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ABSTRACT: Ten years of L-band radiometric measurements have proven the capability of satellite sea surface salinity

(SSS) to resolve large-scale-to-mesoscale SSS features in tropical to subtropical ocean. In mid-to-high latitudes, L-band

measurements still suffer from large-scale and time-varying errors. Here, a simple method is proposed to mitigate the

large-scale and time-varying errors. First, an optimal interpolation using a large correlation scale (;500 km) is used to

map independently Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) level-3 (L3) data. The

mapping is compared with the equivalent mapping of in situ observations to estimate the large-scale and seasonal biases. A

second mapping is performed on adjusted SSS at the scale of SMOS/SMAP spatial resolution (;45 km). This procedure

merges both products and increases the signal-to-noise ratio of the absolute SSS estimates, reducing the root-mean-square

difference of in situ satellite products by about 26%–32% from mid- to high latitudes, respectively, in comparison with the

existing SMOS and SMAP L3 products. However, in the Arctic Ocean, some issues on satellite retrieved SSS related to, for

example, radio frequency interferences, land–sea contamination, and ice–sea contamination remain challenging to reduce

given the low sensitivity of L-band radiometric measurements to SSS in cold water. Using the International Thermodynamic

Equation Of Seawater—2010 (TEOS-10), the resulting level-4 SSS satellite product is combined with satellite-microwave

SST products to estimate sea surface density, spiciness, and haline contraction and thermal expansion coefficients. For the

first time, we illustrate how useful these satellite-derived parameters are to fully characterize the surface oceanwatermasses

at large mesoscale.
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1. Introduction

Salinity is an essential ocean and climate variable. Along

with temperature, it plays a fundamental role in the thermo-

haline global circulation and climate variability. Ocean salinity

is also a key parameter for monitoring the global water cycle.

The ocean salinity and temperature contribute together to the

ocean water mass characteristics. These characteristics include

density, a key parameter controlling the ocean stability and the

ocean current dynamic; and the spiciness that is the isopycnal

density-compensated contrasts of temperature and salinity: a

passive tracer for water masses (McDougall and Krysik 2015).

It is also worth noticing that stratification and density gradients

largely depend on salinity in the subpolar and high latitudes

where the temperature is getting colder (Carmack 2007). This

results from a reduced (increased) thermal expansion (haline

contraction coefficient), but also from relatively larger salinity

contrasts and more homogeneous temperature in cold regions.

In addition, strong freshwater input from high rain rate, river

discharge or sea icemelt can produce strong stratification in the

upper layer inhibiting the vertical mixing of heat, momentum

and nutrients (Lukas and Lindstrom 1991; Dewey et al. 2017).

At high latitudes, the presence of a sharp halocline prevents

heat stored in the deeper ocean layers to reach the surface and

melt the sea ice (Carmack 2007; Lique 2015). In the tropics,

salinity stratification, by modulating air–sea exchange, can

have a strong impact on El Niño–Southern Oscillation (ENSO;

Vialard and Delecluse 1998), on Indian monsoon precipitation

(Shenoi and Shankar 2002), or on the oceanic productivity

(Picaut et al. 2001). Eventually, in the context of anthropogenic

climate change, the ocean salinity is also a key indicator of

climate changes, since it is a tracer of the hydrological cycle

(Durack et al. 2012).

Ten years of L-band satellite measurements produced by the

Soil Moisture Ocean Salinity (SMOS) European mission

(2010–present; Kerr et al. 2010; Font et al. 2010), the Aquarius

(2011–15) (Lagerloef et al. 2008) and Soil Moisture Active

Passive NASA (SMAP) missions (2015–present) (Piepmeier

et al. 2017) have proven the capability to measure sea surface

salinity (SSS) from space and provide the longest multisensor

satellite SSS time series ever recorded (Vinogradova et al.

2019; Reul et al. 2020).

L-band radiometry has stimulated studies on ocean near

surface salinity in tropical and subtropical regions: describing

SSS change associated with ENSO events (Hasson et al. 2014,

2018) and Indian Ocean dipole (Durand et al. 2013), and
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subtropical SSS maxima in the North Atlantic and South

Pacific Oceans, including studies of mesoscale and frontal

variability that have been made possible for the first time from

SMOS and SMAP satellite SSS (e.g., Reul et al. 2014b;

Kolodziejczyk et al. 2015a; Sommer et al. 2015; Hasson et al.

2019). In addition, using satellite SSS in the assimilation system

significantly improves the ENSO forecasts (Hackert et al.

2020). Important patterns associated with the freshwater flux

entering the ocean, such as in river plumes, have also been

better documented from SMOS (Reul et al. 2014a; Fournier

et al. 2015) and SMAP SSS (Fournier et al. 2017), as the fil-

tering and correction of L-band measurements near the coast

have been progressively improved (Meissner et al. 2018;

Kolodziejczyk et al. 2016; Boutin et al. 2018a).

At higher latitudes than 458N/S, SSS retrievals from L-band

radiometry have been subject to larger errors with the presence

of large-scale (;500 km) and seasonal-dependent systematic

errors. First, anthropic radio frequency interferences (RFIs)

strongly contaminate the high northern latitudes until 2012–13.

After this date, they have been turned off in the northern high

latitudes by emitting countries. Second, the sensitivity of

L-band radiometric data to SSS gets lower with decreasing

SST, hence the signal-to-noise ratio for individual retrievals

decreases (Tang et al. 2018; Olmedo et al. 2018; Xie et al. 2019).

