∑d
i=1 xi,twi for some weight vector

w = (w1, . . . , wd). Furthermore, as the loss function we take the logistic regression function defined
as `(yt|xt,w) := `(f(xt), yt) := log (1 + exp(−yt〈xt,w〉)) .

Finally, we need to choose a class of learning algorithms that predict ŷt. First, we consider only
improper learning in which the prediction ŷt depends on data and labels (xi, yi)

t−1
i=1 seen up to time

t − 1 and data xt received at time t. We then postulate that the prediction is based on a learning
distribution Q(yt|xt). The most popular class of learning algorithms are Bayesian (cf. Foster et al.
(2018); Kakade and Ng (2005); Shamir (2020)), however, we do not make such assumption here. For
such a setting the pointwise regret for a given learning distribution Q is then defined as

RT (Q, yT |xT ) = −
T∑
t=1

logQ(yt|xt)− inf
w

T∑
t=1

`(〈xt,w〉, yt) (2)

while the maximal minimax regret studied here is

rT (xT ) = inf
Q

max
yT

RT (Q, yT |xT ). (3)

Observe that
rT (xT ) ≤ max

yT
RT (Q, yT |xT ) (4)

for any learning algorithm and all label sequences. In this paper we provide a precise asymptotic
expansion of the maximal minimax regret, a result that had been wanting for some time.
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Table 1: Comparison of results
Problem Setting Previous Results This Paper

Binary Labels,
d = 1

: r∗T = 1
2 log T [Davisson (1973)]

[Krichevsky and Trofimov (1981)]
[McMahan and Streeter (2012)]

Multi Labels; d = 1
ω(1) = m = o(T )

: r∗T = m−1
2 log(T/m)

[Krichevsky and Trofimov]
[Orlitsky and Santhanam (2004)]
[Shamir (2006a)]

Multi Labels; d = 1
m = αT
T = o(m)

: r̄∗T = T logBα +O(1) [explicit constant Bα]
[Szpankowski and Weinberger (2012)]
r∗T = T log m

T +O(T 2/m)
[Orlitsky and Santhanam (2004); Shamir
(2006a); Szpankowski and Weinberger (2012)]

Binary Labels
Multi Dimensions d

: Pointwise regret for Bayesian algorithms Q:
L2 : ‖w∗‖2 ≤ B
O(B
√
dT ) [Xiao (2010)]

RT ≤ d
2 log (1 + T ) [Kakade and Ng (2005)]

RT ≤ d
2 log

(
B2T
d + e

)
[Foster et al.]

d
2 log T

d3 ≤ RT ≤
d
2 log B2T

d2 [Shamir (2020)]
Minimax regret:
maxxT r∗T (xT ) = O(polylog(T )) [Rakhlin
and Sridharan (2014, 2015)]
For finite feature values and d = O(1):
r∗T = d

2 log(2T/π) + C +O(1/
√
T )

where C explicit constant Jacquet et al. (2020).

Minimax regret:
r∗T ≤ maxyT RT (yT , Q), ∀Q.

For any x ∈ [0, 1] and
d = o(T 1/3):
r∗T = d

2 log(2T/π) + Cd +

O(d3/2/
√
T ) where

Cd =
∫
Rd

√
det(B(w))dw.

Features in d-dimensional sphere:
Cd ∼ −d2 log(d/2π), hence:
r∗T = d

2 log T
d −

d
2 log

√
8π +

O(1).

Multi Labels m
Multi Dimensions d

: Pointwise regret for Bayesian algorithm:
L2 constraints:
RT ≤ 5md log

(
BT
dm + e

)
[Foster et al. (2018)]

‖w∗(m)‖∞ ≤ B:
RT ≥ d(m−1)

2 log
(
T
d·m
)

[Shamir (2020)]
Minimax regret:
for finite feature values for d,m = O(1):
r∗T = d(m−1)

2 log(2T/π) + Cm +O(1/
√
T )

where Cm explicit constant Jacquet et al.
(2020).

Minimax regret:
x ∈ [0, 1] and md = o(T 1/3):
r∗T = d(m−1)

2 log(2T/π) +

Cm,d +O((dm)3/2/
√
T )

where Cm,d explicit constant.

Our Contributions and Methods. Our contribution is two-fold. First, we present precise asymp-
totic expansions for the maximal minimax regret (3) through the so called Shtarkov sum (cf. Shtarkov
(1987); Drmota and Szpankowski (2004)). Second, we apply new methodology based using tools
of analytic combinatorics such as complex asymptotics and Fourier as well as Mellin transforms
(cf Flajolet and Sedgewick (2008); Szpankowski (2001)) to handle Shtarkov sum for the logistic
regression.

