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Abstract: In this paper, we present a design of an all-fiber source of correlated photon pairs 
based on standard telecommunications tapered fibers. We examine the generation of correlated 
photon pairs using parametric process 𝜒(")  in silica tapered optical fibers. This nonlinear 
process is ensured thanks to surface dipole and bulk multipole nonlinearities. The process of 
photons creation is modeled by taking into account the vector aspect of the propagation of the 
optical field in a silica nanofiber. The phase matching is provided by propagating the pump 
field in one spatial mode, while generating a photon pair in another spatial mode. The 
generation efficiency of photon pairs depends on diameter uniformity of the nanofiber after the 
manufacturing process. We size this nanofiber for a good optimization of photon pair 
generation efficiency, we report that the tolerance in diameter uniformity is 𝛥𝑑 = 2	nm for a 
generation rate of photon pairs estimated to 𝑁$% ≈ 22	000	pairs/s, for 1 W power pump and 
a nanofiber length of 1.1 mm. Deposits on the nanofiber can be used in order to relax the 
manufacturing constraints on diameter to maximize the generation rate of photon pairs. As an 
example, the use of Polytetrafluoroethylene (PTFE) on the nanofiber applied as a cladding 
whose thickness is infinite makes it possible to relax the constraints on the nanofiber diameter. 
For the same 𝛥𝑑 = 2	nm, a generation rate of photon pairs estimated to 𝑁$% ≈ 78	000	pairs/s 
for 1 W power pump and a nanofiber length of 2.4 mm is predicted. 

© 2021 Optical Society of America 

1. Introduction 
Optical fibers are a key component for quantum communications systems as a privileged media 
for qubit transportation due to their very low loss for propagating photons. They are also easily 
connected to other devices used to generate, process and detect these photons [1-5]. 
Nevertheless, this interfacing is not perfect and the study of fibered components to realize 
sources of photon pairs or quantum processing devices is a very active research field. The basis 
of fibered source of photon pairs is Spontaneous Four Wave Mixing (FWM) [6-11], that allows 
good performances but also presents some limitations. The main limitation is related to the 
Spontaneous Raman Scattering that creates uncorrelated noise photons in the vicinity of the 
emitted photons that are usually rather close to the pump [5]. Moreover, the intensity 
dependence of the FWM mechanism, favors the pulse regime and fibers are less often operated 
in the CW regime [12]. Both limitations could be raised by using a second-order nonlinearity 
to generate the pairs of photons through Spontaneous Parametric Down Conversion (SPDC), a 
solution widely used in nonlinear crystals or waveguides [13,14] the most popular being 
Periodically Poled Lithium Niobate (PPLN) [15,16]. The problem is that silica is a 
centrosymmetric material that does not present naturally such a second-order nonlinearity in its 
bulk state. This problem had been solved using periodical poling of silica fibers [17,18] but that 
solution requires complex process to make the fiber nonlinear and to achieve phase matching 
and may encounter some stability problem over time.  

In this paper, we propose a new solution to realize SPDC in fibers using a tapered standard 
telecommunication fiber [19-23]. The second-order nonlinearity is established through surface 



dipole and bulk multipole nonlinearities, that are exalted due to the sub-wavelength diameter 
of the nanofiber. We first model the second-order nonlinear surface susceptibility at the surface 
of the silica nanofiber by taking into account the vector aspect of the propagation of the optical 
field. In a second step, we define modal phase matchings that are necessary to obtain SPDC. 
We size this nanofiber for a best optimization of photon pair generation efficiency. As an 
example, we propose to use Polytetrafluoroethylene (PTFE) as a deposit on the nanofiber in 
order to relax manufacturing constraints on the diameter and to maximize the generation rate 
of photon pairs. We end this paper by giving tolerances on the nanofiber diameter in order to 
give the best experimental approach and give an example of enhancement of the surface 
nonlinearity using nonlinear layer as a coating on the naked silica nanofiber in order to 
maximize photon pair generation rate. 

2. Theory and modeling 
2.1 Architecture of the nanofiber 

Nanofibers are produced by tapering fibers, typically standard telecommunication fibers whose 
diameter is 125 µm, to diameters lower than half a micron. They can be obtained via flame-
brushing techniques [24,25]. A heater softens a section of this fiber, while its two ends are 
pulled apart, the resulting object is called a nanofiber. This tapered optical fiber is described in 
Figure 1. It is a waveguide with circular symmetry made up of a nanofiber connected to two 
tapers which are necessary to easily and efficiently inject and collect light. Typically, nanofiber 
diameters are below 1 μm over lengths of up to a few centimeters. The small diameter of the 
tapered sections favors the nonlinear effects, while the non-tapered sections make it possible to 
connect this tapered fiber with the fibers of the telecommunication networks with very low 
losses.  

 

Fig. 1. Principle of SPDC process for photon pair generation by modal phase matching in a 
tapered silica nanofiber. 

For SPDC, pump light is injected as a propagating mode through the left non-tapered fiber 
(see Fig. 1). Its power is confined inside the fiber core. During its propagation inside the left 
taper, this mode undergoes a gradually reduced radius and, at the same time, the mode is 
transformed into a cladding mode. Finally, when it reaches the nanofiber whose diameter is less 
than one micrometer, light is guided through the “silica-surrounding medium” interface. In this 
nanofiber section, light is thus sensitive to the surface second-order nonlinearities. We use these 
nonlinearities to create the correlated photons from the pump beam. These correlated photons 
propagate as modal fields of the nanofiber, which are gradually transformed by the right taper 
into core modes of the non-tapered fiber. 