Furthermore, at high latitudes, SSS retrievals are more sensi-

tive to errors in radiative transfer model components, e.g.,

uncertainties in sea surface roughness corrections, dielectric

constant parameterization, high and variable wind speed more

common at high latitude. The seasonal and interannual vari-

ability of the sea ice edge hinders the methodology used

for coastal systematic error correction (Kolodziejczyk et al.

2016). There is also a challenging issue of filtering the ice-

contaminated brightness temperature in the marginal ice zone

that results in larger errors in partially ice covered regions at

high latitudes (Supply et al. 2020).

In this study, we present a simple method for correcting

large-scale and time-varying errors; however, the ice edge and

RFIs contamination cannot be fully addressed because of the

small scale of such artifacts. Using objective analysis mapping,

the large-scale (on the order of 500 km) and time-varying

(;30 days) errors from the SMOS and SMAP level-3 data

(hereinafter SMOS L3 and SMAP L3, respectively) products

are estimated by comparison with monthly large-scale map-

ping of in situ observations (Gaillard et al. 2016), mainly from

Argo data (Roemmeich et al. 2019). This approach using sys-

tematic satellite measurements calibration from in situ data

was inspired from correction methodology implemented for

the mapping of infrared satellite SST, contaminated by large-

scale aerosol and dust clouds from volcano eruptions in the

1980s (Reynolds and Smith 1994). Then, mapping at higher

spatial resolution of the satellite measurements (at the mod-

erate resolution of the satellite data, i.e.,;45 km) is performed

to retrieve smaller scales of the variability. The resulting OI

level-4 SSS (hereinafter OI L4 SSS) fields can then be merged

with satellite SST products in order to compute density, spic-

iness and other thermodynamic parameters from International

Thermodynamic Equation Of Seawater—2010 (TEOS-10)

equation (IOC, SCOR, and IAPSO 2010). In the next section,

we present the data used. Then the bias correction and map-

ping methodologies are described. We also discuss the vali-

dation of the new OI L4 SSS products.

2. Data

a. Input to level-4 OI SSS

1) SMOS L3 DATA

The SMOS SSS are available since January 2010 (Fig. 1).

The SMOS satellite mission is still operating. It is equipped

with the Microwave Imaging Radiometer Using Aperture

Synthesis (MIRAS) instrument, which is a two-dimensional

interferometric passive radiometer operated at L-band fre-

quency (1.4GHz). This synthetic aperture antenna technology

provides an average ground spatial resolution on the order of

45 km (between 35 and 100 km). The SMOS satellite is on a

sun-synchronous circular orbit with a local equator-crossing

time at 0600 LT on the ascending node with a revisit time of 3–

5 days (see Boutin et al. 2018a).

The SMOS L3 maps used in this study are the 9-day debias

version 3 maps produced by the Laboratoire d’Océanographie
et du Climat: Expérimentations et Approches Numériques
(LOCEAN) Expertise Center (CEC) of Centre Aval de

Traitement des Données SMOS (CATDS) (Boutin et al.

2018b) and mapped on an ESA Equal-Area Scalable Earth

(EASE) horizontal grid with a resolution of 25 3 25 km2.

These SMOS L3 maps result from a successive filtering and

smoothing with a 9-days Gaussian window of the level-2 re-

trieved SSS using a Bayesian approach. They are corrected

from systematic land–sea contamination, across-swath SSS

systematic errors and seasonal latitudinal systematic errors

using SMOS SSS self-consistency criteria (Kolodziejczyk et al.

2016). The long term SSS absolute calibration is derived from

the 80% upper quantile of the In Situ Analyses System (ISAS;

in situ data climatology) 6-yr SSS statistical distribution, but

the temporal variability of these SMOS L3 SSS is independent

of in situ SSS (Boutin et al. 2018a). The SMOS L3 maps since

2011 are used in this study (Fig. 1).

2) SMAP L3 DATA

The SMAP satellite was launched on 31 January 2015 and

provides SSS observations since April 2015 from a passive

L-band radiometer initially designed to measure soil moisture

from space (Fig. 1). The SMAP radiometer allows a ground

resolution on the order of 40 km. The SMAP satellite is in a

sun-synchronous near-polar orbit at an inclination of 988 and
an altitude of 685 km, with an ascending node time of 1800 LT.

It completes global coverage in approximately 3 days, with an

exact repeat cycle of 8 days (Meissner et al. 2016).

We use the SMAP level-3 v3 8-day 40-km products provided

by Remote Sensing Systems (RSS) and retrieved directly from

the geophysical model (Meissner et al. 2018). Over the open

ocean, the v3.0 release reduces spurious temporal and zonal

biases using the Scripps Argo optimal interpolation (OI) product

(Meissner et al. 2018). The major change of v4.0 from v3.0 is an

improved sidelobe correction near coast and ice mask switched

from NCEP to AMSR-2, respectively (Meissner et al. 2019).
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In our study, we applied our own land mask to get rid of land

contamination near the coasts. Therefore, the v4.0 release

was not considered.

3) ISAS PRODUCTS

The ISAS provides interpolated fields from in situ SSS.