3
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More precisely, we first represent the minimax regret (3) as the logarithm of the so called
Shtarkov sum over all label sequences of the optimal label probability. Such a sum arose already
in the universal compression as witnessed by Shtarkov (1987); Drmota and Szpankowski (2004);
Szpankowski and Weinberger (2012). In Theorem 1 we show that for d = o(T 1/3) the minimax
regret grows as

d

2
log(2T/π) + Cd(x

T ) +O(d3/2/
√
T )

where the constant Cd(xt) depends on the dimension d and data xT . We explicitly express this
constant as the logarithm of a multi-dimensional integral over the determinant of a matrix that
depends on data and the logistic function (cf. (17)). After generalizing it to non-binary labels in
Theorem 2, we find in Theorem 4 an asymptotic expression for Cd(xT ) when data xT are distributed
uniformly on a d-dimensional sphere Sd and a ball Bd. This allows us to show in Corollary 5 that
for large d the minimax regret grows as d

2 log T
d −

d
2 log

√
8π + O(1). In Table 1 we compare our

precise findings to known results for the pointwise regret and minimax regret.
Our second technical contribution is in unique and novel methodology based on analytic com-

binatorics. As mention above, we represent the maximal minimax regret as a Shtarkov sum. Only
recently Jacquet et al. (2020) introduced Shtarkov sum in the context of logistic regression (see also
Shamir and Szpankowski (2020)). However, as discussed below, Jacquet et al. (2020) studied the
minimax regret for finite number of distinct feature values, which requires a different method that
is used in Jacquet et al. (2020). To analyze asymptotically the Shtarkov sum, we first found the
optimal weights w∗ that happen to lie on T -dimensional hyperplane. Then, we translate the Shtarkov
sum into a d-dimensional integral that we evaluate using a multi-dimensional saddle point method.
Further embellishments, including discrete geometry and spectral representation of matrices, are
required to study the constant Cd(xT ) when the feature xT lie on a d-dimensional sphere.

Related Work. In this paper we combine methodology of analytic combinatorics (see, e.g., Flajolet
and Sedgewick (2008); Jacquet and Szpankowski (2015); Szpankowski (2001)) and information
theory (see, e.g., Barron et al. (1998); Drmota and Szpankowski (2004); Krichevsky and Trofimov
(1981); Orlitsky and Santhanam (2004); Rissanen (1984, 1996); Shamir (2006b); Xie and Barron
(1997)) to study a machine learning problem (see, e.g., Cesa-Bianchi and Lugosi (2006); Shalev-
Schwartz and Ben-David (2014)), namely, the regret of logistic regression.

The set up of the logistic regression is similar to the redundancy of universal coding studied
extensively in information theory. It corresponds to a single dimensional (i.e., d = 1) regret problem
for logistic regression. In this case, withm being the alphabet size or the number of labels, it is known
Drmota and Szpankowski (2004); Orlitsky and Santhanam (2004); Rissanen (1996); Shamir (2006b);
Szpankowski (1998); Xie and Barron (1997, 2000) that for a large class of sources (up to Markovian
but not for non-Markovian as discussed in Csiszar and Shields (1995); Flajolet and Szpankowski
(2002)) the redundancy grows as m−1

2 log T when the alphabet sizem is fixed and m−1
2 log(T/m) for

m = o(T ) (see also Orlitsky and Santhanam (2004); Shamir (2006b); Szpankowski and Weinberger
(2012)). In fact in Szpankowski and Weinberger (2012) full asymptotic expansions were derived for
all ranges of m.

In the machine learning literature a general online optimization is studied, and generally pointwise
regret is analyzed (with the exception of Rakhlin and Sridharan (2014)) with logarithmic regret in
the strongly and weakly convex setting. We note that logistic regression seems to fall under weakly

4
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convex setting. A general minimax regret for a wide variety of loss function and references classes
are discussed in a series of papers by Rakhlin and Sridharan (2014, 2015).

We first mention work of Hazan et al. (2014) who studied the pointwise regret of the logistic
regression for the proper setting, that is, when at time t the decision regarding wt is based on
knowledge available to the learner up to time t − 1. Unlike the improper learning, studied in this
paper, where feature xt at time is also available to the learner and Hazan et al. (2014) showed that
the pointwise regret is Θ(T 1/3) for d = 1 and O(

√
T ) for d > 1.

For improper learning a more precise results are known. To the best of our knowledge, Kakade and
Ng (2005) were first to demonstrate results that suggest that pointwise regret for logistic regression
grows like O(d log T/d) where for fixed dimension d and m = 2, which was further generalized in
Foster et al. (2018) to all m. The authors of Kakade and Ng (2005) used Bayesian model averaging.
The O(log T ) pointwise and individual sequence regret can be achieved for the single dimensional
problem with gradient methods based approaches, as was demonstrated in McMahan and Streeter
(2012). The authors of McMahan and Streeter (2012) then posed the question of what happens for
larger dimensions. Subsequently, Foster et al. (2018) demonstrated how to achieve regret bounds of
O(d log(T/d)) with Bayesian model averaging. These results were strengthened in Shamir (2020),
which also provided matching lower bounds. Recently, Jacquet et al. (2020) analyze a precise
maximal minimax regret but only for finite number of feature values and fixed dimension d. To the
best of our knowledge here we present the first precise results for minimax regret.