Before addressing the modelling of nonlinear propagation inside the nanofiber, we first need 
a model for the linear propagation. We take into account the fact that the ratio “core diameter 
over fiber diameter” is kept constant during the pulling of the nanofiber. In the nanofiber 
section, this original core is thus totally negligible, its diameter being much smaller than the 
wavelength. Therefore, the nanofiber section is a two-layer medium: a uniform silica rod 
surrounded by an infinite uniform cladding.  

Light propagation in the linear regime in such circular step-index optical fibers has been 
widely studied in the literature [26]. Ready to use analytic expressions for the light fields and 
equations for calculating the propagation constants are tabulated in this reference. We rely on 



these exact approaches that take into account the vector nature of the light field. This is 
mandatory to finely describe light propagation in such small structures whose dimensions are 
comparable to the optical wavelength. 

2.2 Vectorial mode coupling 

If the linear propagation of light in two-layer nanofibers has been extensively described in the 
literature, this is not the case of vectorial propagation under second-order nonlinear 
susceptibility. To develop such a modelling, we decided to rely on an approach previously 
derived to study vectorial propagation in presence of third-order nonlinearities [27–30]. We use 
similar notations and formalism to transpose the derivation of these publications to the case of 
second-order nonlinear susceptibility. Below, we first introduce the notations for the modal 
fields in the absence of nonlinearity, then, in a second step, we will use these modes as a basis 
to derive the wave coupling due to the second-order nonlinearity.  

2.2.1 Mode propagation in the linear regime: unperturbed fields 

We first define the unperturbed optical modes as the vectorial modes of the nanofiber without 
loss and nonlinearity. Silica and cladding are the two isotropic media of this step-index fiber. 
They are described by refractive index n (which will either be that of silica core, or that of 
cladding depending on the position). In complex notations, in the Fourier domain and in the 
absence of sources, they obey the following Maxwell’s equations 

 

with the Fourier transformation given by 

 

𝜇& is the vacuum permeability, 𝜀& is the dielectric permittivity. F is either E the electric 
field, or H the magnetic field. Solving Maxwell’s equations for the unperturbed fields 

and results in a complete set of propagating modes. We label these transverse modes 
by subscript η. We now identify the wave frequencies by subscript ωl .	These modes form an 
orthonormal basis and can be expressed as follows [26,27] 

 

where 𝛽'( is the propagation constant of mode η with modal spatial distributions
and  𝑁'( is the 𝜂)* guided mode normalization constant at frequency ωl . If subscript

denotes another propagating modal field, and then the normalization 
constants are defined from the orthonormalization relations as [26,27]  
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with * the complex conjugate. Unit vector is along the nanofiber axis and the integration 

is conducted over plane 𝐴 perpendicular to  Expressions for fields 𝐞' and 𝐡' can be readily 
found in the literature for the step-index fibers we are studying here (for example in Chapter 12 
of [26]). 

2.2.2 Vectorial mode coupling by second-order nonlinearity 

The modes expressed by Eq. (3) form a complete orthonormal basis for any guided optical field 
propagating in the forward direction. Any electromagnetic fields and  
propagating through the nanofiber at frequency ωl can thus be written as follows [26,27] 

 

coefficients 𝑎'  are such that >𝑎'>  represents the square root of the 𝜂+%  forward mode 

power. Maxwell’s equations for these perturbed fields  and are given by 

 

where is the nonlinear electric polarization. We use the formalisms developed in [27-
30] by constructing function defined as 

 
Following Turner [27], we relate the unperturbed and perturbed fields using the reciprocal 

theorem [26] 

 

Using decomposition Eq. (5) and modal orthogonality Eq. (4), we immediately identify the 
left-hand side of the reciprocal theorem 

 

 appearing in the second member of Eq. (8) can also be readily calculated using the 
Maxwell’s equations Eq. (1) and Eq. (6) and the formula for the divergence of a cross-product 

 

 we replace the two expressions Eq. (9) and Eq. (10) into Eq. (8), and obtain the coupled-
wave equations 

 

We have as many equations Eq. (11) as frequencies and as transverse modes taken in the 
field decomposition. Nevertheless, the strength of mode-coupling described by the right-hand 
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side of Eq. (11) is significant only for modes that fulfill the phase matching condition. This 
restricts the number of interacting modes.  

Therefore, from now on, we are going to restrict the analysis of one wave at a short 
wavelength characterized by modal and frequency parameters (𝜂, 𝑙) = (𝜇, 𝑘) interacting with 
two other waves of different but longer wavelengths in the same other transverse mode, thus 
characterized by parameters (𝜂, 𝑙) = (𝜈, 𝑖) and (𝜈, 𝑗).  

This situation corresponds to sum-frequency generation SFG, (respectively difference 
frequency generation, DFG), in which the creation (respectively annihilation) of a photon at 
frequency ωk simultaneously occurs with the annihilation (respectively creation) of two photons 
at frequencies ωi and ωj. These frequencies are thus related by the energy conservation 
ωk=ωi +ωj. In case no photons are injected in modes (𝜈, 𝑖) and (𝜈, 𝑗), DFG restricts to the 
SPDC we are interested in Fig. 1.  