Monthly gridded fields of salinity derived from in situ mea-

surements are obtained using an optimal interpolation (OI)

(Bretherton et al. 1976) tool developed for the synthesis of the

Argo global dataset (Gaillard et al. 2016). The interpolation is

mainly based on delayed mode Argo floats temperature and

salinity measurements. Since 2000s, the international Argo

program has deployed a global array of autonomous floats that

provides quality-controlled profiles every 10 days with a quasi-

homogeneous global coverage of 38 3 38 over the first 2000-m

depth (Roemmeich et al. 2019). Other quality-controlled da-

tasets are interpolated with ISAS tool: the Global Tropical

Moored Buoy Array (https://www.pmel.noaa.gov/gtmba/)

temperature and salinity time series, and conductivity–

temperature–depth (CTD) from marine mammals equipped

by French Observing System—Mammals as Samplers of the

Ocean Environment (SO-MEMO) in the framework of Marine

Mammals Exploring Ocean Pole to Pole (www.meop.net/

groups/france.html).

We use the ISAS fields reconstructed at 5-m depth on a half-

degree horizontal grid. Over the 2011–15 period (Fig. 1), ISAS-

15 (Kolodziejczyk et al. 2017) fields have been produced after

a refined quality check of the Argo profiles. Data are pre-

processed for ISAS-15 using a climatological test and followed

by a visual control of suspicious profiles. The ISAS Near–

Real Time (ISAS-NRT)monthly fields are produced byCoriolis

data center in the framework of Copernicus In Situ Thematic

Assembly Center (www.coriolis.eu.org/Data-Products/Data-

Delivery/Copernicus-In-Situ-TAC). ISAS-NRT fields are used

to extend the ISAS-15 time series since 2016 (Fig. 1).

b. Microwave SST fields

To compute density, spiciness, thermal expansion and haline

contraction, SST products have been combined with OI L4 SSS

data. For this purpose, we should use SST products with a

similar resolution. Therefore, the AMSR-E/2 microwave sat-

ellite SST products, with a spatial resolution on the order of

0.258 3 0.258, have been used. AMSR-E was launched on the

NASA’s EOS Aqua spacecraft, on 4 May 2002 until 4 October

2011. AMSR-2 was launched on the JAXA’s Global Change

Observation Mission for Water 1 (GCOM-W1) spacecraft, on

18 May 2012 and is still operating (Fig. 1).

AMSR-E/2 SST products are provided by RSS (Wentz et al.

2014). The AMSR series of instruments are passive microwave

radiometers placed in a near-polar orbit that allows for up

to twice-daily sampling of a given Earth location. The AMSR

instrument has eight microwave channels for measuring

SST, wind speed, cloud liquid water, water vapor content and

rain rate. The SST products used in this study is the weekly

product binned on a 0.258-resolution grid, which spans the

period from 18 May 2012 until now (Wentz et al. 2014). We

have compared the satellite SST with high resolution SST from

ship thermosalinograph transect using a coherency spectra

approach in the subtropical and tropical Atlantic domain

(section S1 in the online supplemental material). As found

from comparisons in these regions, the satellite SST is able to

resolve wavelengths larger than 200 km. This is comparable to

FIG. 1.Gantt diagramof temporal coverage of each dataset used in the generation of the suite

of products OI L4 SSS between 2011 and 2017: the SMOS L3 v3 and SMAP L3 v3 (blue)

objectively analyzed; ISAS-15 and ISAS-NRT in situ SSS objective analyses used to calibrate

the L3 SSS satellite products (orange); SST satellite products used to combine with the OI L4

SSS to produce density, spiciness, and thermal expansion and haline contraction coefficients

(red); and availability of in situ SSS validation dataset (green).
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wavelengths resolved by the nominal satellite SSS resolution of

45 km (;wavelength 200 km; Fig. S1 in the online supple-

mental material).

Between 4 October 2011 and 18 May 2012, AMSR-E/2

products were not available, and the ODYSSEA-NRT prod-

ucts was used to fill the 8-month SST data gap (Fig. 1).

ODYSSEA is a merged microwave–infrared L4 SST product

provided by the Ifremer Centre ERS d’Archivage et de

Traitement (CERSAT) (http://products.cersat.fr/). ODYSSEA

SST fields are distributed every 24h on a 0.18 3 0.18 grid (ap-

proximately 10km 3 10 km) for the global ocean. FOI tech-

niques are used to combine coincident swath SSTmeasurements

from different sensors and to fill gaps where no observations

are available. Whereas swath data essentially represent the

skin or subskin SST, the L4 SST product is an estimated SST

foundation (SSTfnd). SSTfnd is never directly observed by

satellites, but it is close to what is detected by a microwave

radiometer that penetrates the skin, at dawn, when the previ-

ous day’s diurnal stratification can be assumed to have decayed

and SSTsubskin, SSTdepth and SSTfnd are very close [see

Autret et al. (2019) for more details].

c. Validation dataset

Near surface in situ salinity and temperature observations

are provided by thermosalinographs (TSG) installed on vol-

untary merchant ships (Alory et al. 2015). They provide

solid SSS estimates representative of the upper 10m with an

;2.5-km horizontal resolution along the ship track. TSG data

are independent from ISAS maps since they are not interpo-

lated along with other in situ datasets in ISAS fields, except

in the ISAS-NRT. However, correlations scales used in

ISAS-NRT smooth out the small and mesoscale features

from TSGmeasurements, thus the independent validation of

these scales remain possible. Noise on individual ship SSS

data is estimated to be on the order of 0.08 on Practical

Salinity Scale of 1978 (hereinafter pss) (Alory et al. 2015).

