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Abstract
The λΠ-calculus modulo theory is a logical framework in which various logics and type systems
can be encoded, thus helping the cross-verification and interoperability of proof systems based on
those logics and type systems. In this paper, we show how to encode predicate subtyping and proof
irrelevance, two important features of the PVS proof assistant. We prove that this encoding is
correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the
λΠ-calculus modulo theory using rewriting.
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1 Introduction

A substantial number of proof assistants can be used to develop formal proofs, but a proof
developed in an assistant cannot, in general, be used in another one. This impermeability
generates redundancy since theorems are likely to have one proof per proof assistant. It also
prevents adoption of formal methods by industry because of the lack of standards and the
difficulty to use adequately formal methods.

Logical frameworks are a part of the answer. Because of their expressiveness, different
logics and proof systems can be stated in a common language. The λΠ-calculus modulo
theory, or λΠ/≡, is such a logical framework. It is the simplest extension of simply typed
λ-calculus with dependent types and arbitrary computation rules. Fixed-length vectors
are a common example of dependent type, that can be represented in the λΠ-calculus as
∀n : N, Vec(n). The λΠ-calculus modulo theory already allows to formulate first order logic,
higher order logic [5] or proof systems based on Pure Type Systems [12] such as Matita [3],
Coq [10] or Agda [16].

PVS [28] is a proof assistant that has successfully been used in collaboration by academics
and industrials to formalise and specify real world systems [27]. More precisely, PVS is
an environment comprising a specification language, a type checker and a theorem prover.
One of the specificities of PVS is its ability to blend type checking with theorem proving
by requiring terms to validate arbitrary predicates in order to be attributed a certain type.
This ability is a consequence of predicate subtyping [30]. It facilitates the development of
specifications and provides a more expressive type system which allows to encode more
constraints. For instance, one can define the inverse function inv : R∗ → R, where R∗ is a
predicate subtype defined as reals which are not zero.

If predicate subtyping provides a richer type system, it also makes type checking of
specifications undecidable. In [17], F. Gilbert paved the way of the expression of PVS into
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6:2 Predicate Subtyping with Proof Irrelevance in LPMT

λΠ/≡: he formalised the core of PVS and provided a language of certificates for PVS whose
type checking is decidable. However, the encoding in λΠ/≡ of this language of certificates
relies on proof irrelevance.

The following work proposes an encoding of proof irrelevant equivalences into the λΠ-
calculus modulo theory. It also inspects the completion of such equations into a confluent
rewrite system. The resulting rewrite system can be used to provide an encoding of PVS
into Dedukti, a type-checker for the λΠ-calculus modulo theory based on rewriting [4].

Related work

An encoding or “simulation” of predicate subtyping à la PVS into HOL can be found in [20].
The objective of that work was to get some facilities provided by predicate subtyping into
HOL rather than providing a language of certificates, and proof checking hence remains
undecidable. Moreover, predicate subtypes are not represented by types but by theorems.

In [32], predicate subtyping is weakened into a language named Russell to be then
converted into CIC. This conversion amounts to the insertion of coercions and unsolved
meta-variables, the latter embody PVS type correctness conditions (TCC). The equational
theory used in the CIC encoding is richer than ours since it includes surjective pairing
e = pair T U (fst T U e) (snd T U e) and η-equivalence f = λx, f x in addition to proof
irrelevance.

In [36], proof irrelevance is embedded into Luo’s ECC [25] and its dependent pairs. Pairs
and dependent pair types come in two flavours, the proof irrelevant one and the normal one.
The flavour is noted by an annotation, and proof irrelevance is implemented by a reduction
which applies only on annotated pairs. The article presents as well an application to pvs.

On a slightly more practical side, the automated first-order prover ACL2 [21] reproduces
the system of “guards” provided by predicate subtyping into its logic based on Common
Lisp with the concept of gold symbols. Approximately, a symbol is gold if all its TCC have
been solved.

Some theories—often based on Martin-Löf’s Type Theory—blend together a decidable
(called definitional or intensional) equality with an undecidable (said extensional) equality.
In [29], a judgement “A is provable” is introduced, to say that a proof of A exists, but no
attention is paid to what it is. Similarly, [1] introduces proof irrelevance in Martin-Löf’s
logical framework using a function to distinguish propositions A from “proof-irrelevant
propositions Prf(A)”. While A can be inhabited by several normal terms, Prf(A) is inhabited
by only one normal form noted ⋆, to which all terms of Prf(A) reduce. Still in Martin-Löf’s
type theory, [31] provides proof irrelevance for predicate subtyping (here called subset types)
for two different presentations, one is intensional, and the other extensional. The interested
reader may have a look at Nuprl [11], an implementation of Martin-Löf’s Type Theory with
extensional equality and subset types.

Proof irrelevance has also been added to LF to provide a new system LFI in [24], where
proof irrelevance is used in the context of refinement types. In LFI, proof irrelevance is not
limited to propositions, nor it is attached to a certain type: terms are irrelevant based on
the function they are applied to. A similar system is implemented in Agda [33].

More generally, concerning proof irrelevance in proof assistants, Coq and Agda [18]
each have a sort for proof irrelevant propositions (SProp for Coq and Prop for Agda [33]).
Lean [14] is by design proof irrelevant, and Matita supports proof irrelevance as well [2,
section 9.3].
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Outline

Encoding predicate subtyping requires a clear definition of it, which is done in Section 2.
Predicate subtyping is encoded into λΠ/≡ using the signatures provided in Section 3. This
encoding is put in use into some examples as well. The encoding is proved correct in Section 4:
any well typed term of the source language can be encoded into λΠ/≡, and its type in λΠ/≡
is the encoding of its type in the source language. Finally, we show that a type checker for
the λΠ-calculus modulo rewriting can be used to type check terms that have been encoded
as described in Section 3.

2 PVS-Cert: A Minimal System With Predicate Subtyping

Because of its size, encoding the whole of PVS cannot be achieved in one step. Consequently,
F. Gilbert in his PhD [17] extracted, formalised and studied a subsystem of PVS which
captures the essence of predicate subtyping named PVS-Cert. Unlike PVS, PVS-Cert
contains proof terms, which has for consequence that type checking is decidable in PVS-Cert
while it is not in PVS. Hence PVS-Cert is a good candidate to be a logical system in which
PVS proofs and specifications can be encoded to be rechecked by external tools.