SFG, DFG and SPDC are described by a common set of coupled-wave equations. The 
evolutions of coefficients 𝑎'(𝑧, 𝜔() are thus expressed by 

 

where Δ𝛽 = 𝛽,- − 𝛽./ − 𝛽.0 is the phase mismatch, 𝜌123 is a normalized overlap integral 
describing the strength of SFG and 𝜌/423 and 𝜌0423 integrals for the strengths of DFG. These 
coefficients can be deduced from Eq. (11). For instance, 𝜌123 is expressed by  

 

where  

 

is the normalized dielectric polarization vector. We can get similar expressions for 
𝜌/423and 𝜌0423. Nevertheless, it is often more convenient to calculate these two coefficients 
from 𝜌123 from the following Manley-Rowe equations [31] 

 

Therefore, the problem of finding all these three coefficients comes down to finding the 
only coefficient 𝜌123. This is the purpose of the next paragraph. 

2.3 SFG conversion efficiency in silica nanofiber 

To calculate the expression for coefficient 𝜌123, we need to precisely detail the waveguide 
structure. The nanofiber is composed of two layers, silica interior immersed in an infinite 
isotropic medium which will either be air or a completely inert medium from the point of view 
of nonlinearity. We therefore completely neglect the nonlinearity of the second medium. We 
justify this choice because we will only use this second architecture to illustrate how the 
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structure can be optimized by the choice of an outside medium with a specific dispersion. We 
use the axis system depicted in Fig. 2.  

 

Fig. 2. Axis system in silica nanofiber. 

Silica is an isotropic medium generally considered to have 𝜒(") = 0. This affirmation is 
only valid in an infinite medium under dipolar approximation, two conditions not fulfilled in 
our geometry. Indeed, optical silica nanofibers present a surface nonlinearity and a bulk second-
order nonlinearity. This bulk nonlinearity originates from the spatial variation of the electric 
field vector, beyond the dipole approximation, i.e. extended to the quadrupole approximation 
and more (high order multipoles). This becomes a major mechanism for second-order 
processes.  

The nonlinear electric polarization appearing in expression of 𝜌123 in Eq. (13-14) can thus 
be decomposed into two contributions: the contribution of the bulk and the contribution of 
second-order nonlinear susceptibility of the surface such as 

 

2.3.1 Quadripolar bulk nonlinear polarization 

This polarization originates from the bulk of silica which is a homogeneous and isotropic 
medium with no free charges. For such a medium, the bulk nonlinear second-order polarization 
is composed of only two terms as [32,33] 

 

where parameters 𝛾, 𝛿 are the components of the quadrupolar nonlinear susceptibility.  

2.3.2 Surface nonlinear polarization 

The surface nonlinearity arises from a very thin silica layer in the transition region between the 
silica bulk and the external medium, and, potentially, from external molecules attached to it. 
This layer is much smaller than the optical wavelength and is thus assimilated to a surface. It is 
also much smaller than the nanofiber radius. Locally it is thus invariant under a rotation around 
its normal, that is around e5PPP⃗ . For such a surface, there are only 4 independent non vanishing 
tensor elements for the second-order susceptibility [34] 
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Therefore, the nonlinear second-order surface polarization is also composed of four terms. 
With the implicit (r, ωk) dependence, we get 

 

where 

 

and with 𝛿(𝑟 − 𝑟6) is the Dirac distribution centered on the nonlinear surface 𝑟6 (Fig. 2). 
In Eq. (20), we have omitted the implicit dependence of the susceptibilities with frequencies 

(ωi,ωj), however this dependence makes different from away from degeneracy. At 
degeneracy, ωi=ωj, these two coefficients are equal, and these equations reduce to the 
previously studied SHG case [34,35].  

We have now all the equations needed to predict the evolutions of the optical fields for SFG 
or DFG, by replacing the expressions for the polarization, Eq. (17-20) in the expressions for 
the efficiencies, Eq. (13-15), and solving the set of coupled-wave equations, Eq. (12); the 
analytical expressions for the optical fields being tabulated from the literature (Chapter 12, table 
12.3 in [26] for instance). We can thus solve these equations with the desired boundary 
conditions, i.e. the field values at the nanofiber input.  

A semi classical approach cannot describe the full quantum properties of SPDC but can 
perfectly be used to calculate the number of generated pairs we use to evaluate the performance 
of the proposed source. 

2.4 Generation rate of photon pairs 

Referring to the notation used to write Eq. (12), we now consider that a pump beam at frequency 
ωk is injected at the nanofiber input, while the photon pair is collected at frequencies ωi and ωj 
(Fig. 1). As a matter of principle, pairs of photons must be created one by one, in the parametric 
fluorescence regime with no injected light at frequencies ωi and ωj. Therefore, the conversion 
efficiency is low, and the pump is considered to be undepleted. The system of Eq. (12) resolves 
to the only Eq. (12b) and (12c). Quantum models of the photon pair generation in SPDC crystals 
have been developed [36-38] to describe the full quantum properties of the generated photons. 
As we are here interested in the number of generated photons, we prefer the semi-classical 
derivation of quantum generation of photon pairs [39-41], that presents a closer connection to 
the nonlinear wave mixing equations we used until now. Number Nph of photon pairs emitted 
per unit of time at the output of a nanofiber of length L in the two vth spatial modes is 

 

χ rrr
(2s) ,

χ rzz
(2s) = χ rϕϕ

(2s) ,

χ zrz
(2s) = χϕrϕ

(2s) ,

χ zzr
(2s) = χϕϕr

(2s) .