These TSG dataset samples mostly the low to midlatitudes,

up to 608N–S (Fig. 1).

To obtain in situ sampling at higher latitudes, additional

data from the research vessels R/V Heincke, the R/V Polarstern,

the R/V Mirai and the S/V Tara are integrated in the dataset

(Supply et al. 2020).Data fromR/VHeincke andR/VPolarstern

are downloaded PANGAEA (https://www.pangaea.de). R/V

Mirai data are downloaded from theData and Sample Research

System for Whole Cruise Information (DARWIN) website of

JAMSTEC (http://www.godac.jamstec.go.jp/darwin/e). The S/V

Tarameasurements are provided byReynaud et al. (2015). The

TSG measurements from these vessels are carried out at dif-

ferent depths from 1m for S/VTara to 11m for R/VPolarstern.

In this study, only TSGmeasurements taken at shallower depth

than 5m are considered.

At high latitudes, in particular in the Nordic seas, salinity

and temperature measurements from Argo profiling floats are

used to enhance the validation database. They are provided by

the Coriolis Global Data Assembly Center (GDAC) (Argo

data, 2019). The measurements are filtered as follows: mea-

surements flagged (flag 1) as good are retained and at a depth

shallower than 10m are used, if flagged good. Note that when

theArgo CTDpump is turned off above 5-m depth the data are

usually flagged as bad.

In the Arctic seas, most of the CTD profiles used were

downloaded from the Coriolis data center. Additional

CTD profiles are integrated to the validation dataset. This

includes CTD casts from two Nansen and Amundsen Basins

Observational System (NABOS) cruises (see NABOS 2013

and 2015 reports) in the Kara, Laptev, and East Siberian Seas,

data from the Arctic Floating University (Makhotin and

Ivanov 2018) in the Barents Sea, CTD profiles in the Laptev

and East Siberian Seas collected during Swerus C-3 cruise

(Björk 2017), and Woods Hole CTD casts from the Beaufort

Sea provided by the Beaufort Gyre Exploration Project web-

site (https://www.whoi.edu/website/beaufortgyre/home). Only

measurements shallower than 10-m depth are considered.

Given the depth of in situ salinity ‘‘surface’’ measurements

(between 1- and 10-m depth), surface salinity stratification is a

key issue for calibration and validation of skin satellite SSS.

The major biases are observed in regions of river plumes and

ice melting (Supply et al. 2020). Therefore, the comparison

with in situ measurements should include a ‘‘representative-

ness error’’ that is dependent on salinity stratification in the

upper layer of the ocean, but also on the small scales observed

within the footprint of the satellite (,45 km) (Boutin et al.

2016). Typically, in stratified Arctic regions, Supply et al.

(2020) estimate differences between SMOS SSS and in situ

salinity at 5m up to 1.5 pss. Concerning the horizontal repre-

sentativeness error, Boutin et al. (2016) estimate the SSS var-

iance in 18 3 18 squares large than 0.5 pss in intense dynamical

regions such as western boundary currents and freshwater

plumes.

3. Method

a. Objective analysis

OI of satellite L3 SSS data is performed following

Bretherton et al. (1976), presented here in the formalism of Ide

et al. (1997). The interpolated SSS fields consist of the sum of a

reference field (or first guess) and an anomaly field obtained by

linear combination of satellite SSS data as follows:

xa 5 xf 1KOI(yo 2 yf ) , (1)

where

KOI 5C
ao
(C

oo
1R)21; (2)

xa are the vectors of the estimates at the grid point and yo is the

vector of observation, respectively; xf and yf are the vectors of

the reference field values at the grid and observation points,

respectively; KOI is the weight’s matrix constructed from co-

variance and error matrix; Cao is the covariance matrix be-

tween the analyzed fields at the grid and observation points;

Coo is the covariance matrix between the observations; and

R is the observation error matrix.

The SMOS and/or SMAP L3 SSS fields (Fig. 2) are mapped

on an EASE horizontal grid with a resolution of 25 km. The

optimal analysis is calculated on anomalies relative to the
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reference field used as a first guess, that is, ISAS. The analysis

modifies the first guess according to observations a priori sta-

tistics and chosen scales and covariance model. Thus, in poorly

sampled areas or if the observational errors are relatively large,

the solution may remain close to the reference field.

The covariance matrices Coo and Cao are constructed using

the same covariancemodelC(dr, dt), using aGaussian function

of time and space:

C
i,j
(dr, dt)5s

i,j
exp

"
2

 
dr2i,j

2L2
1

dt2i,j

2T2

!#
, (3)

where dr and dt are the spatial and temporal distances and L

and T are the associated decorrelation scales. The weight given

at each scale of variability corresponds to the variance. The

variance field si,j has been computed from filtered historical

SMOS data (Fig. 3a; Boutin et al. 2018a). The error matrix for

SMOS L3 data is derived from themodel error provided by the

L2 SMOS inversion and provided along with the L3 fields.

Since no errors are provided along with SMAP L3 v3 fields, the

SMOS errors are averaged in each OI box (;158 3 108) and
applied to the SMAP data (Fig. 3b). The underlying assump-

tion is that the error level in the two L3 products should be

close but slightly smaller for SMAP L3 (Boutin et al. 2018a).