In this paper, we use an equational presentation of PVS-Cert, that is, we use equations
rather than reduction rules and slightly change the syntax of terms. We describe PVS-Cert,
as done in [17], namely the addition of predicate subtyping over simple type theory.

2.1 Type Systems Modulo Theory
To describe PVS-Cert and λΠ/≡ in a uniform way, we will use the notion of Type Systems
Modulo described in [8]. Type Systems Modulo are an extension of Pure Type Systems [7]
with symbols of fixed arity whose types are given by a typing signature Σ, and an arbitrary
conversion relation ≡ instead of just β-conversion ≡β .

The terms of such a system are characterised by a finite set of sorts S, a countably infinite
set of variables V and a signature Σ. The set of terms T (Σ,S,V) is inductively defined in
Figure 1.

M, N, T, U ::= s ∈ S | x ∈ V |M N | λx : T, M | (x : T )→ U | f(−→M)

with Σ(f) =
(−−→

x, T , U, s
)

Figure 1 Terms of the type system characterised by S, V and Σ.

The contexts are noted Γ ::= ∅ | Γ, v : T and the judgements Γ ⊢WF or Γ ⊢M : T . The
typing rules are given in Figure 2 and depend on

axioms A ⊆ S × S to type sorts;
product rules P ⊆ S × S × S to type dependent products;
a typing signature Σ which defines the function symbols and how to type their applications;
a convertibility relation ≡.

Notations Rewriting relations are noted ↪→R, where R is a set of rewriting rules. ↪→R is the
closure of R by substitution and context. ≡R is the symmetric, reflexive and transitive closure

TYPES 2020



6:4 Predicate Subtyping with Proof Irrelevance in LPMT

empty
∅ ⊢WF

Γ ⊢ T : s
decl v ̸∈ Γ

Γ, v : T ⊢WF

Γ ⊢WF
var v : T ∈ Γ

Γ ⊢ v : T

Γ ⊢M : U Γ ⊢ T : s T ≡ U
conv

Γ ⊢M : T

Γ ⊢WF
sort (s1, s2) ∈ A

Γ ⊢ s1 : s2

Γ ⊢ T : s1 Γ, x : T ⊢ U : s2prod (s1, s2, s3) ∈ P
Γ ⊢ (x : T )→ U : s3

Γ ⊢ (x : T )→ U : s Γ, x : T ⊢M : U
abst

Γ ⊢ λx : T, M : (x : T )→ U

Γ ⊢M : (x : T )→ U Γ ⊢ N : T
app

Γ ⊢M N : {x 7→ N}U

−−−→
x : T ⊢ U : s

(
Γ ⊢ ti :

{
(xj 7→ tj)j<i

}
Ti

)
isig Σ(f) =

(−−→
x, T , U, s

)
Γ ⊢ f (⃗t) :

{−−−→
x 7→ t

}
U

Figure 2 Typing rules of a Type System Modulo.

of ↪→R. The substitution of x by N in M is noted {x 7→ N}M . We use a vectorised notation
for products (−−−→x : T ) → U to represent the dependent product (x1 : T1) → (x2 : T2) →
· · · (xn : Tn)→ U ; and more generally for any construction that can be extended to a finite
sequence, such as a parallel substitution

{−−−−→
x 7→ N

}
M . A mapping Σ(f) = (−−−→x : T , U, s)

can also be written −−−→x : T ⊢Σ f(x⃗) : U : s. For all relations on terms R and S, we write
RS = {(t, u) | ∃v, tRv∧vSu} the composition of R and S, and R∗ the reflexive and transitive
closure of R.

2.2 Simple Type Theory
PVS and PVS-Cert are both based on simple type theory, which can be represented by
the PTS λHOL [7]:
SλHOL = {Prop, Type, Kind},
AλHOL = {(Prop, Type), (Type, Kind)},
PλHOL = {(Prop, Prop, Prop), (Type, Type, Type), (Type, Prop, Prop)},
ΣλHOL = ∅,
≡λHOL is the reflexive, transitive and symmetric closure of the β-equation

((λx, M) N) = {x 7→ N}M (β)

2.3 Predicate Subtyping
Predicate subtyping has two main benefits for a specification language. The first is to
provide a richer type system thanks to the entanglement of type-checking and proof-checking.
In consequence, any property can by encoded in the type system, which allows to easily
create “guards” such as tail : nonempty_stack → stack where nonempty_stack is a
predicate subtype defined from a predicate empty?. It is also essential in the expression of
mathematics: the judgement M : T is akin to the statement M ∈ T in the usual language
of mathematics when T is a set defined by comprehension such as E = {n : N | P (n)}.
With predicate subtyping, we can represent the set E by the type (psubN P ), and the
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judgement Γ ⊢ M : psubN P is derivable if term M contains a proof of P (n) for some
n. The other benefit of predicate subtyping, which is essential in PVS developments, is
that it separates the process of writing specifications from the proving phase. In PVS,
this separation appears through type correctness conditions (TCC): the development of
specifications creates proof obligations that may be solved at any time. This separation is
also visible in usual mathematical developments, where if we want to prove that t ∈ E, we
prove once that P (t) is valid to then forget the proof and simply use t.

The type system of PVS-Cert can be seen as λHOL with a non empty signature ΣPVS

defined in Figure 3 and a richer equivalence ≡
pvs

that will be discussed in the next paragraph.

T : Type, p : T → Prop ⊢ psub T p : Type : Kind (1)
T : Type, p : T → Prop, m : T, h : p m ⊢ pair T p m h : psub T p : Type (2)
T : Type, p : T → Prop, m : psub T p ⊢ fst T p m : T : Type (3)
T : Type, p : T → Prop, m : psub T p ⊢ snd T p m : p (fst T p m) : Type (4)

Figure 3 Signature ΣPVS of PVS-Cert.