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                                                                    (18)

P!
(2s)

= δ (r − r1) P!1
(2s)

+ P! 2
(2s)

+ P! 3
(2s)

+ P! 4
(2s)⎡

⎣⎢
⎤
⎦⎥
,                                             (19)

P!1
(2s)
(r,ω k ) = ε0χ rrr

(2s)er
!"
E!ν (r,ω i ).er

!"( ) E!ν (r,ω j ).er
!"( ),

P! 2
(2s)
(r,ω k ) = ε0χ rzz

(2s)er
!"
E!ν (r,ω i ).ez

!"!( ) E!ν (r,ω j ).ez
!"!( )+ E!ν (r,ω i ).eϕ

!"!( ) E!ν (r,ω j ).eϕ
!"!( )( ),

P! 3
(2s)
(r,ω k ) = ε0χ zrz

(2s) ez
!"!
E!ν (r,ω i ).er

!"( ) E!ν (r,ω j ).ez
!"!( )+ eϕ!"! E!ν (r,ω i ).er

!"( ) E!ν (r,ω j ).eϕ
!"!( )( ),

P! 4
(2s)
(r,ω k ) = ε0χ zzr

(2s) ez
!"!
E!ν (r,ω i ).ez

!"!( ) E!ν (r,ω j ).er
!"( )+ eϕ!"! E!ν (r,ω i ).eϕ

!"!( ) E!ν (r,ω j ).er
!"( )( ),

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

(20)

χ zrz
(2s) χ zzr

(2s)

Nph = Gν (L,ω )d∫ ω ,                                                                     (21)



Where Gv (L,ω) is the spectral density of photons generated in either of the two vth spatial 
modes at frequency ω. It is given by 

 

with parameter g defined as a function of the pump power Ppump as 

 
Eq. (22) takes into account the fact that the argument of the unnormalized sinc function may 

become purely imaginary in which case the sinc is to be changed into an hyperbolic sinc 
function. 

Using the Manley-Rowe equations (Eq. 15), parameter g can be expressed as 

 

Eq. (24) suggests two approaches to compute the generation rate Nph, Eq. (21): 
• One can perform a second harmonic generation experiment to directly measure 

𝜌123, deduce 𝜌/423 and 𝜌0423 from the Manley-Rowe equations, Eq. (15), and then 
report their values into Eq. (21). This SHG experiment shall be conducted with 
exactly the same modes as those intended to be used for the SPDC generation of 
photon pairs.  

• Alternatively, one can compute the value for 𝜌123 starting from Eq. (13) in which 
we inject the expressions for the nonlinear polarizations, Eq. (17) and (19,20).  

In the following examples, we follow this second approach that requires the knowledge of 
the second-order susceptibilities. 

3. Spectral density of photon pair generation for various architectures 
3.1 General parameters   

3.1.1 Interacting modes  

For each of the following examples, we consider the case of a pump beam at wavelength 𝜆- =
775	nm so that, in the vicinity of degeneracy, the pairs of photons are created around 𝜆/,0 ≃
1550	nm. These wavelengths are compatible with standard optical communication networks. 
For the output spatial modes ν we select the fundamental 𝐻𝐸66 nanofiber mode because this is 
the one that will most easily couple into the 𝐻𝐸66 mode of standard telecom fibers.  

To maximize the emission rate Nph (Eq. 21), the phase mismatch Δ𝛽 should be minimized. 
We relate this phase mismatch Δ𝛽 to the effective mode index. The effective mode index and 
the propagation constants in a step-index two-layered circular waveguide are easily computed 
from expressions given in [26] (table 12.4 chapter 12). Typically, one should keep |Δ𝛽𝐿| ≤ 𝜋. 
Due to effective index dispersion, perfect phase matching, Δ𝛽𝐿 = 0, can only be obtained in 
nanofibers by modal phase matching, that is by using an input pump mode, mode μ, that differs 
from the output modes 𝐻𝐸66, modes ν. 

To set this idea on a simple example, we have just to remind that perfect phase matching is 
simply equivalent to assure 𝑛899(𝜆-) = 𝑛899^𝜆/,0_, that is why we plotted, in the following 
Fig. 3, the refractive indices at 𝜆- = 775	nm (full lines) and at 𝜆/,0 ≃ 1550	nm (dashed lines) 
for the five lowest order modes. 
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2
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Fig. 3. Refractive indices of the five lowest order modes at 1550 nm (in dashed lines) and 775 nm 
(in full lines) versus the radius of a naked nanofiber. Phase matching in this radius range only 
exists between HE11 at 1550 nm and TE01 or TM01 or HE21 at 775 nm. 

One sees that for the radius range of this figure, 𝐻𝐸66 at 𝜆/,0 ≃ 1550	nm can only be phase 
matched to the pump at 𝜆- = 775	nm in one of the three lowest orders 𝑇𝐸&6, 𝑇𝑀&6 and 𝐻𝐸"6. 
For the range considered, there are no other phase matchings. We are not interested in phase 
matching for higher radii as the efficiencies will be lower due to a lower mode confinement. 
Conversely, any of these pump modes is only phase matched with 𝐻𝐸66 and not to any higher 
order modes:  the output photons will thus be created in these 𝐻𝐸66 modes only.  