2. Problem Formulation and Notation

We denote by xt = (x1,t, . . . , xd,t) a d-dimensional feature vector such that ||x|| ≤ 1 for some norm
|| · ||. The label binary vector is denoted as yT = (y1, . . . , yT ) with yt ∈ {−1, 1} (however, we
also present in Section 3.2 some results for non-binary labels). Finally, wt = (w1,t, . . . , wd,t) is
a d-dimensional vector of weights. In this paper, we do not address the method used to learn the
weights (e.g., gradient method or Bayesian mixing).

The cumulative logistic loss of an algorithm that plays wt at round t is

L(yT |xT ,wT ) :=
T∑
t=1

log [1 + exp(−yt〈xt,wt〉)] (5)

where 〈xt,wt〉 =
∑d

i=1 xi,twi,t is the scalar product of xt and wt. To simplify we also write
`(yt|xt,wt) := log [1 + exp(−yt〈xt,wt〉)]. Both `(yt|xt,wt) and L(yT |xT ,wT ) depend on xt
and wt only through the product 〈xt,wt〉. As mention in the introduction, it is convenient to interpret
the logistic function in probabilistic terms. The probability of a label is then given by

P (yt|xt,wt) =
1

1 + exp(−yt〈xt,wt〉)
(6)

and clearly `(yt|xt,wt) = − logP (yt|xt,wt).
Finally, we observe that the goal of a learning algorithm (in our probabilistic setting) is to find the

best approximation Q(yt|xt) of the unknown distribution P (yt|xt,wt). We notice that Q represents
an algorithm that predicts yt. For example, in Bayesian setting, as in Hazan et al. (2014); Foster et al.
(2018); Shamir (2020), the label probability Q(yt|xt) is a mixture over w with some prior ρ(w), that

5
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is,

Q(yT |xT ) :=

∫
w
ρ(w)P (yT |xT ,w)dw.

In this paper we do not restrict Q to Bayesian learning algorithms.
The pointwise regret for a given algorithm/ distribution Q is defined for individual sequences

(yt,xt) as in Kakade and Ng (2005); Hazan (2012); Foster et al. (2018); Shamir (2020)

R(Q, yT |xT ) := −
T∑
t=1

logQ(yt|xt)−min
w

T∑
t=1

`(yt|xt,w)

for some fixed comparator w. Thus, in terms of the label distributions P and Q we find

RT (Q, yT |xT ) = log
supw P (yT |xT ,w)

Q(yT |xT )
(7)

where

P (yT |xT ,w) =
T∏
t=1

(1 + exp(−yt〈xt,w〉))−1 . (8)

The pointwise regret RT (Q, yT |xT ) is a function of label sequence yT , data/ feature vector xT ,
and algorithm/ label distribution Q. A better measure of online logistic regression performance
should decouple the regret from the fluctuations of yT (but may still depend on the feature vector xT )
and minimize over a class of learning algorithms/ distributions Q. Following information-theoretic
view, as in Davisson (1973); Drmota and Szpankowski (2004); Xie and Barron (2000), we define the
maximal minimax regret (conditioned on xT ) as follows

r∗T (xT ) := inf
Q

max
yT

[RT (Q, yT |xT )]. (9)

Notice that this definition is over all possible learning algorithms represented by Q. Therefore, it
constitutes a (universal) lower bound of the pointwise regret – as expressed in (4) – for all label
sequences and for all learning distributions Q, including the Bayesian ones studied in Kakade and
Ng (2005); Foster et al. (2018); Shamir (2020).

We study in this paper precise growth of the maximal regret for large T and wide range of d.
However, to accomplish it we need a more succinct and computationally manageable representation
of the maximal minimax regret. Following Shtarkov (1987); Drmota and Szpankowski (2004) we
add and subtract from RT (Q, yT |xT of (9) the logarithm of the Shtarkov sum defined as

ST (xT ) :=
∑
yT

sup
w
P (yT |xT ,w) (10)

resulting in

r∗T (xT ) = min
Q

sup
w

max
yT

(− logQ(yT |xT ) + logP ∗(yT |xT )) + log
∑
yT

sup
w
P (yT |xT ,w)

= log
∑
yT

sup
w
P (yT |xT ,w) = logST (xT ) (11)

6
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where we set Q(yT ,xT ) = P ∗(yT |xT ) with

P ∗(yT |xT ) :=
supw P (yT |xT ,w)∑
vT supw P (vT |xT ,w)

(12)

being the maximum-likelihood distribution. Hereafter, we shall study asymptotics of the Shtarkov
sum ST (xT ) for large T .

3. Main Results

In this section we present our main results. Throughout we write

p(w) := (1 + e−w)−1, and q(w) = 1− p(w) = p(−w).

We aim at estimating asymptotically the Shtarkov sum (10) for large T and wide range of d.