A predicate subtype (psub T U) is defined from a supertype T and predicate U which
binds a variable of type T to a proposition. Terms inhabiting a predicate subtype (psub T U)
are built with the pair construction (pair T U M N) where M is a term of the supertype T

and N is a proof of (U M). While the pair construction allows to coerce a term from any type
to a predicate subtype, the converse, that is the coercion from a type to its supertype is done
with fst, the left projection of the pair. The right projection, snd, provides a witness that the
left projection of the pair validates the predicate defining the subtype. Unlike PVS-Cert,
PVS does not use coercions pair, fst and snd. In PVS, subtyping is implicit: terms do not
have a unique type, and the choice of this type is left to the type checker.
▶ Remark 1. Unlike the original presentation of PVS-Cert in [17], this one annotates fst
and snd, using fst T p m instead of fst m to ease the well-definedness proof of the translation
of PVS-Cert terms (Proposition 4).

Equations and Proof Irrelevant Pairs

So far, no real difference has been evinced between PVS-Cert and dependent pairs: predicate
subtype (psub T p) may be encoded as the dependent pair type Σx : T, p x [17, Definition
4.2.3]. The difference lies in the equivalence relations and the fact that PVS-Cert implements
proof irrelevance in pairs.

The equivalence of PVS-Cert is noted ≡
pvs

and contains Equations (5), (6), and (β) which
provide proof irrelevance:

pair t u m h0 = pair t u m h1 (5)
fst t0 u0 (pair t1 u1 m h) = m (6)

We will now motivate the use of these equations in PVS-Cert. Proofs contained in
terms are essential for typing purposes. On the other hand, these proofs are a burden
regarding equivalence of terms. Were these proofs taken into account (as ≡β does), too many
terms would be distinguished. For example, consider two terms t = pairN Even 2 h and
t′ = pairN Even 2 h′ typed as even numbers. Then t and t′ are not considered equal because

TYPES 2020



6:6 Predicate Subtyping with Proof Irrelevance in LPMT

they don’t have the same proof (h and h′) that 2 is even. We end up with one even number
2 per proof that 2 is even.

As stated in [13], most mathematicians seek convertibility of t and t′ and care more about
what h and h′ prove than the proofs themselves. To this end, PVS-Cert has proof irrelevant
pairs: proofs attached to terms are not taken into account when checking the equivalence of
two pairs. This property is embedded in the equivalence relation ≡

pvs
used in the conversion

rule of PVS-Cert which must verify Equation (5).
Equation (6) allows the projection to compute, but because of proof irrelevance, we

cannot allow the right projection to compute, otherwise, all terms of type Prop would be
considered equivalent.

A proof of T ≡β U or T ≡
pvs

U can use untyped intermediate terms, which can be
problematic when one wants to prove some property on typed terms only. In the case of ≡β ,
the problem is solved by using the fact that ↪→β is confluent, that is ≡β = ↪→∗

β←↩∗β . We now
prove a similar property for ≡

pvs
:

▶ Lemma 2 (Properties of the PVS-Cert conversion). Let ↪→βfst = ↪→β ∪ ↪→fst where ↪→fst
is the closure by substitution and context of Equation (6) oriented from left to right, and let
↔pi be the closure by substitution and context of Equation (5) and =pi=↔∗

pi.
For all relation on terms R, let Rty be the restriction of R to typable terms. Then:
≡
pvs
⊆ ↪→∗

βfst=pi←↩∗βfst

↪→βfst preserves typing: if Γ ⊢PVS M : T and M ↪→βfst M ′, then Γ ⊢PVS M ′ : T

≡
pvs

ty ⊆
(

↪→ty
βfst

)∗ (
↔ty

pi

)∗ (
←↩ty

βfst

)∗
,

Proof. A relation ↪→ is confluent modulo some relation E if ←↩∗↪→∗ ⊆ ↪→∗ E ←↩∗. If E = ∅,
we simply say that ↪→ is confluent.

First note that ↪→βfst is confluent since it can be seen as a Combinatory Reduction System
that is orthogonal (i.e. whose rules are left-linear and non-overlapping) [22].

We now prove that ↔pi steps can be postponed: ↔pi↪→βfst ⊆ ↪→=
βfst=pi, where ↪→=

βfst
is the reflexive closure of ↪→βfst. Assume that the ↔pi step is at position p and the
↪→βfst step is at position q. If p and q are disjoint, this is immediate. If p is above
q, we have pair T U M N1 ↔pi pair T U M N2 and either pair T U M N2 ↪→fst M or
pair T U M N2 ↪→βfst pair T ′ U ′ M ′ N ′

2. In the first case, pair T U M N1 ↪→fst M . In
the second case, pair T U M N1 ↪→=

βfst pair T ′ U ′ M ′ N1 ↔pi pair T ′ U ′ M ′ N ′
2. Finally,

if q is above p, we have (λx : T, M)N ↔pi (λx : T ′, M ′)N ′ ↪→βfst {x 7→ N ′}M ′ and
(λx : T, M)N ↪→βfst {x 7→ N}M =pi {x 7→ N ′}M ′, and similarly in the case of a fst step.

Hence, (1) ↪→βfst is confluent modulo =pi, that is, ≡
pvs
⊆ ↪→∗

βfst=pi←↩∗βfst.
We now prove that (2) ↪→β preserves typing. To this end, it suffices to prove that, if

(x : T )→ U and (x : T ′)→ U ′ are typable, and (x : T )→ U ≡
pvs

(x : T ′)→ U ′, then T ≡
pvs

T ′

and U ≡
pvs

U ′ (see [9] for more details), which follows from (1).
We now prove that (3) ↪→fst preserves typing. Assume that fst T0 P0 (pair T1 P1 M N) is

of type C. By inversion of typing rules, pair T1 P1 M N is of type psub T0 P0 and T0 ≡
pvs

C.
By inversion again, M is of type T1 and psub T0 U0 ≡

pvs
psub T1 P1. By (1), T0 ≡

pvs
T1 and

P0 ≡
pvs

P1. Therefore, M is of type C.
Next, note that (4) =pi =⇔pi where⇔pi consists in applying several↔pi steps at disjoint

positions. Indeed, if t = pair T P M N1 ↔pi u = pair T P M (. . . (pair T ′ P ′ M ′ N ′
1) . . .)