These are thus the only three possible pump modes we are going to consider in the 
following.  

Contrary to modes 𝑇𝐸&6  and 𝑇𝑀&6 , modes 𝐻𝐸66  and 𝐻𝐸"6  are polarization degenerated. 
We denote this degeneracy by superscripts 8:8; and  <==. 𝐻𝐸66<== is obtained from 𝐻𝐸668:8;  
by a rotation of 𝜋 2⁄  around the nanofiber axis (Fig. 4). They share the same effective refractive 
index for a perfectly circular nanofiber (the reason for which we did not take into account the 
mode polarization when plotting Fig. 3). Similarly, 𝐻𝐸"6<==  is obtained from 𝐻𝐸"68:8;  by a 
rotation of 𝜋 4⁄  around the nanofiber axis and both these modes have the same effective 
refractive index (Fig. 4). 



 

Fig. 4. Structures of the in-plane components of the electric fields for the different modes. The 
axes (x, y) are purely arbitrary in a perfect circular fiber. The dashed white circles represent the 
surface of the naked silica nanofiber. The background color indicates the strength of the in-plane 
electric field component. For this example, the nanofiber radius is 0.5 µm, HE11 wavelength is 
set at 1550 nm, and the pump modes are at 775 nm.  

The phase matching conditions, shown by the intersects of the effective refractive index 
curves in Fig. 3, do not say anything about the strength of the overlap integral 𝜌123 and thus 
about the fluorescence efficiencies and polarization states. It just indicates that, potentially, for 
any of these pump modes, the output photons, if they exist, can only be in the 𝐻𝐸66 modes.   

In the undepleted pump analysis we conduct here, the amplitudes of the output fields are 
governed by Eq. (12b) and (12c). However, we do have as many such equations as there are 
fluorescence processes. The overlap integrals 𝜌0423  now depend on the considered set of 
polarizations. For sake of clarity we omit to indicate the dependence in 𝑧 , and with 
straightforward notations we easily generalize Eq. (12b) and (12c) into  



 

The overlap integrals are proportional to the Sum Frequency Generation overlap integrals, 
and thus proportional to the nonlinear polarization terms. They are themselves proportional to 
the product of the two electric components or to their derivatives. The parity dependence of 
these fields is fully separable from the radial dependence and is wavelength independent. 
Therefore, the polarizations do not depend on the order of appearance of these parity 
dependences in the equations. We thus state that 

 
In Eq. (25), mode parameter μ represents any of the possible input modes 𝑇𝐸&6, 𝑇𝑀&6 or 

𝐻𝐸"6. In the following we analyze the values taken by the output integrals for each of these 
possible input modes.  

3.1.2 Configuration with the 𝑇𝐸&6 pump beam  

Taking into account the rotational symmetry of mode 𝑇𝐸&6, and then reporting the expressions, 
given in the literature [26], for the electric fields in the overlap integrals we obtain 

 
It is also possible to show that at degeneracy, i.e. when ωi=ωj, the overlap integrals 

𝜌/	?5	0,8:8;,<==423 = 𝜌/	?5	0,<==,8:8;423  also vanish. Outside degeneracy, only the bulk nonlinear 
polarization contributes to these overlap integrals.  

We conclude that at degeneracy no photons are created. Outside degeneracy, the two 
photons are orthogonally polarized. Indeed, if a photon is detected at frequency ωi in the 
𝐻𝐸668:8;  mode, that means that the coupling is described by Eq. (25a) and (25d). Therefore, the 
other at frequency ωj is in the 𝐻𝐸66<== mode. Similarly, if a photon is detected at frequency ωi  
in the 𝐻𝐸66<== mode, then Eq. (25b) and (25c) are at the origin of the creation of the photon pairs 
and the second photon, at frequency ωj, is in the 𝐻𝐸668:8; mode. 

Detecting the photons in these modes is quite easy: a beam splitter polarizing cube aligned 
along the 𝐲- and 𝐱-axes nearly perfectly splits the content of the 𝐻𝐸668:8; and 𝐻𝐸66<== modes, see 
Fig. 4. A rotation of this cube around the 𝐳-axis does not change the orthogonality of the 
polarization of the two photons due to the rotational symmetry of 𝑇𝐸&6 around this axis. 

For silica, as will be shown in paragraph 3.2, the bulk contribution is lower than the surface 
contribution. This configuration thus leads to efficiencies lower than with the other pump 
modes that also involve the contribution of surface. We thus do not analyze in more detail 
hereafter this configuration involving the 𝑇𝐸&6 pump mode.  

3.1.3 Configuration with the 𝑇𝑀&6 pump beam  

Due to symmetry considerations, and from the analysis of the overlap integrals we can show 
that 
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One thus concludes that if a 𝑇𝑀&6 pump beam is injected in the nanofiber, then the two 
photons are produced in the same mode, either 𝐻𝐸668:8;  or 𝐻𝐸66<== . As for the previous 
configuration, rotating the analyzing polarizing cube around the 𝐳-axis does not change this 
fact.  

We will compute values for the overlap integrals in section 3.2 for this configuration. 