3.1. Minimax Regret for General Case

We start with a general expression for the probability P (yT |xT ,w) as given in (8). Noting that

P (yt = 1|xt,w) =
1

1 + exp(−〈xt,w〉)
=

exp(〈xt,w〉)
1 + exp(〈xt,w〉)

we find another expression on P (yT |xT ,w) as follows

P (yT |xT ,w) =
T∏
t=1

exp
(

1+yt
2 〈xt,w〉

)
1 + exp(〈xt,w〉)

= exp

(
−

T∑
t=1

log(1 + e〈xt,w〉) +

T∑
t=1

1 + yt
2
〈xt,w〉

)
.

Let now

LT (w) = LT (w,xT ) =

T∑
t=1

log(1 + e〈w,xt〉), and AT = A(yT ) =
1

2

T∑
t=1

(1 + yt)xt.

Then P (yT |xT ,w) becomes

P (yT |xT ,w) = exp
(
−LT (w,xT ) + 〈w,AT (yT )〉

)
. (13)

Now we sketch the road map of our approach, leaving technical details to the next section and
Appendix. The optimal value w∗ that maximizes P (yT |xT ,w) satisfies

∇wLT (w∗) = AT (yT ) (14)

where∇LT (w∗) is the vector gradient of LT (w). It is easy to see that

GT (w) := ∇wLT (w) =

T∑
t=1

p(〈w,xt〉)xt

7
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due to the crucial property p′(w) = p(w)q(w). The optimal probability P ∗(yT |xT ,w) is then

P ∗(w∗) = P ∗(yT |xT ) = exp(−LT (w∗) + 〈w∗,GT (w∗)〉). (15)

In the next section, we apply Laplace/Fourier transform to represent the Shtarkov sum ST (xT )
as a multidimensional integral that we evaluate using the saddle point. This will allow us to conclude
that

ST (xT ) =

∫
Rd

√
det(∇G(w∗)/(2π)dw∗ ·

(
1 +O

(
d3/2

√
T

))
where

∇G(w) =
T∑
t=1

p(〈w,xt〉)q(〈w,xt〉)xt ⊗ xt.

In summary, our first main result can be formulated as follows that we prove in the next section.

Theorem 1 Let xt ∈ [0, 1]d, and p(w) = (1 + e−w)−1 with q(w) = 1 − p(w). The maximal
minimax regret becomes asymptotically for d = o(T 1/3)

r∗(xT ) =
d

2
log T − d

2
log 2π + Cd(x

T ) +O(d3/2/
√
T ) (16)

where

Cd(x
T ) = log

(∫
Rd

√
det(Bd(w,x))dw1 · · · dwd

)
(17)

with

B(w,xT ) =
1

T

T∑
t=1

p(〈xt,w〉)q(〈xt,w〉)xt ⊗ xt (18)

and xt ⊗ xt = xtx
τ
t being the tensor product of xt with τ denoting the transpose.

In passing we should observe that if data Xt is generated by a stationary ergodic source, then by
the ergodic theorem we conclude that

B(w,XT )→ EX [B(w,X)] := B̄(w) (19)

when T → ∞. We will use this expression in the next section to estimate precisely the constant
Cd(x

T ) for features xT distributed on a sphere and a ball.

3.2. Extension to Non-binary Labels

Let us now consider a non-binary label alphabet Y of size m. We will follow Foster et al. (2018) and
define a matrix W = [w1, . . . ,wm−1] such that wi = (w1,i, . . . , wd,i). The multinomial logistic
function known also as softmax function is then defined as

p`(x
τW) =

e〈x,w`〉∑m
k=1 e

〈x,wk〉
and q(xτW) = 1−

m−1∑
i=1

p`(x
τW) (20)

for ` = 1, . . . ,m− 1. Let also p = (p1, . . . , pm).
Following our derivation for binary labels, we can prove the following result.

8
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Theorem 2 Let xt ∈ [0, 1]d for the label alphabet Y be of size m, and for W = [w1, . . . ,wm−1]
we define p`(xτW) for ` = 1, . . . ,m − 1 as in (20). Then the maximal minimax regret becomes
asymptotically for md = o(T 1/3)

r∗(xT ) =
d(m− 1)

2
log

T

2π
+ log

(∫
Rd(m−1)

√
det(B(W))dw1 · · · dwm−1

)
+O((md)3/2/

√
T )

(21)
where Bd,m(W) is a d(m− 1)× d(m− 1) matrix defined as

B(W) =
1

T

T∑
i=1

[Diag (p(xτiW))− p(xτiW)⊗ p(xτiW)]⊗ xt ⊗ xt.

3.3. Spherical Features

Now we assume that the feature xt are either uniformly distributed on a d-dimensional sphere Sd or
inside a d-dimensional ball Bd for large d. We explain our ideas on xt distributed uniformly on the
sphere Sd of radius 1. By (19) we know that

B(w,Sd)→ B̄(w) =
1

sd

∫
Sd
p(〈xw〉)q(〈xw〉)x⊗ xdx. (22)

where sd is the area of the hypersphere of dimension d and radius 1, that is, sd = 2π(d+1)/2/Γ(d+1
2 ).

We first present the following lemma that we prove in the Appendix using analytic tools of such
as complex asymptotics and Mellin transform.