↔pi v = pair T P M (. . . (pair T ′ P ′ M ′ N ′
2) . . .), then t↔pi v as well.
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Moreover, we have (5)⇔ty
pi = (↔ty

pi)∗. Indeed, A⇔ty
pi B means that we can obtain B from

A by replacing some subterms of A, that are typable since A is typable, by some subterms of
B, that are typable since B is typable.

We can now conclude as follows. Assume that A ≡
pvs

ty B. By (1), there are A′ and B′ such
that A ↪→∗

βfst A′ =pi B′ ←↩∗βfst B. By (2), (3), (4) and (5), A(↪→ty
βfst)∗A′(↔ty

pi)∗B′(←↩ty
βfst)∗B.

◀

3 Encoding PVS-Cert in λΠ/≡

We provide an encoding of PVS-Cert into the logical framework λΠ/≡. This encoding
allows to express terms of PVS-Cert into λΠ/≡. Because logical frameworks strive to
remain minimal, constructions such as pair or psub are not built-in: they must be expressed
into the language of the logical framework through an encoding. We hence define the symbols
allowing to emulate predicate subtyping using the terms of λΠ/≡.

Definition of λΠ/≡

λΠ/≡ is the family of Type Systems Modulo whose sorts, axioms and product rules are:
sorts SλΠ = {TYPE, KIND},
axiom AλΠ = {(TYPE, KIND)},
product rules PλΠ = {(TYPE, TYPE, TYPE), (TYPE, KIND, KIND)}.

3.1 Encoding Simple Type Theory
The encoding of λHOL given in Figures 4 and 5 follows the method settled in [12] for pure
type systems.

In the following, we write the function symbols of a signature in blue and the other
constructions of λΠ/≡ in black, to better distinguish them.

The general idea is to manipulate types and terms of λHOL as terms of λΠ/≡. Sorts
are both objectified as type and prop and encoded as types by Kind, Type and Prop in
Equations (7)–(11). Sorts as types are used to type sorts as objects to encode the axioms
in A. Terms of type Type are encoded as terms of type Type. These encoded types can
be interpreted as λΠ/≡ types with function El (12). Similarly, propositions are reified as
terms of type prop and interpreted by function Prf. For instance, given a λHOL type T

and a λHOL proposition P both encoded as λΠ/≡ terms, the abstractions λx : El T , x and
λh : Prf P , h are valid λΠ/≡ terms. The signature exposed in Figure 4 is noted ΣλHOL.

Equations (18)–(20) are used to map encoded products to λΠ/≡ products. Equation (17)
makes sure that the objectified sort prop is the same as the sort Prop when interpreted as a
type.

3.2 Encoding Predicate Subtyping
Predicate subtypes are defined in Equation (21) as encoded types (i.e. terms of type Type)
built from encoded type t and predicate defined on t. Pairs are encoded in Equation (22),
where the second argument is the predicate that defines the type of the pair. The two
projections are encoded in Equations (23) and (24), and we note the signature of Figure 6
Σpsub.

The signature used to encode PVS-Cert into λΠ/≡ is ΣPC = ΣλHOL ∪Σpsub. The terms
of the encoding are thus the terms of T (ΣPC,SλΠ,V). The typing rules are those of λΠ/≡

TYPES 2020



6:8 Predicate Subtyping with Proof Irrelevance in LPMT

⊢ Kind : TYPE : KIND (7)
⊢ Type : TYPE : KIND (8)
⊢ Prop : TYPE : KIND (9)
⊢ type : Kind : TYPE (10)
⊢ prop : Type : TYPE (11)

t : Type ⊢ El t : TYPE : KIND (12)
p : Prop ⊢ Prf p : TYPE : KIND (13)

t : Type, p : El t→ Prop ⊢ ∀ t p : Prop : KIND (14)
p : Prop, q : Prf p→ Prop ⊢ p⇒ q : Prop : KIND (15)
t : Type, u : El t→ Type ⊢ t⇝ u : Type : KIND (16)

Figure 4 Signature ΣλHOL of the encoding of λHOL into λΠ/≡.

El prop = Prop (17)
Prf(∀ t p) = (x : El t)→ Prf(p x) (18)

Prf(p⇒ q) = (h : Prf p)→ Prf(q h) (19)
El(t⇝ u) = (x : El t)→ El(u x) (20)

Figure 5 Equations of the encoding of λHOL into λΠ/≡.

with the signature ΣPC and the congruence ≡
λΠ

generated by Equations (5), (6), (17)–(20),
and (β) where, in Equations (5) and (6), psub, pair and fst (PVS-Cert symbols in black)
are replaced by psub, pair and fst (λΠ/≡ symbols in blue).

3.3 Translation of PVS-Cert Terms Into λΠ/≡ Terms

▶ Definition 3 (Translation). Let Γ be a well formed context.
The term translation of the terms M typable in Γ, noted [M ]Γ, is defined in Figures 7
and 8.
The type translation of Kind and the terms M typable by a sort in Γ, noted JMKΓ, is
defined in Figure 9.
The context translation JΓK is defined by induction on Γ as

J∅K = ∅; JΓ, x : T K = JΓK , x : JT KΓ

▶ Proposition 4. The translation function [·]· that maps a context and a PVS-Cert term
typable in this context to a λΠ/≡ term is well-defined.

Proof. After Lemma 2 and [8, Lemma 41], the types of a term are unique up to equivalence.
Moreover, the arguments of the translation function are decreasing with respect to the (strict)
subterm relation. ◀



G. Hondet and F. Blanqui 6:9

t : Type, p : El t→ Prop ⊢ psub t p : Type : TYPE
(21)

t : Type, p : El t→ Prop, m : El t, h : Prf(p m) ⊢ pair t p m h : El(psub t p) : TYPE
(22)

t : Type, p : El t→ Prop, m : El(psub t p) ⊢ fst t p m : El t : TYPE
(23)

t : Type, p : El t→ Prop, m : El(psub t p) ⊢ snd t p m : Prf(p (fst t p m)) : TYPE
(24)

Figure 6 Signature Σpsub of the encoding of predicate subtyping into λΠ/≡.