3.1.4 Configurations with the 𝐻𝐸"6 pump beam  

Whatever the selected input mode 𝐻𝐸"6<==  or 𝐻𝐸"68:8; , we get with the expressions for the 
electric fields given in the literature [26] 

 

Therefore, one concludes that if a photon is detected at frequency ωi in the 𝐻𝐸668:8; mode 
(respectively 𝐻𝐸66<==  mode) then the other photon at frequency ωj is in the 𝐻𝐸668:8;  mode 
(respectively 𝐻𝐸66?@@) as reflected by the following set of equations, deduced from Eq. (25) 

 

The fact that the overlap integrals, Eq. (29b) are opposite in sign highlights the importance 
of the choice of the polarization basis. As explained above, the polarization basis corresponds 
to the orientation of the polarizers used for analyzing the photon polarizations. Using a beam 
splitter polarizing cube aligned along the 𝐲- and 𝐱-axes nearly perfectly splits the content of the 
𝐻𝐸668:8;  and 𝐻𝐸66<== modes. We could for instance rotate the cube by 45° around the 𝐳-axis and 
thus detect the output in the (𝐻𝐸668:8; +𝐻𝐸66<==	, 𝐻𝐸668:8; −𝐻𝐸66<==) analysis basis. The analysis 
should thus be done in this new basis. From Eq. (30), we immediately get 

 

We thus conclude, that if we analyze the polarization of the output photons in this new basis, 
the two output photons are orthogonally polarized (that is they are either coupled by Eq. (31a) 
and (31d), or by Eq. (31b) and (31c). 

We present some numerical examples in next section in the (𝐻𝐸668:8;, 𝐻𝐸66<==) basis. The 
values given in next section correspond to a single fluorescence process among the two possible 
processes: for instance, to the coupled-wave equations Eq. (30a) and (30c), and we do not 
consider those created by Eq. (30b) and (30d). Considering both processes would simply double 
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the generation rate. These values are computed for an input pump power of 1 W. However, 
because parameter gL≪1, spectral density Gv (L,ω) is proportional to this pump power with a 
very good approximation so that extrapolation to another pump power is straightforward.  

3.2 Silica-air architecture  

3.2.1 Spectral density 

As a first example we consider a silica nanofiber suspended in air. The nonlinear surface and 
bulk susceptibilities are reported in the literature from a SHG experiment from a wavelength of 
1064 nm, see Table 1 [34,35]. Because the wavelengths we consider here are far from 
resonances, and according to Miller’s rule [33], these susceptibilities vary by less than 4% over 
the wavelength domain considered here. Thus, hereafter, we consider that these second-order 
susceptibilities are constant and equal to their values at degeneracy. 

Table 1. Surface and quadripolar second-order susceptibility components (pm2/V). [34,35]  
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In Fig. 5, we plotted the spectral density Gv (L,ω) for, a nanofiber length 𝐿 = 100	µm. The 

input modes are either 𝑇𝑀&6 or 𝐻𝐸"68:8;.  
The dashed red curve follows the locations of the phase matched wavelengths: for a given 

radius, the two ordinates 𝜆/,0 correspond to the two output wavelengths of modes v that are 
phase matched with the input pump mode at 775 nm, that is for which Δ𝛽 = 0. 



 

Fig. 5. Spectral density for 1 W pump power generated in the fundamental mode HE11 for a 
100 μm long silica nanofiber in air. (a) for a TM01 input mode. (b) for a HE21 input mode. The 
dashed red curves represent the location of the phase matched wavelengths (see text).  

As anticipated, for each wavelength, the maximum of the spectral density is approximately 
located on this phase matching position. This comes from the dependence of Gv (L,ω) that 
decreases quickly as soon as Δ𝛽 departs from zero because of the sinc function. Nevertheless, 
a closer look at these curves would reveal that the maximum of the spectral density is slightly 
shifted from these curves, either in the direction of the low fiber radii, or large fiber radii, 
depending on the configuration. The reason is that Δ𝛽 does not appear in the expression for 
parameter g. Thus, the maximum of g can be set anywhere in the “wavelength-radius” plane.  
This dependence of parameter g with wavelength and radius is also responsible for the decay 
of the maximum of the spectral density when one moves away from the wavelength of 1550 nm. 
As shown by Eq. (22), this maximum, approximatively located along the red curve, Δ𝛽 = 0, 
scales quadratically versus the nanofiber length L. Increasing this length to increase the pair 
rate is thus tempting, however we will see in next section that the nanofiber radius uniformity 
somehow limits this possible increase.  

Spectral density is higher for the 𝑇𝑀&6 pump than for the 𝐻𝐸"6 pump. This density also 
decays more slowly in this configuration when we move away from the location of the phase-
matched wavelengths (dashed red curves in Fig. (5)). This makes this configuration more 
attractive. This decay versus the fiber radius comes from the variation of Δ𝛽𝐿 : to keep a 



decrease bellow 50% we should typically have |Δ𝛽𝐿| < 2.8 , corresponding to 
sinc(0.5	Δ𝛽	𝐿)" = 0.5	see Eq. (22). 