Two optimal interpolations are used: a first to estimate the bias

and a second to reproject and smooth the corrected data onto

the EASE grid.

b. Correction of seasonal and large-scale errors

The first step consists in a first OI using Eq. (1). SMOS L3

and/or SMAP L3 SSS data are mapped over a period of 7 days

separately for each satellite using a ‘‘large’’ correlation scale

that is comparable to that used in ISAS. This large scale has

been estimated to be on average 500 km in the tropics and

subtropics. This correlation scale has been chosen empirically

since the sampling strategy and the scale chosen for ISAS re-

solves on average a 500-km horizontal feature (Kolodziejczyk

et al. 2015a; Table 1; see section S2 in the online supplemental

material). This scale is introduced into the Gaussian correla-

tion model [Eq. (3)], and the first OI is performed using the

ISAS monthly fields as first guess (Gaillard et al. 2016).

Smoothed seasonal and large-scale corrections are then de-

duced from the comparison of the SMOS and SMAP smoothed

fields with ISAS SSS monthly fields interpolated for the cor-

responding analyzed weeks (Figs. 4 and 5). Note that, by

construction the ISAS SSS fields are relaxed to climatology in

regions where no in situ data are available (especially at high

latitude). It is likely that in these regions the large-scale bias

correction is less accurate.

In the tropical regions, SMOS L3 and SMAP L3 large-scale

and seasonal systematic errors are reduced (Meissner et al.

2019; Boutin et al. 2018a) to values lower than 0.3 pss locally

(Figs. 4 and 5). This is on the order of the expected uncertainty

on SMOS and SMAPweekly gridded data (Boutin et al. 2018a).

Thus, seasonal and large-scale corrections are relaxed within the

tropics using a Gaussian function centered at this equator:

a(y)5 12 e2y2/l2 , (4)

where the length scale l5 308 (Table 1). This relaxation allows

to keep the information content in the data of the low salinity

plume of large tropical river runoff as well as the tropical in-

stability wave signature in SSS found in SMOS products (Yin

et al. 2014). The large-scale correction is also relaxed in the

Gulf of Mexico and off Rio de la Plata river mouth regions.

c. Noise reduction and data mapping

The corrected SMOS and SMAP L3 SSS are mapped using

an interpolation scheme by introducing into the Gaussian

function [Eq. (3)] spatial and temporal correlation scales cor-

responding to the synoptic scales resolved by SMOS and/or

SMAP, i.e., 7 days and 25 km (Table 1).

4. Results

Example of resulting OI L4 SSS weekly fields combining

SMOS and SMAP L3 fields are provided in Fig. 6a (15 July

2016). Using ancillary satellite SST (Fig. 6b), six extra L4 pa-

rameters are computed from combination between OI L4 SSS

with SST using the TEOS-10 library (IOC, SCOR, and IAPSO

2010): density (Fig. 6c), spiciness (Fig. 6d), absolute salinity,

conservative temperature, thermal expansion and haline con-

traction coefficients (section S3 in the online supplemental

FIG. 2. (a) SMOS CEC L3 debias 9-day v3 SSS (pss) field on

15 Jul 2016, (b) SMAPRSS 40-km 8-day v3 SSS (pss) field on 16 Jul

2016, and (c) ISAS SSSmonthly field (reference field) interpolated

in August 2016.
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material). Spiciness is defined as the density compensated

anomaly of temperature/salinity along an isopycnal surface

following McDougall and Krysik (2015). Here, the spiciness is

assumed to be proportional to isopycnal temperature and sa-

linity and is expressed in density units. The suggested orthog-

onality between density and spiciness isolines is not assumed in

our definition (Flament 2002; Huang 2011), because this as-

sumption is devoid of physical meaning (McDougall and

Krysik 2015). This is a complementary parameter to temper-

ature, salinity and density to characterize water masses con-

trasts (Portela et al. 2020). These thermodynamic and physical

parameters are valuable for the oceanographic community

since they comprehensively describe the upper-layer water

masses, that is, heat, freshwater and buoyancy, formation and

variability, especially the thermohaline characterization of the

surface oceanic fronts (Kolodziejczyk et al. 2015a,b).

To illustrate the value of combining consistent SST and SSS

to characterize the associated surface frontal dynamics, a

snapshot (14 July 2016) of horizontal density gradient contri-

butions have been computed in the North Atlantic following

Kolodziejczyk et al. (2015a) using OI L4 SSS, SST, density and

spiciness. To a first order, the density gradient is linearized

according to the equation

=
H
r5 r

0
b=

H
S2 r

0
a=

H
T , (5)

where r is the surface density, S is the SSS from OI L4, T is the

SST from AMSR-E/2; and r0 is constant (51026 kgm23). The

a and b are thermal expansion and haline contraction coeffi-

cients, respectively, computed from OI L4 SSS maps. The =H

gives the horizontal gradient. The absolute value of the ther-

mal and haline contributions to the absolute density gradient

are plotted in Figs. 7a and 7b, respectively. In addition, the

absolute value of density gradient and spiciness gradient

computed from TEOS-10 and OI L4 SSS fields are shown in

Figs. 7b and 7c, respectively.