[x]Γ = x

[Prop]Γ = prop
[Type]Γ = type
[M N ]Γ = [M ]Γ [N ]Γ

[λx : T, M ]Γ = λx : El [T ]Γ, [M ]Γ,x:T

[(x : T )→ U ]Γ = [T ]Γ⇝
(

λx : JT KΓ, [U ]Γ,x:T

)
when Γ ⊢PVS T : Type and Γ, x : T ⊢PVS U : Type

[(x : T )→ P ]Γ = ∀ [T ]Γ
(

λx : JT KΓ, [P ]Γ,x:T

)
when Γ ⊢PVS T : Type and Γ, x : T ⊢PVS P : Prop

[(h : P )→ Q]Γ = [P ]Γ⇒
(

λh : JP KΓ, [Q]Γ,h:P

)
when Γ ⊢PVS P : Prop and Γ, h : P ⊢PVS Q : Prop

Figure 7 Translation from λHOL to λΠ/≡.

3.4 Examples of Encoded Theories
We provide here some examples that take advantage of proof irrelevance or predicate subtyping.
While these examples could have been presented in PVS-Cert, we unfold them into the
encoding of PVS-Cert into λΠ/≡ to show how it can be used in practice. All examples are
available as Dedukti files1 and can be type-checked with Lambdapi2. In the examples, the
first two arguments of fst, pair and snd are implicit.

▶ Example 5 (Stacks with predicate subtypes). This example comes from the language reference
manual of PVS [26] and illustrates the use of predicate subtyping and the generation of
TCC through a specification of stacks in Figure 10.

1 directory paper of https://github.com/Deducteam/personoj rev. 9807710 (published on Feb. 7, 2021)
2 https://github.com/Deducteam/lambdapi, rev. 9a90b1be (published on Feb. 18, 2021)
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[psub T P ]Γ = psub [T ]Γ [P ]Γ
[pair T P M N ]Γ = pair [T ]Γ [P ]Γ [M ]Γ [N ]Γ

[fst T P M ]Γ = fst [T ]Γ [P ]Γ [M ]Γ
[snd T P M ]Γ = snd [T ]Γ [P ]Γ [M ]Γ

Figure 8 Translation from PVS-Cert to λΠ/≡.

JT KΓ = El [T ]Γ when Γ ⊢PVS T : Type;
JT KΓ = Prf [T ]Γ when Γ ⊢PVS T : Prop;

JKindK = Kind
JTypeK = Type

Figure 9 Translation of types from PVS-Cert to λΠ/≡.

Predicate subtyping is used to define the type of nonempty stacks, which allows the
function pop to be total. Symbol pop_push is an axiom that uses Leibniz equality = on
stacks. In the definition of the theorem pop2push2, term ?0 is a meta-variable that must be
instantiated with a proof that the first argument of the pair is not empty, and represents,
in the encoding, the TCC generated by PVS. We can thus see that the concept of TCC
of PVS has a clear and explicit representation in the encoding, allowing its benefits to be
transported to λΠ/≡.

▶ Example 6 (Bounded lists and proof irrelevance). This example is inspired by sorted lists in
the Agda manual [33]3. Because we have not encoded dependent types, we cannot encode
the type of lists bounded by a variable. We thus declare the bound in the signature. The
specification is given in Figure 11.

We first notice that the predicate subtype allows to encode the proof head ≤ bound
passed as a standalone argument in Agda in the type of an argument in our encoding,
providing a shorter type for bcons. In Figure 12, we define two (non-convertible) axioms
p1 and p2 as proofs of zero ≤ suc bound, and two lists containing zero but proved to be
bounded by suc bound using p1 for ℓ1 and p2 for ℓ2. Type checking ℓi requires axioms pi.
These axioms are like TCC’s in PVS. Assuming that one wants to prove ℓ1 = ℓ2, had we
lacked proof irrelevance, we would have had to prove that p1 ≡ p2, which is not possible. In

3 https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html

symbol stack : Type ; symbol empty : El stack; symbol t : Type ;
symbol nonempty_stack?(s : El stack) := s ̸= empty;
symbol nonempty_stack := psub nonempty_stack?;
symbol push : El stack→ El t→ El nonempty_stack;
symbol pop : El nonempty_stack→ El stack;
symbol pop_push(x : El t)(s : El stack) : Prf(pop(push x s) = s);
symbol pop2push2(x y : El t)(s : El stack)

: Prf(pop(pair (pop(push x (fst(push y s)))) ?0) = s) := . . . ;

Figure 10 Specification for stacks.

https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html
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symbol zero : ElN;
symbol suc(n : ElN) : ElN;
symbol ≤ (n m : ElN) : Prop ;

symbol bound := . . . ;
symbol blist : Type ;
symbol bnil : El blist ;

symbol bounded := psub(λn, n ≤ bound);
symbol bcons(head : El bounded)(tail : El blist) : El blist ;

Figure 11 Specification of sorted lists.

symbol p1 : Prf(zero ≤ suc bound);
symbol p2 : Prf(zero ≤ suc bound);

symbol ℓ1 := bcons(pair zero p1) bnil ;
symbol ℓ2 := bcons(pair zero p2) bnil ;

Figure 12 Definition of two sorted lists with different proofs.

our case, the equality is simply the result of refl ℓ1.

4 Correctness of the Encoding

In this section, we prove that the encoding is correct: if a PVS-Cert type is inhabited then
its translation is inhabited too. Any type-checker for λΠ/≡ could thus be used to recheck
PVS-Cert typings. However, to make sure that our encoding is faithful (the encoding that
maps any PVS-Cert term to the same well-typed ground term is correct, but useless),
completeness (also called conservativity) ought to be proved too: a PVS-Cert type is
inhabited whenever its encoding is inhabited. However, as completeness is often difficult to
establish (see [3, 34]), we leave it for future work.

In the following,
s stands for Type, Prop or Kind;
T, U designate terms of type Type;
M, N, t, u designate expressions that have a type T : Type;
P, Q are propositions of type Prop, or predicates of type T → Prop;
h stands for a proof typed by a proposition.

Typing judgements in PVS-Cert are noted with ⊢PVS, and typing judgements in λΠ/≡ are
noted with ⊢λΠ/≡.

▶ Lemma 7 (Preservation of substitution). If Γ, x : U, ∆ ⊢PVS M : T and Γ ⊢PVS N : T , then
[{x 7→ N}M ]Γ,{x 7→N}∆ = {x 7→ [N ]Γ} [M ]Γ,x:U,∆.