Lemma 3 Let f(x) = p(x)q(x) = [(1 + e−x)(1 + ex)]−1 and u = w/||w||.
(i) We have the following expression

B̄(w) = µ(w)Id−1(u) + λ(w)u⊗ u (23)

where Id is the identity operator orthogonal to u and

λ(w) =
sd−1

sd

∫ π

0
cos(θ)2 sin(θ)d−2f(cos(θ)‖w‖)dθ (24)

and

µ(w) =
sd−1

sd

∫ π

0

sin(θ)d

d− 1
f(cos(θ)‖w‖)dθ (25)

are the eigenvalues of B̄(w) with multiplicity 1 and d− 1, respectively.

(ii) Furthermore, detB̄(w) = λ(w) · µd−1(w) and both λ(w) and µ(w) are of order O(‖w‖−3)
and det(B(w)) is O(‖w‖−3d). More precisely,

det(B(w)) = 2

(
sd−1

3sd
π2‖w‖−3(1 +O(‖w‖−2))

)d
(26)

for large ‖w‖ → ∞.

Using Lemma 3 we prove in the next section the following theorem.

9
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Theorem 4 Under assumptions of Theorem 1 let us now postulate that the feature vector lies on the
d-dimensional sphere Sd or ball Bd. Then the corresponding minimax regrets satisfy (16) with the
constants Cd

Cd(Sd) = −d
2

log
d

4
+
d

4
log(π/8) +

3

8
log e+O(1/d) (27)

and
Cd(Bd) = −d

2
log

d

4
+
d

4
log(π/8)− 1

8
log e+O(1/d) (28)

respectively.

In conclusion we notice that for large d the regret grows as d/2 log(T/d). More precisely, we
end this section with the following corollary.

Corollary 5 Under assumptions of Theorem 1 the minimax regret becomes for features lying
uniformly on the sphere Sd

r∗(Sd) =
d

2
log

T

d
− d

2
log
√

8π +
3

8
log e+O(d3/2/

√
T )

and for the features inside a d dimensional ball Bd we find

r∗(Bd) =
d

2
log

T

d
− d

2
log
√

8π − 1

8
log e+O(d3/2/

√
T )

for large d.

4. Analysis

4.1. Proof of Theorem 1

Let AT be the set of achievable partial sums of the vectors xt, i.e.,

AT := {A : ∃yT ∈ {−1, 1}T : AT (yT ) = A}

and let N(A) be the number of yT tuples such that AT (yT ) = A. The enumeration Laplace-like
function of e〈w,AT 〉 then satisfies

FT (w) =
∑
yT

e〈w,AT 〉 =
∏
t

(1 + e〈w,xt〉) = exp(LT (w)) (29)

which can also be written as

FT (w) =

∫
ρT (A)e〈w,A〉dA with ρT (w) =

∑
A∈AT

N(A)δA, (30)

where δA is the Dirac function on vector A. Using (15) and above we can re-write the Shtarkov sum
as

ST (xT ) =
∑

A∈AT

NT (A) exp(−L(w∗(A)) + 〈w∗(A),A〉) (31)

that we evaluate asymptotically for large T .

10
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We now express (31) as

ST (xT ) =

∫
ρT (A)K(A)dx, where K(A) = exp(−L(w∗(A)) + 〈w∗(A),A〉). (32)

Since w∗(A) is the inverse of function GT , which is in C∞, we conclude that K(A) is in C∞ and
has a finite support contained in [−T, T ]d. Let

K∗(w) =

∫
Rd

K(A)ei〈w,A〉dA

be the Fourier transform of function K(A). Perceval theorem tells us that

ST (xT ) =
1

(2π)d

∫
c+Rd

FT (iw)K∗(−w)dw. (33)

Therefore,

K∗(w) =

∫
Rd

exp(−LT (w∗(A)) + 〈(w∗(A) + iw),A〉)dA.

By change of variable A = G(w∗) we arrive at

K∗(w) =

∫
Rd

exp(−LT (w∗) + 〈(w∗ + iw),G(w∗)〉)det(∇G(w∗))dw∗ (34)

leading to

ST (xT ) =
1

(2π)d

∫
Rd

exp(−LT (w∗) + 〈w∗,GT (w∗)〉)det(∇GT (w∗))dw∗

·
∫
−ic+Rd

exp(LT (iw)− i〈w,GT (w∗)〉)dw. (35)

We now take the advantage of the fact that the functions under the integrals are analytic functions
so that we can move the path of integration of the second integral from −ic + Rd to −iw∗ + Rd,
finding

ST (xT ) =
1

(2π)d

∫
Rd

exp(−LT (w∗) + 〈w∗,GT (w∗)〉)det(∇GT (w∗))dw∗

·
∫
−iw∗+Rd

exp(LT (iw)− i〈w,GT (w∗)〉)dw. (36)

Finally, we notice that on the segment =(w) = iw∗ the quantity LT (iw)− i〈w,GT (w∗)〉 attains
its maximum at w = −iw∗, since