3.2.2 Photon pair rate 

Eq. (21) represents number Nph of photon pairs emitted per unit of time in each one of the output 
modes (corresponding to the two branches of the spectral density plotted in Fig. 5). 
Equivalently, Nph represents the photon pairs emitted per unit of time if we limit the integration 
over any one of these two branches in order to avoid counting the two photons of the same pair. 
Hereafter, for the purpose of the example, we suppose that no spectral filter is present and thus 
we conduct the integration over the full range, 0.5ωμ to infinity, that is we compute the total 
number of emitted pairs. In Fig. 6, we plotted this total number of pairs generated per second 
for a pump power of 1 W in nanofibers of different lengths for the two configurations. These 
figures confirm that the configuration with a 𝑇𝑀&6 pump mode is very interesting as it provides 
a photon pair generation rate three times larger than for the other configuration.  

   

Fig. 6. Number of photon pairs generated per second in a silica nanofiber suspended in air for 
different lengths and for a 1 W input power: (a) TM01 input mode; (b) HE21 input mode. 

One notices that these generation rates are all the more peaked that the nanofiber is long. 
For instance, for a 𝑇𝑀&6 input mode and for a 1000 µm long nanofiber, the peak width is about 
3 nm in radius. Setting the operating point of the photon pair source around the top of these 
curves, that is around degeneracy, imposes severe constraints on the nanofiber fabrication 
process. Diameter measurements made on silica nanofibers have already demonstrated the high 
reproducibility of their waist and very good diameter uniformity over large lengths [42-46]. For 
instance, monitoring the diameter of 300 mm long nanofibers proved to produce nanofibers 
with a manufactured diameter varying by less than 5 nm from the targeted diameter [42]. Would 
the diameter not exactly be the targeted diameter, one also would have the possibility to slightly 



tune the pump wavelength to shift the operating point on top of the peak of Fig. 6. Typically, if 
one changes the radius by 5 nm, the pump wavelength for degenerate phase matching is shifted 
from 775 nm to 786 nm. The problem is not crucial away from degeneracy. 

3.2.3 Limitations due to the fabrication process 

Photon pair sources manufactured with much longer nanofibers, a few centimeters or a few tens 
of centimeters, are also feasible. However, the prediction of the photon pair rates is more 
complex for these longer fibers. Indeed, with longer fibers, the peaks of the generation rates 
versus the nanofiber radius become very narrow, below 1 nm. This comes from the width of 
the spectral density versus the radius that decreases proportionally to the inverse of fiber length 
L as explained in the previous section. Because a nanofiber is never perfect, radius fluctuations 
along the nanofiber axis induce significant fluctuations in Δ𝛽. Typically, derivation of Eq. (22) 
fails if the nanofiber length L becomes larger than a maximum length Lmax defined as [47] 

 

with δrmax the maximum deviation of the radius from the radius at phase matching.  
The derivative 𝜕Δ𝛽 𝜕𝑟⁄ 	can be computed from the propagation constants that are given in 

the literature [26]. We obtain 
• 𝑇𝑀&6 input, 𝜕Δ𝛽 𝜕𝑟⁄ = 2.6	106"	mA", 
• 𝐻𝐸"6 input, 𝜕Δ𝛽 𝜕𝑟⁄ = 5.1	106"	mA". 

From the literature, we found that 𝛿𝑟BCD = 1	nm  is realistic. Therefore, for our two 
configurations and a 1 W input power, we obtained 

• 𝑇𝑀&6 input, 𝐿BCD ≃ 1.1	mm so that 𝑁$% ≈ 22	000	pairs/s, 
• 𝐻𝐸"6 input, 𝐿BCD ≃ 0.55	mm so that 𝑁$% ≈ 2	700	pairs/s. 

Thus, working with 1 mm long nanofibers to produce photon pair rates of more than 
10	000	pairs/s with a 1 W input power seems to be within reach of today’s manufacturing 
processes.  

Working with longer nanofibers is of course possible and could be desirable. Radius 
fluctuations along the nanofiber then enlarges and flattens the spectral density curves, Fig. 5, 
and so for the photon rate curves, Fig. 6. These fluctuations thus reduce the photon rates. A 
prediction of these photon rates can still be made, by replacing the sinc function in Eq. (22) by 
an integral equation of Δ𝛽  along the nanofiber length as reported in reference [47]. This 
calculation is nevertheless only possible if one knows the radius fluctuation of the nanofiber.   

3.3 Phase matching optimization: example of silica-PTFE architecture 

As just explained, the fluctuation of the fiber radius along its length severely limits the spectral 
density of the pair rate. A known way to circumvent the influence of the fluctuations of 
fabrication parameters of waveguides is known as noncritical phase matching [48]. The idea is 
to find a structure that minimizes parameter 𝜕Δ𝛽 𝜕𝑟⁄ .  

We propose to minimize this parameter by a deposit of an embedding medium onto the 
silica nanofiber. This medium extends from 𝑟6 to infinity (Fig. 2). For the purpose of the present 
demonstration, we assume that this medium is without loss, and that its surface second-order 
nonlinearity is negligible compared to the ones of the silica, and that it does not affect the silica 
nonlinear coefficient. Its only influence is on the mode shapes and propagation constants 
through its refractive index. To take a realistic dispersion for the refractive index, we take the 
one of a PTFE polymer: Teflon®AF1300 [49].  

In Fig. 7, we have plotted the spectral density curves of photon pair generation in a silica-
PTFE architecture for the two possible input modes 𝑇𝑀&6  and 𝐻𝐸"6 . To allow a direct 
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comparison with the previously discussed case of silica in air, Fig. 5, the pump power is set to 
1 W and the length is 𝐿 = 100	µm. 