Proof. By structural induction on M . ◀

▶ Lemma 8 (Preservation of equivalence). Let M and N be two well typed terms in Γ.
1. If M ↔

pvs
N , then [M ]Γ ≡

λΠ
[N ]Γ.

2. If M ≡
pvs

N , then [M ]Γ ≡
λΠ

[N ]Γ.

Proof. Each item is proved separately.
1. Taking back the notations of the proof of Lemma 2, we show that

a. computational steps of ↪→ty
βfst are preserved,
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6:12 Predicate Subtyping with Proof Irrelevance in LPMT

b. equational steps of ↔ty
pi are preserved.

These two properties are shown by induction on a context C such that M = C[M̂ ] R C[N̂ ] =
N where R is any of the two relations applied at the head of M̂ and N̂ . We will only
detail the base cases of inductions, the other cases being straightforward.

Preservation of Computation There are two possible cases,
Case M = ((λx, t) u) ↪→β {x 7→ u} t, we have,

[(λx : U, t) u]Γ = ((λx : JUKΓ, [t]Γ,x:U ) [u]Γ) = {x 7→ [u]Γ} [t]Γ ≡
λΠ

[{x 7→ u} t]Γ

where the equivalence is given by Lemma 7.
Case M = fst T1 P1 (pair T0 P0 t h) ↪→fst t, we have the following equalities

[fst T1 P1 (pair T0 P0 t h)]Γ = fst [T1]Γ [P1]Γ [pair T0 P0 t h]Γ
= fst [T1]Γ [P1]Γ (pair [T0]Γ [P0]Γ [t]Γ [h]Γ)
≡
λΠ

[t]Γ

with the last equivalence provided by Equation (6).
Preservation of Proof Irrelevance Assume that M = pair T P t h↔pi pair T P t h′

[pair T P t h]Γ = pair [T ]Γ [P ]Γ [t]Γ [h]Γ ≡
λΠ

pair [T ]Γ [P ]Γ [t]Γ [h′]Γ = [pair T P t h′]Γ

where the equivalence is given by Equation (5).

2. By Lemma 2, we know that there are H0 and H1 such that M(↪→ty
βfst)∗H0(↔ty

pi)∗H1

(←↩ty
βfst)∗N . For R ∈ {↔pi, ↪→βfst}, we have t(Rty)∗u ⇒ [t] ≡

λΠ
[u] by induction on the

number of Rty steps, using Item 1 for the base case. Therefore, [M ]Γ ≡
λΠ

[H0]Γ ≡
λΠ

[H1]Γ ≡
λΠ

[N ]Γ, which gives, by transitivity of ≡
λΠ

, [M ]Γ ≡
λΠ

[N ]Γ.
◀

▶ Theorem 9 (Correctness). If Γ⊢PVS M : T , then JΓK⊢λΠ/≡ [M ]Γ : JT KΓ. For all Γ, if Γ⊢PVS WF ,
then JΓK ⊢λΠ/≡ WF .

Proof. By induction on the typing derivation of Γ ⊢PVS M : T and case distinction on the last
inference rule.
empty ∅ ⊢PVS WF

We have J∅K = ∅ and ∅ ⊢λΠ/≡ WF .

decl
Γ ⊢PVS T : s

v ̸∈ Γ
Γ, v : T ⊢PVS WF

We have JΓ, v : T K = JΓK , v : JT KΓ. By induction hypothesis, we have JΓK⊢λΠ/≡ [T ]Γ : JsKΓ,
for s ∈ S and hence JsKΓ is either Prop by conversion (because El prop ≡

λΠ
Prop),

Type or Kind. If s is Kind, then T is Type. Since JΓK ⊢λΠ/≡ Type : TYPE because
ΣPC(Type) = (⃗0, (TYPE, KIND)), we can derive with the declaration rule JΓ, v : T K⊢λΠ/≡ WF

because JTypeK = Type. Otherwise, s is Type or Prop and JT K = ξ [T ]Γ where ξ is El
or Prf. By typing of El or Prf (with the signature), JΓK ⊢λΠ/≡ JT KΓ : TYPE and finally,
JΓ, v : T K ⊢λΠ/≡ WF by application of the declaration rule.

var
Γ ⊢PVS WF

v : T ∈ Γ
Γ ⊢PVS v : T

By definition, [v] = v and by induction hypothesis, JΓK ⊢λΠ/≡ WF . Since v : T ∈ Γ, by
definition, there is ∆ ⊊ Γ, ∆ ⊢PVS WF such that, v : JT K∆ ∈ JΓK. Hence JΓK ⊢λΠ/≡ v : JT K∆
and finally JΓK ⊢λΠ/≡ v : JT KΓ because contexts are well formed.
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sort
Γ ⊢PVS WF

(s1, s2) ∈ A
Γ ⊢PVS s1 : s2

First, [s1] is either prop or type. In the former case, Js2K = Type and because JΓK⊢λΠ/≡WF

(by induction hypothesis) and ΣPC(prop) = (⃗0, (Type, TYPE)), we have JΓK ⊢λΠ/≡ prop :
Type. The same procedure holds for s1 = Type and s2 = Kind.

prod
Γ ⊢PVS T : s1 Γ, x : T ⊢PVS U : s2 (s1, s2, s3) ∈ P

Γ ⊢PVS (x : T )→ U : s3
We only detail for the product (Type, Prop, Prop), others being processed similarly. We
have [(x : T )→ U ]Γ = ∀ [T ]Γ

(
λx : JT KΓ, [U ]Γ,x:T

)
. By induction hypothesis, JΓK ⊢λΠ/≡

[T ] : JTypeK, and thus JΓK ⊢λΠ/≡ [T ] : Type by definition. By induction hypothesis,
JΓ, x : T K ⊢λΠ/≡ [U ] : JPropK, and thus JΓK , x : JT KΓ ⊢λΠ/≡ [U ] : Prop by definition of J·K
and conversion which yields JΓK ⊢λΠ/≡ λx : JT KΓ, [U ]Γ,x:T : JT KΓ → Prop.
To finish, we obtain JΓK ⊢λΠ/≡ λx : JT KΓ, [U ]Γ,x:T : (El [T ]Γ)→ Prop by conversion. Using
the typing signature ΣPC, JΓK ⊢λΠ/≡ ∀ [T ]Γ