∇(LT (iw)− i〈w,GT (w∗)〉) = iGT (iw)− iGT (w∗)

is zero when iw = w∗. Hence, for x→ 0 we conclude

LT (w∗ + ix)− 〈(w + ix),GT (w∗)〉 = LT (w∗)− 〈(w,GT (w∗)〉

−1

2
〈x,∇2, LT (w∗)x〉+O(R(w∗)‖x‖3)

11
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where R(w∗) is the third derivative of LT (w) on w∗. But∇2LT (w) and R(w∗) are of order O(T ),
hence we can apply the multidimensional saddle point method (in fact, Laplace method; cf. Pemantle
and Wilson (2013)) to find∫

=(w)=iw∗
exp (LT (w)− 〈w,GT (w∗)〉) dw =

exp(LT (w∗)− 〈w∗,GT (w∗)〉)√
det(∇2LT (w∗)/(2π))

(37)

×

(
1 +O

(
d3/2

√
T

))
. (38)

The error term follows from Inglot and Majewski (2014) using∫
Rd

|x|3 exp(−a|x|2) = 1/a(d+3)/2πd/2
Γ(d/2 + 3/2)

Γ(d/2)
(39)

and applying the Stirling formula to the gamma function for large d. After substituting in (36), we
complete the proof of Theorem 1. Details are discussed in the appendix.

4.2. Proof of Theorem 4

In order to prove asymptotic results of Theorem 4, we must evaluate the quantities λ(w) and µ(w),
the eigenvalues of matrix B̄(w) for large d. The main contribution of both integrals is for θ around
π
2 . For θ = π

2 +
√

2
dx we have

sin(θ)d−2 ∼ exp(−d−2
d x2)

cos(θ)2 ∼ 2
dx

2

f(cos(θ)‖w‖) ∼ 1
4 exp

(
−‖w‖

2

2d x2
) (40)

leading to∫ π

0
sin(θ)d−2 cos(θ)2f(cos(θ)‖w‖)dθ ∼ (2/d)3/2

∫ +∞

−∞
exp

(
−(1 +

‖w‖2 − 4

2d
)x2

)
x2dx

= (2/d)3/2

√
π

2

(
1 +
‖w‖2 − 4

2d

)−3/2

(41)

and ∫ π

0
sin(θ)df(cos(θ)‖w‖)dθ ∼ (2/d)1/2

∫ +∞

−∞
exp

(
−(1 +

‖w‖2

2d
)x2

)
dx

= (2/d)1/2√π
(

1 +
‖w‖2

2d

)−1/2

. (42)

In summary

det(B(w)) ∼
(
sd−1

sd

)d
(2/d)d/2

1

d

1

(d− 1)d−1
πd/2 exp

(
−‖w‖

2

4

)
. (43)

12
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To complete the derivation, we need to integrate
√

det(B(w)) over the vectors w. This leads to∫ √
(det(B(w))dw ∼ 1

2d

(
sd−1

sd

)d/2
(2/d)d/4

1√
d

1
√
d− 1

d−1
πd/4(2

√
2π)d. (44)

The final touch is to get an estimate of the ratio sd−1

sd
. But

sd−1

sd
=
√
π

Γ(d/2)

Γ((d− 1)/2)
,

Γ(d/2)

Γ((d− 1))
=

√
d

2
− 1

4
+O(1/d)

so that ∫ √
(det(B(w))dw ∼ (π/8)d/4e3/8(d/4)−d/2. (45)

which completes the derivation of (27).

We prove (28) in a similar manner where the extra factor
(

d
d−1

)d/2 (
d−1
d+1

) d−1
2 comes from the

volume of a ball. At the end, for the unit ball features we find∫ √
det(B(w))dw ∼ (π/8)d/4e−1/8(d/4)−d/2. (46)

More details can be found in the Appendix.
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Appendix A. Proof of Lemma 3

We prove here Lemma 3 that we repeat below for the reader convenience.

Lemma 6 Let f(x) = p(x)q(x) = [(1 + e−x)(1 + ex)]−1 and u = w/||w||.
(i) We have the following expression

B̄(w) = µ(w)Id−1(u) + λ(w)u⊗ u (47)

where Id is the identity operator orthogonal to u and

λ(w) =
sd−1

sd

∫ π

0
cos(θ)2 sin(θ)d−2f(cos(θ)‖w‖)dθ (48)

and

µ(w) =
sd−1

sd

∫ π

0

sin(θ)d

d− 1
f(cos(θ)‖w‖)dθ (49)

are the eigenvalues of B̄(w) with cardinality 1 and d− 1, respectively.

(ii) Furthermore, detB̄(w) = λ(w) · µd−1(w) and both λ(w) and µ(w) are of order O(‖w‖−3)
and det(B(w)) is O(‖w‖−3d). More precisely,

det(B(w∗)) = 2

(
sd−1

3sd
π2‖w‖−3(1 +O(‖w‖−2))

)d
(50)

for large ‖w‖ → ∞.