In July 2016, in the subtropical North Atlantic, the Gulf

Stream extension is characterized by both complex temperature

and salinity double frontal structure just northward and

southward of 408N. The thermohaline front along the Gulf

Stream extension is set up by the meeting of southward flow of

the cool and fresh Labrador Current with the northward flow of

warm and salty water of subtropical origin. Although the dis-

tribution of multiple haline and thermal fronts is not exactly

the same, major mesoscale features of the front (inertial cur-

rent, meanders, and eddy) are consistently observed in location

and intensity in both temperature and salinity gradients (Reul

et al. 2014b). This results in strongly compensated thermoha-

line fronts that therefore exhibit weak signature in sea surface

density (Fig. 7c). In contrast, the spiciness gradient (Fig. 7d) is

enhanced to twice the amplitude of temperature and salinity

individual contributions to density gradient (Figs. 7a,b), sug-

gesting a strongly compensated front. This thermohaline fea-

ture is ubiquitous in various frontal regions, mode water

formation hot spots, and associated with processes such as

mixing and cabbeling (Thomas and Shakespeare 2015; Stewart

et al. 2017). SSS distribution in the western tropical Atlantic

FIG. 3. (a) SMOS SSS STD computed over the period 2011–2017, and (b) example of SMOS error field on 15 Jul

2016 provided along with SMOS L3 fields. Both are used as a priori statistics in the OI.

TABLE 1. Parameters used in the successive optimal

interpolation.

Parameter Value Comments

L(OI1) 500 km Space scale used for mapping separately

L3 SMOS and SMAP SSS at large scale

during first OI

L(OI2) 25 km Space scale used for merging andmapping

of corrected L3 SMOS and SMAP at

‘‘mesoscale’’ during the second OI

T(OI2) 7 days Time scale used for the merging and

mapping of corrected L3 SMOS and

SMAP at ‘‘mesoscale’’ during the

secondOI; note that the timewindow of

selected data for weekly mapping is

10 days

l 308 Meridional scale for the relaxation of the

large scale and time bias correction
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region (Fig. 7a) reveals the Amazon river plume associated

with intense freshwater release in the surface western tropical

Atlantic (Fig. 7a), which only has a weak temperature signa-

ture (Fig. 7b). The associated density front (Fig. 7b) is thus

mainly explained by the salinity gradient contribution. On the

other hand, north of 508N along the Labrador current (558W)

the salinity gradient also dominates the weakly compensated

density front (Figs. 7c,d). These few examples illustrate the

high variability of thermohaline characteristics of the fronts

over the ocean surface (not always compensated).

5. Validation

OI L4 SSS satellite products have been collocated with

available independent in situ observations mainly provided

by TSG data from ships of opportunity. The collocation is

performed pairing each TSG measurement with the occu-

pied satellite pixel. The statistics have been separated into

two regions: first, the latitudes between 608S and 608N and,

second, the subpolar regions andArctic Seas poleward of 608N.

To compare and quantify the improvement from L3 products

from SMOS and/or SMAP resulting from the OI procedure,

only SSS collocations that are common to each product (viz.,

ISAS, satellite OI L4 SSS, and SMOS L3 for the period from

2011 to 2017, and SMAP L3 for the period from 2015 to 2017)

are considered. Indeed, to be comparable, statistics should be

based on the same set of colocalized data for the four products;

that is, if collocated data are unavailable for one of the prod-

ucts, the collocation is discarded.

a. Low-to-midlatitudes

Over the SMOS-only period between 2011 and 2014, within

608S–608N the satellite OI L4 SSS, when compared with the

TSG data, shows a mean difference and root-mean-square

difference (RMSD) of 0.09 and 0.66 pss, respectively (Table 2).

Over the SMOS/SMAP period (2015–17), the mean difference

FIG. 4. Large-scale SSS differences between ISAS and (a) SMOSL3 SSS during 14 Aug 2016 and (b) SMAPL3 SSS

during 16 Jul 2016 as deduced from first OI.

FIG. 5. Large-scale and seasonal SSS differences between ISAS and (a) SMOS L3 SSS and

(b) SMAP L3 zonally integrated as deduced from first OI.
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and RMSD are20.01 and 0.37 pss, respectively (Table 2). Over

the 2015–17 period, SMOS L3 product and SMAP L3 global

products exhibit larger values for RMSD (0.52 and 0.53 pss,

respectively) and with average mean difference (0.07 and 0.01,

respectively). Over this period, if we consider only the SMOSL3

data in the interpolation (Table 2), the statistics are slightly

better than the one of SMOS L3 or SMAP L3, but not as good

than when using both satellites. This shows the value of adding

the SMAP L3 data to SMOS L3 data over this period to im-

prove the SSS estimates. Last, the correlation coefficients for

satellite OI with TSG SSS shows improved values up to 0.89

over the period 2011–14, and 0.93 over the period 2015–17,

relative to SMOS L3, and for SMAP L3 (Table 2). Although

the differences may result from increased accuracy of the SSS

estimates using both satellites over the last period, the SMAP

L3 SSS coastal mask extends further off the coast, resulting in

FIG. 6. The 15 Jul 2016map of (a) satellite OI L4 SSS, (b) AMSR-2 SST, (c) L4 sea surface density, and (d) L4 sea

surface spiciness. Both are computed from satellite OI L4 SSS and AMSR-2 SST maps. Panels (c) and (d) are

derived from the (a) and (b) maps.

FIG. 7. Contributions to horizontal surface density gradient (gray shading) on 14 Jul 2016 computed from (a) OI

L4 SSS (kgm23), (b) AMSR-2 SST (kgm23), (c) L4 sea surface density (kgm23), and (d) L4 sea surface spiciness

(kgm23). The contours are isocontours of the plotted parameter, and the contour scale is the same as in Figs. 6a–d

for (a)–(d), respectively.
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much better statistics for the open ocean (Kolodziejczyk et al.