(
λx, JT KΓ[U ]Γ,x:T

)
: Prop which becomes, by

conversion Prop ≡
λΠ

El prop and definition of J·KΓ: El prop = JPropK, hence, JΓK ⊢λΠ/≡

∀ [T ]Γ
(

λx, JT KΓ[U ]Γ,x:T

)
: JPropK

abst
Γ, v : T ⊢PVS M : U Γ ⊢PVS (v : T )→ U : s

Γ ⊢PVS λv : T, M : (v : T )→ U

We have [λv : T, M ]Γ = λv : JT KΓ, [M ]Γ. By induction hypothesis, JΓ, v : T K ⊢λΠ/≡

[M ]Γ,v:T : JUKΓ,v:T and by definition of J·K, JΓK , v : JT KΓ ⊢λΠ/≡ [M ]Γ,v:T : JUKΓ,v:T . Apply-
ing the abstraction rule in λΠ/≡, we obtain JΓK ⊢λΠ/≡ λv : JT KΓ, [M ]Γ,v:T : (v : JT KΓ)→
JUKΓ,v:T (with the product well typed in λΠ/≡ since JUK and JT K are both of type TYPE
and thus the product is of type TYPE as well).
Finally, we proceed by case distinction on sorts sT and sU such that Γ ⊢PVS T : sT and
Γ ⊢PVS U : sU . We will detail the case (sT , sU ) = (Type, Prop). We have (v : JT KΓ) →
JUKΓ,v:T ≡

λΠ
Prf(∀ [T ]Γ (λx : JT KΓ, [U ]Γ,v:T )) = J(v : T )→ UKΓ which allows to conclude.

app
Γ ⊢PVS M : (v : T )→ U Γ ⊢PVS N : T

Γ ⊢PVS M N : {v 7→ N}U

By induction hypothesis and conversion, we have JΓK ⊢λΠ/≡ [M ]Γ : (v : JT KΓ)→ JUKΓ,v:T
(shown by case distinction on the sorts of T and U) and JΓK ⊢λΠ/≡ [N ]Γ : JT KΓ. Since
[M N ]Γ = [M ] [N ], we obtain using the application rule JΓK⊢λΠ/≡[M N ] : {v 7→ [N ]Γ} JUKΓ,v:T
and by Lemma 7, we obtain JΓK ⊢λΠ/≡ [M N ] : J{v 7→ N}UKΓ.

conv

Γ ⊢PVS M : U Γ ⊢PVS T : s T ≡
pvs

U

Γ ⊢PVS M : T

By hypothesis, there is a type U such that Γ ⊢PVS M : U , and T ≡
pvs

U , and there is a sort s

such that Γ ⊢PVS T : s. By induction hypothesis, JΓK ⊢λΠ/≡ [M ]Γ : JUKΓ.
We now prove that if T ≡

pvs
U , then JT KΓ ≡

λΠ
JUKΓ and Γ ⊢λΠ/≡ JT K : TYPE: it will allow us

to conclude using the conversion rule in λΠ/≡.
By Lemma 2, we have T ↪→∗

βfst T ′ =pi U ′ ←↩∗βfst U and T (↪→ty
βfst)∗T ′(↔ty

pi)∗U ′(←↩ty
βfst)∗U .

Because ↪→βfst preserves typing (Lemma 2), we have Γ ⊢PVS U ′ : s. By [8, Lemma 43],
Γ ⊢PVS T : s. By Lemma 8, [T ]Γ ≡

λΠ
[U ]Γ

If s = Prop, then JT KΓ = Prf [T ]Γ ≡
λΠ

Prf [U ]Γ = JUKΓ. Moreover we have JΓK ⊢λΠ/≡ JT KΓ :
TYPE because, by induction hypothesis, [T ]Γ : JPropK = El [Prop] = El prop = Prop, and
(p : Prop ⊢ΣPC Prf p : TYPE : KIND). If s = Type, JT KΓ = El [T ]Γ ≡

λΠ
El [U ]Γ = JUKΓ. By

induction hypothesis, [T ]Γ : JTypeKΓ = Type. If s = Kind, then T = U = Type (Type is
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the only inhabitant of Kind). Finally, JTypeK = Type : TYPE.

sig

−−−→
x : T ⊢ U : s

(
Γ ⊢ ti :

{
(xj 7→ tj)j<i

}
Ti

)
i Σ(f) = (−−→x, T , U, s)

Γ ⊢ f (⃗t) :
{−−−→

x 7→ t
}

U

We first observe from Figure 6 that for each f ∈ ΣPVS, we have a counterpart symbol
f̂ ∈ ΣPC such that if ΣPVS(f) =

(−−−→
x : T , U, s

)
, then ΣPC(f̂) =

(−−−→
x, JT K, JUK−−→

x:T , TYPE
)

.
By induction hypothesis, for each i, we have JΓK ⊢λΠ/≡ [ti]Γ : J{(xj 7→ tj)j<i}TiKΓ which
we can write as, thanks to Lemma 7, JΓK ⊢λΠ/≡ [ti]Γ :

{
(xj 7→ [tj ]Γ)j<i

}
JTiKΓ.

Now, using the signature rule, we are able to conclude JΓK ⊢λΠ/≡ f̂
−→
[t]Γ :

{−−−−→
x 7→ [t]

}
JUK.

By Lemma 7, we obtain JΓK ⊢λΠ/≡ f̂
−→
[t]Γ :

r{−−−→
x 7→ t

}
U

z
. Moreover, we have taken care to

define the translation in Figure 8 such that
[
f(−→t )

]
= f̂
−→
[t]. ◀

5 Mechanised Type Checking

The encoding of PVS-Cert into λΠ/≡ can be used to proof check terms of PVS-Cert
using a type checker for λΠ/≡. But because of the rule

Γ ⊢ t : B Γ ⊢ A : s A ≡ B

Γ ⊢ t : A (λΠ/≡-conv)

type checking is decidable only if ≡ is. A decidable relation equivalent to ≡ can be obtained
using the convertibility relation stemming from the rewriting relation of a convergent rewrite
system, yielding the type system λΠ/R (R for rewriting). Consequently, while type checkers
cannot be provided for λΠ/≡ in general, they can for λΠ/R, as can be seen with Dedukti4.
Such rewrite systems can be obtained through completion procedures [6]. However, completion
procedures rely on a well-founded order that cannot be provided here because of Equation (5)
which cannot be oriented since each side of the equation has a free variable which is not in
the other side.