We start with part (i). Let θ be the angle between x and u. We have the decomposition
x = cos(θ)u + b with b ∈ sin θSd−1(u) where Sd−1(u) is the unit hypersphere orthogonal to u.
Since x’s have a spheric symmetry in its distribution, so it is the case for the b’s in sin θSd−1(u) for
any given angle θ. Thus

B̄(w) =
1

sd

∫ π

0
f(‖w‖ cos θ)dθ

∫
sin θSd−1(u)

(b + cos θu)⊗ (b + cos θu)db (51)

=
1

sd

∫ π

0
f(‖w‖ cos θ)dθ

∫
sin θSd−1(u)

(b⊗ b + (cos θ)2u⊗ u)db

+
1

sd

∫ π

0
f(‖w‖ cos θ)dθ

∫
sin θSd−1(u)

cos θ(b⊗ u + u⊗ b)db. (52)

Again due to the spheric symmetry of b we also have
∫

sin θSd−1(u) b = 0 leading to

B̄(w) =
1

sd

∫ π

0
f(‖w‖ cos θ)dθ

∫
sin θSd−1(u)

(b⊗ b + (cos θ)2u⊗ udb

=
1

sd

∫ π

0
f(‖w‖ cos θ)(sin θ)d−1dθ∫

Sd−1(u)
((sin θ)2b⊗ b + (cos θ)2u⊗ u)db. (53)

16
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The (sin θ)d−1 factor arises from the change of integration domain from sin θSd−1(u) to Sd−1(u).
The quantity

∫
Sd−1(u) b⊗b is the (d−1)×(d−1) matrix whose (i, j) coefficient is

∫
Sd−1

bibjdb.
Clearly, by spheric symmetry of the b vectors

∫
Sd−1

bibjdb = 0 when i 6= j. We also have for all
i 6= j: ∫

Sd−1

(bi)
2db =

∫
Sd−1

(bj)
2db =

1

d− 1

∫
Sd−1

‖b‖2db =
sd−1

d− 1
. (54)

Thus ∫
Sd−1(u)

b⊗ bdb =
sd−1

d− 1
Id−1(u) (55)

and similarly ∫
Sd−1(u)

u⊗ udb = sd−1u⊗ u (56)

which completes the proof of part (i) of the lemma.
Now we move to part (ii) of Lemma 3. Both λ(w) and µ(w) are functions of w = ‖w‖. We

write λ(w) = λ(‖w‖) and µ(w) = µ(‖w‖). To capture the asymptotics of these functions we apply
Mellin transform which is an effective tool of analytic combinatorics for complex asymptotics. The
reader is refereed to Flajolet and Sedgewick (2008) and Szpankowski (2001) for detailed discussions.

The Mellin transforms λ∗(s) and µ∗(s) of λ(w) and µ(w) are defined, respectively, as{
λ∗(s) =

∫∞
0 λ(w)ws−1dw,

µ∗(s) =
∫∞

0 µ(w)ws−1dw.
(57)

Observe now that

λ(w) = 2
sd−1

sd

∫ π/2

0
f(cos(θ)w) cos2(θ) sind−2(θ)dθ (58)

=
2sd−1

sd

∫ 1

0
y2(1− y2)(d−3)/2f(yx)dy (59)

via the change of variable y = cos(θ). Thus we find

λ∗(s) =
2sd−1

sd

∫ 1

0
(1− y2)(d−3)/2y2dy

∫ ∞
0

f(yx)xs−1dx (60)

=
2sd−1

sd
f∗(s)

∫ 1

0
(1− y2)(d−3)/2y2−sdy (61)

= f∗(s)β∗1(3− s) (62)

where f∗(s) is the Mellin transform of function f(x) = p(x)q(x) and β1(s) is the Mellin transform
of the function (1− y2)(d−3)/2y defined over [0, 1].

The Mellin transform β∗1(s) is defined for <(s) > 0 and being locally analytical it has poles on
the negative even integers, corresponding to the Taylor expansion of (1− y2)(d−3)/2. The Mellin
transform f∗(s) of function f(x) is

f∗(s) = (s− 1)2(s− 2)h∗(s− 2)
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where h∗(s) is the Mellin transform of function h(x) = log(1 + e−x) defined for <(s) > 0. The
Mellin transform f∗(s) is defined for <(s > 2 but the simple poles at s = 1 and s = 2 are canceled
by the factor (s− 1)(s− 2) thus is finally defined for <(s) > 0. More precisely, we have

h∗(s) = (1− 2−s)ζ(s+ 1)Γ(s)

where Γ(s) is the Euler gamma function and ζ(s) is the Riemann zeta function.
The product β(2− s)(s− 1)2(s− 2)h∗(s− 2) is defined for <(s) ∈ [0, 1]. But the simple pole

at s = 1 is canceled by the additional factor (s− 1). The next pole is at s = 3 which has the residue
−ζ(2)Γ(3) = −π2/3, thus λ∗(s) is defined for <(s) ∈]0, 3[.