2016; Boutin et al. 2018a). Overall, in the subtropics and at

midlatitude, satellite OI SSS have improved the L3 products by

23% in term of RMSD. The RMSD and bias include differ-

ences with TSG SSS measurements due to both misfit and

representativeness error (i.e., difference from in situ subsur-

face salinity and skin SSS as well as subfootprint SSS vari-

ability). To put these overall statistics into perspective, it

should be noted that ISAS OI, which provides large-scale

smoothed SSS fields, exhibit comparable RMSD, mean dif-

ference and correlation with TSG to OI L4 SSS (Table 2).

These high levels of correlation reveal the dominant weight of

the large-scale coherency. This gain in coherency is provided

by large-scale bias correction proposed in this study.

However, it is admitted that the SMOS and SMAP are able

to resolve mesoscale features at low to midlatitude (e.g., Yin

et al. 2014; Reul et al. 2014b; Kolodziejczyk et al. 2015a), while

ISAS is smoothing out these features (Kolodziejczyk et al.

2015a). Hence, more refined statistics are needed to provide

accurate assessment of the SSS products capability. First, these

global statistics hide large year-to-year variability. Between

2011 and 2017, OI L4 SSS yearly RMSD range from 0.28 to 0.68

pss, outperforming the other products (Table 2). The better

statistics over the SMOS/SMAP period results from the SMAP

L3 mask that reduces the near-coast collocations with largest

differences with in situ measurements, but also mainly from

merging the two satellite data (Table 2).

Second, these global statistics hide very inhomogeneous

distributions of SSS differences. Between 2011 and 2017

(Fig. 8), the OI L4 SSS product locally presents SSS differences

generally lower than 0.5 pss in every region over the open

ocean where in situ TSG are available (Fig. 8a). These statistics

are contrasting with validation results for individual SMOS L3

and SMAP L3 products that do not have large-scale and sea-

sonal bias absolute correction procedures, and present larger

differences in the North Atlantic midlatitudes, north-eastern

Atlantic and around the European continent, but also in the

SouthernOcean (Figs. 8b,c). In addition, in regions of high SSS

variability, such as river plumes, satellite OI L4 SSS fields

present differences much lower than ISAS SSS fields (Figs. 8a,d).

Third, to check the effective capability of the satellite OI L4

SSS product to monitor the mesoscale features, the OI L4 SSS

were systematically colocalized and compared with individual

TSG SSS transects. Figure 9 shows two examples at subpolar

latitudes where the seasonal and latitudinal bias is pronounced

in SMOS and SMAP L3 products (Figs. 2a,b). In the North

Atlantic (Fig. 9a), the difference of TSG SSS (black dots) with

SMOS L3 (blue dots) and SMAP L3 SSS (cyan dots) varies

along the transects at larger scale than the mesoscale SSS

variability (e.g., between 17 and 19 June 2016; Fig. 9a). The

satellite OI correction (red dots) allows to better fit the TSG

SSS, since the ISAS SSS is consistent at large scale with the

independent TSG SSS. In the Southern Ocean, the SMOS L3

and SMAP L3 latitudinal biases are less pronounced (Fig. 5).

Although both satellite OI L4 SSS and L3 SSS products

present a good agreement with mesoscale features observed

in the TSG data, satellite OI L4 reduce the large noise in the

most southern part of the transect (Fig. 9b; between 1 and

3 March 2016).

To evaluate the SSS horizontal effective resolution and co-

herency of the mesoscale SSS feature captured with the satel-

lite products, we compute the spectra and coherency spectra

between TSG SSS and OI L4 SSS (Boutin et al. 2018a). Two

regions were chosen to test that for the present study: (i) the

North Atlantic subtropical SSS maximum (508–208W, 108–408N),

where 88 transects are available between 2011 and 2016, and

TABLE 2. Root-mean-square difference, mean difference (bias), and correlation for SNO SSS TSG (between;608N and 608S) collocation
with satellite SSS from OI L4 [for SMOS only and SMOS/SMAP (in boldface type)], SMOS L3, SMAP L3 and ISAS products.

2011 2012 2013 2014 2011–14 2015 2016 2017 2015–17

N 526 377 627 066 512 313 498 349 2 164 105 205 857 408 964 248 576 863 397

RMSD

OI L4 0.59 0.67 0.68 0.68 0.66 0.46 0.36 0.28 0.37

OI (SMOS only) 0.40 0.38 0.31 0.37

SMOS L3 0.76 0.99 0.83 0.82 0.86 0.55 0.53 0.46 0.52

SMAP L3 0.59 0.51 0.51 0.53

ISAS 0.59 0.70 0.68 0.72 0.67 0.51 0.44 0.24 0.41

Bias

OI L4 0.07 0.09 0.11 0.08 0.09 0.01 20.01 20.03 20.01

OI (SMOS only) 0.00 20.02 20.04 20.02

SMOS L3 20.11 20.05 0.16 0.06 0.01 0.09 0.11 20.01 0.07

SMAP L3 0.04 0.00 20.05 0.01

ISAS 0.09 0.12 0.12 0.09 0.11 0.03 0.00 20.03 0.00

Correlation

OI L4 0.91 0.90 0.85 0.91 0.89 0.93 0.95 0.90 0.93

OI (SMOS only) 0.94 0.95 0.88 0.93

SMOS L3 0.86 0.77 0.77 0.86 0.81 0.90 0.89 0.80 0.87

SMAP L3 0.88 0.90 0.78 0.86

ISAS 0.92 0.89 0.86 0.90 0.89 0.91 0.92 0.92 0.92
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(ii) the tropical Atlantic (408–108W, 58S–208N), where 26

transects are available between 2014 and 2016 (Fig. 10). These

two regions have been chosen because of the exceptional

amount of repeated available transects. Individual transects

were visually inspected and incomplete transects were dis-

carded. To reduce uncertainty due to noisy individual spectrum

from each individual transect, spectra were averaged in each of

the two regions.