A possible solution would be to rewrite all proofs of a pair to a canonical proof with a
rule of the form

pair t p m h ↪→ pair t p m (canon t p m)

where t : Type, p : El t → Prop, m : El t ⊢ canon t p m : Prf(p m) : TYPE. But this creates a
rewrite rule that duplicates three variables.

Otherwise, as noted in [23], the addition of a symbol to the signature can circumvent the
issue. Hence, we add a symbol for proof irrelevant pairs, and make it equal to pairs

t : Type, p : El t→ Prop, m : El t ⊢ pair† t p m : El(psub t p) : TYPE (25)
pair t p m h = pair† t p m (26)

thus (pair t p m h) ≡ (pair† t p m) ≡ (pair t p m h′). The new set of identities given
by Equations (6), (17)–(20), and (26) can be completed into a rewrite system R which is
equivalent to the equations:

4 https://github.com/Deducteam/lambdapi.git

https://github.com/Deducteam/lambdapi.git
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(λx : T, t) u ↪→ {x 7→ u} t (27)
pair t p m h ↪→ pair† t p m (28)
fst t0 p0 (pair† t1 p1 m) ↪→m (29)

El prop ↪→Prop (30)
Prf(∀ t p) ↪→ (x : El t)→ Prf(p x) (31)
El(t⇝ u) ↪→ (x : El t)→ El(u x) (32)
Prf(p⇒ q) ↪→ (h : Prf p)→ (Prf(q h))

(33)

Figure 13 Rewrite system R resulting from the completion of the equations of the encoding of
PVS-Cert in λΠ/≡.

▶ Proposition 10. Let ↪→R be the closure by context and substitution of the rewrite rules
of Figure 13, and ≡R be the smallest equivalence containing ↪→R. Then, for all M, N ∈
T (ΣPC,SλΠ,V), if M ≡

λΠ
N then M ≡R N .

Proof. It suffices to prove that every equation of PVS-Cert is included in ≡R. This is
immediate for the Equations (17)–(20) and (β) since they are equal to the rules (27) and (30)–
(33). For the Equation (5), we have pair t p m h0 ↪→R pair† t p m ←↩R pair t p m h1. Finally,
for the Equation (6), we have fst t0 p0 (pair t1 p1 m h) ↪→R fst t0 p0 (pair† t1 p1 m) ↪→R m. ◀

▶ Remark 11. Rewrite system R is confluent because it is orthogonal.
Termination of R is required to obtain the decidability of ≡R. A possible approach to
prove it would be to extend the termination model of λHOL described in [15].
In order to prove the completeness of the encoding, that is, the fact that a type is
inhabited whenever its encoding is, it could be useful to have the reciprocal implication,
that is, if M ≡R N and M, N ∈ T (ΣPC,SλΠ,V), then M ≡

λΠ
N . We leave this for future

work too.

A priori, the introduction of pair† allows one to craft terms that cannot be proof checked
in PVS-Cert. Indeed, given a predicate Even on natural numbers, the term (pair† N Even 3)
is the encoding of (pairN Even 3 h) which cannot be type checked in PVS-Cert since there
is no proof h that 3 is even. However, Dedukti relies on a system of modules and tags
attached to symbols to define where and how symbols can be used. A symbol tagged protected
cannot be used to build terms outside of the module where it is defined, but it may appear
during type checking because of conversion, a trick first introduced in [35] and used also for
encoding Cumulative Type Systems in λΠ/≡ [34]. In our case, one may protect pair† in the
module that defines the encoding of PVS-Cert, so that users of the encoding are forced to
use pair.

Conclusion

This work provides an encoding of predicate subtyping with proof irrelevance into the λΠ-
calculus modulo theory, λΠ/≡ [4]. We first recall PVS-Cert, an extension of higher-order
logic with predicate subtyping and proof irrelevance [17]. We then provide a λΠ/≡ signature
to encode terms of PVS-Cert, and prove that the encoding is correct: if a PVS-Cert
type is inhabited, then its translation in λΠ/≡ is inhabited too. Finally, we show that the
equational theory of our encoding is equivalent to a confluent set of rewrite rules which
enable us to use Dedukti to type check encoded specifications.

However, two important problems are left open. First, is our encoding complete, that is,
is a PVS-Cert type inhabited if its translation is? Second, is the confluent rewrite system
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used in the encoding terminating? We believe that these two properties hold but leave their
difficult study for future work.

Perspectives

The encoding of PVS-Cert in λΠ/R is the stepping stone towards an automatic translator
from PVS to Dedukti. Indeed, PVS does not have proof terms in its syntax, and con-
sequently type checking is undecidable. The creation of PVS-Cert allows to convert PVS
terms to a syntax whose type checking is decidable. This was the work of F. Gilbert in [17].
Now we are able to express this decidable syntax in λΠ/R and hence in Dedukti. However,
the type system proposed here only allows to coerce from a type to its direct supertype or
a subtype, that is, we can go from (psub (psub ι P ) Q) to psub ι P in one coercion, but we
cannot coerce from (psub (psub ι P ) Q) to ι, whereas PVS can. Consequently, an algorithm
to elaborate the correct sequence of coercions is needed to obtain terms that can be type
checked in Dedukti.

Other features of PVS can be integrated into PVS-Cert and the encoding: dependent
types like (psub list (λℓ, length ℓ = n)), recursive definitions of functions, and dependent
records. With those features encoded, almost all the standard library5 of PVS can be
translated to Dedukti.

Finally, while the previous points were concerned with the translation of specifications
from PVS, we may also want to translate proofs developed in PVS. These proofs are witnesses
of type correctness conditions (TCC), which are required to type check terms. Since PVS is
a highly automated prover, proof terms often come from application of complex tactics that
cannot be mimicked into Dedukti. However, proof terms may either be provided by hand,
emulating the interaction provided by TCC’s, or we may call external solvers [19].
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