 

Fig. 7. Spectral densities for a 1 W pump power generated in the fundamental mode HE11 of a 
100 μm long silica nanofiber embedded in PTFE. (a) TM01 input mode. (b) HE21 input mode. 
The dashed red curves represent the location of the phase matched wavelengths (see text).  

Compared to Fig. 5, the radius at degeneracy is increased, as a consequence of the less 
stringent confinement due to the surrounding medium. As a result, one could expect a strong 
decrease of the spectral density, which is not the case. The nonlinear polarization and pump 
field decrease as a result of this deconfinement, which indeed decreases the integrant appearing 
in the expression for 𝜌123 , Eq. (13). However, for surface nonlinearity the integration is 
conducted along the nanofiber circumference, that is, proportional to the nanofiber radius. The 
decrease of the strength of the field is thus compensated by this integration over a larger 
circumference.  

As desired, the consequence of embedding the nanofibers is an enlargement of the spectral 
density curves that can be quantized by computing parameter 𝜕Δ𝛽 𝜕𝑟⁄ . We computed 

• 𝑇𝑀&6 input, 𝜕Δ𝛽 𝜕𝑟⁄ = 1.2	106"	mA", 
• 𝐻𝐸"6 input, 𝜕Δ𝛽 𝜕𝑟⁄ = 1.4	106"	mA". 

Once again, for 𝛿𝑟BCD = 1	nm we obtained 
• 𝑇𝑀&6 input, 𝐿BCD ≃ 2.4	mm so that 𝑁$% ≈ 78	000	pairs/s, 
• 𝐻𝐸"6 input, 𝐿BCD ≃ 2.0	mm so that 𝑁$% ≈ 15	000	pairs/s. 



For sake of comparison with the structure of silica nanofiber in air, see Fig. 6, we plotted 
the evolution of the photon rate versus the nanofiber radius in Fig. 8 for these optimized 
structures. 

 

Fig. 8. Number of photon pairs generated per second in a silica nanofiber of different lengths 
and for a 1 W input power in a silica-PTFE architecture. (a) TM01 input mode. (b) HE21 input 
mode.  

These plots confirm the structure optimization: the peaks are larger, without significant 
changes in the photon rates.  

3.4 Optimization of surface nonlinearity 

The photon pair rates, even with the optimized architecture described above, remain quite 
moderate. It is worth noting, that about 75% of the contribution to coefficient 𝜌123 arises from 
the 𝜒EEE

("F)  susceptibility coefficient. Enhancing the photon pair rate by reinforcing the 𝜒EEE
("F) 

susceptibility coefficient is thus tempting. One way for achieving this enhancement was 
proposed and demonstrated in the literature: bilayers of radially self-aligned nonlinear 
molecules were deposited onto a nanofiber and led to a large increase of the SHG signal 
compared to the bare fiber [50,51]. Due to the molecule alignment, and conversely to bulk 
silica, the dipolar second-order bulk susceptibility coefficient differs from zero. It was 
measured equal to 𝜒EEE

(GH(-) = 21	pm. VA6. A bilayer is 1	nm thick and the deposit of up to 150 
bilayers was demonstrated [52]. Because the total thickness ℎ of these bilayers is much smaller 
than both the optical wavelength and the nanofiber diameter, we can still treat such a deposit 
as a surface nonlinearity by setting the equivalence 

 χ rrr
(2s) = hχ rrr

(Bulk ) ,                                                     (33)



For instance, with 10 bilayers, ℎ = 10	nm, we obtain for such an arrangement 𝜒EEE
("F) =

210	10I	pm". VA6 . That is more than a 30-fold improvement compared to the bare silica 
architecture. Because the photon pair rate scales as the square of the nonlinear susceptibility, 
the presence of the highly nonlinear functional bilayers increases the photon pair rate by a factor 
of about 1000 compared to a bare silica nanofiber. 

Conclusion 
We have presented a design of an all-fiber source of correlated photon pairs based on standard 
telecommunication tapered fibers. The involved second-order parametric fluorescence process 
relies on the surface dipole and bulk multipole nonlinearities.  

We illustrated our vectorial modelling by considering the case of a pump beam at 
wavelength 775 nm in one of the two lowest order nanofiber modes 𝑇𝑀&6 or 𝐻𝐸"6, the pairs of 
photons are created around 1550 nm in the vicinity of degeneracy in the fundamental 𝐻𝐸66 
nanofiber mode. For the 𝑇𝑀&6  pump beam case, the two correlated photons are always 
produced with the same polarization, either 𝐻𝐸668:8;  or  𝐻𝐸66<==. For the 𝐻𝐸"6 pump mode case, 
we demonstrated that a given orientation of the output polarizers leads to correlated photons 
bearing the same polarization, while another choice produces orthogonally polarized photons.   

We demonstrated that such sources, built around currently available naked silica nanofibers, 
could generate up to 𝑁$% ≈ 22	000	pairs/s in the 𝐻𝐸66 modes with a 1 W pump power in a 
𝑇𝑀&6 mode.  

We suggested two possibilities to considerably increase these generation rates: embedding 
the nanofiber in a medium with a carefully selected dispersion for noncritical modal phase 
matching; depositing a thin layer of a highly nonlinear functional molecules between the silica 
nanofiber and embedding medium.  

Such optimized structures should increase the generation rates by several orders of 
magnitude. 
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