We can make a similar analysis for µ∗(s) and we arrive at{
λ∗(s) = 2

sd−1

sd
β∗1(3− s)f∗(s),

µ∗(s) = 2
sd−1

(d−1)sd
β∗2(1− s)f∗(s), (63)

where β∗1(s) and β∗2(s) are respectively the Mellin transform of function (1−y2)(d−3)/2 and function
(1− y2)(d−1)/2. The Mellin transform µ∗(s) is also defined on <(s) ∈]0, 3[ and has a simple pole at
s = 3 with residue −ζ(2)Γ(3)d−1

2 = −π2/6(d− 1). For both λ∗(s) and µ∗(s) the next pole is at
s = 5.

We now apply the inverse Mellin transform defined as (cf. Szpankowski (2001))

λ(w) =
∫
<(s)=1 λ

∗(s)w−sds,

µ(w) =
∫
<(s)=1 µ

∗(s)w−sds
(64)

to extract asymptotics of λ(w) and µ(w) for w → ∞. By moving the integration path over the
simple poles at s = 3 and s = 5 and catching the residues we finally obtain

λ(w) = 2
sd−1

3sd
π2w−3 +O(w−5),

µ(w) =
sd−1

3sd
π2w−3 +O(w−5)

(65)

for w →∞. In conclusion

det(B̄(w)) = 2

(
sd−1

3sd
π2‖w‖−3(1 +O(‖w‖−2))

)d
(66)

when ‖w‖ → ∞. This completes the proof of Lemma 3.

Asymptotics for the ball Bd. Here, we complete the proof of the asymptotics for the ball. We
study the case where feature xt is uniformly distributed inside the unit ball Bd of dimension d. In
this case the vector x such that 〈ux〉 = cos(θ) satisfies the decomposition x = cos(θ)u + sin(θ)b
where b is uniformly distributed inside the unit ball of dimension d− 1 orthogonal to u. Thus

λ(w) =
1

vd

∫ π

0
cos(θ)2 sin(θ)dvdf(cos(θ)‖w‖)dθ (67)

where vd is the volume of the unit ball in dimension d (in fact vd = sd/d). Therefore,

µ(w) =
1

vd

∫ π

0
sin(θ)df(cos(θ)‖w‖)dθ

∫
‖b‖=1

〈vb〉2db. (68)

=
1

vd

∫ π

0
sin(θ)df(cos(θ)‖w‖)dθ

∫ 1

0
sd−1

r2

d− 1
rd−2dr (69)

=
vd−1

vd

∫ π

0

sin(θ)d

d+ 1
f(cos(θ)‖w‖)dθ. (70)
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Using
√

det(B̄(w)) =
√
λ(w)(µ(w))d−1, all computations done with an extra factor

(
d
d−1

)d/2 (
d−1
d+1

) d−1
2 ,

we find at the end ∫ √
det(B(w))dw ∼ (π/8)d/4e−1/8(d/4)−d/2 (71)

which establishes (28).

A.1. Error of the Saddle Point Method

We provide here more details of the error term of the saddle point method as expressed in (38).

Theorem 7 (Error of (38)) The error term of the Shtarkov sum (36) is

O

(
d3/2√
Tλ(w∗)3

)
where λ(w∗) is the is the main eigenvalue of B̄(w∗) at w∗.

Proof The integral (37) is asymptotically approximated by the the saddle point method which
will also lead to the error term estimation. We use the following by the change of variable x =√
∇2LT (w∗)w∫

=(w)=−w∗
exp (LT (w)− 〈w,GT (w∗)〉) dw =

exp(LT (w∗)− 〈w∗,GT (w∗)〉)
(2π)d

√
det(∇2LT (w∗))

×
∫
Rd

exp

(
−1

2
‖x‖2 +O(L

(3)
T ‖(

√
∇2LT (w∗))−1x‖3)

)
where L(3)

T is an estimate of the norm the third derivative applied to LT (w∗), and is of order O(T ).
Using the fact that

‖(
√
∇2LT (w∗))−1x‖ ≤ ‖x‖√

Tλ(w∗)

where λ(w∗) is the main eigenvalue of∇2LT (w∗), we find∫
=(w)=−w∗

exp (LT (w)− 〈w,GT (w∗)〉) dw =
exp(LT (w∗)− 〈w∗,GT (w∗)〉)

(2π)d
√
det(∇2LT (w∗))

×
∫
Rd

exp

(
−1

2
|x‖2

)(
1 +O(

‖x‖3√
Tλ(w∗)3

)

)
.

But we know that for a > 0∫
Rd

‖x‖3 exp(−a‖x‖2) = 1/a(d+3)/2πd/2
Γ(d/2 + 3/2)

Γ(d/2)
, (72)

thus we conclude that∫
Rd

exp

(
−1

2
‖x‖2

)
O(
‖x‖3√
T

)dx = O

(
Γ(d/2 + 3/2)

Γ(d/2)
√
T

)
. (73)

To complete, we observe that Γ(d/2+3/2)
Γ(d/2) ∼ (d/2)3/2 when d→∞.
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