The horizontal SSS coherency spectra refer to the coherency

of the SSS horizontal variability between the collocated TSG

SSS and SSS satellite products, i.e., the level of correlation of

the SSS signal for a given wavelength range. This allows us to

assess how well the OI L4 SSS products observe mesoscale

features larger than 50 km scale in presence of data noise and

spurious SSS contamination.

In the subtropical North Atlantic (Figs. 10a,b), TSG (black)

and satellite OI L4 SSS (red) spectra show a good agreement

between 125 and 1000 km. In contrast, in spite of comparable

slopes, the SMOS L3 SSS (blue) and SMAP L3 SSS (cyan)

spectra show a slightly larger amplitude than the TSG SSS

spectrum. This suggests that for this range of wavelengths the

variance of mesoscale features is probably noisier in SMOS L3

and SMAP L3 SSS products. Interestingly, the coherency

spectra of collocated satellite OI L4 and TSG SSS exhibit a

slightly higher values in comparison with SMOS L3 coherency

from large scale (coherency . 0.5 for wavelength . 1000 km)

to mesoscale (coherency of;0.25 for wavelength of;300 km).

The SMAP L3 product shows a drop of coherency between

wavelengths of 700–400 km but a slightly better coherency

for wavelengths close to 300 km. The significance at 95% is

lost for wavelengths smaller than 250 km. This suggests that

wavelengths shorter than 300 km are poorly represented in the

products and/or appear with different characteristics due the

different spatiotemporal sampling by satellite and TSG. This is

FIG. 8. Difference with in situ SSS from French ‘‘Service National d’Observation’’ SSS TSG during 2011–17 for

(a) OI L4; (b) SMOS L3; (c) SMAP L3; (d) ISAS.

FIG. 9. (a) TSGSSS transect between 1 and 22 Jun 2016 across theNorthAtlantic (black); collocated satelliteOI L4 SSS (red), SMOSL3

(blue), and SMAP L3 (cyan); (b) TSG SSS transect between 29 Feb and 5 Mar 2016 across the Southern Ocean. Transect locations are

given on the maps above the panels.
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consistent with a previous study on SMOS L3 product assess-

ment (Boutin et al. 2018a).

In the tropical Atlantic (Figs. 10c,d), TSG and SMOS SSS

spectra show very similar behaviors, with comparable variance

and slope values. Furthermore, both spectra also show a rela-

tively high level of coherence at wavelengths larger than

300 km. In the tropical Atlantic region, the coherency drop-off

observed at wavelengths smaller than 250 km suggests that

the satellite products are not able to consistently resolve

scales smaller than ;125–150 km (using scale as 1/2 of the

wavelength).

In general, in the subtropical and tropical Atlantic Oceans,

the OI L4 SSS product is able to resolve wavelengths on the

order of 300 km. In the tropical region, considering a threshold

for a coherency at 0.5, the OI L4 SSS resolve wavelengths

slightly smaller than 300 km. In the subtropical region, the

coherency is lower but significant (at 95%) for wavelengths

down to 250 km. In any case, the OI L4 SSS reduces noise and

improves accuracy compared with SMAP and SMOS L3

products. These wavelengths correspond to effective resolved

horizontal scales on the order of 150–125 km (meanders and

eddies). Nevertheless, the misfit between TSG and satellite

data is not only due to spurious satellite data. Incoherency

resulting from differences between instantaneous and point-

wise measurements from the TSG data and colocalized satel-

lite products (;7 days; 50 km) may be responsible for shift and

lag between TSG SSS measurements and collocated satellite

OI SSS along ship transects. This results in a loss of coherency

for the smaller and faster SSS mesoscale structures.

b. High latitudes: Arctic seas

SSS retrievals in the Arctic seas present poor signal-to-noise

ratio. Over the period 2011–14 (SMOS), the satellite OI L4 SSS

exhibits an RMSD, mean difference, and correlation of 1.78,

0.23 pss, and 0.91, respectively (Table 3). Over the period

2015–17 (SMOS/SMAP), satellite OI L4 SSS present an

RMSD, mean difference, and correlation of 0.78, 0.05 pss, and

0.88, respectively. In comparison, over the complete period

2011–17 the SMOS L3 and SMAP L3 SSS product exhibit

generally larger RMSD, mean difference and but smaller

correlations (Table 3). The SMAP ice mask extends further

offshore and away from the ice edge than the SMOSone, which

could explain the improved statistics over the period 2015–17.

However, the satellite OI L4 including additional SSS data

FIG. 10. (a) Density spectra computed from 88 SSS TSG transects (black), collocated OI L4 SSS (red), SMOS L3 SSS (blue), SMAP L3

SSS (cyan), and ISAS SSS (green) across the subtropical North Atlantic box (508–208W/108–408N; dashed black in Atlantic map above the

panels). (b) Coherency spectra between TSG SSS transects and collocated OI L4 SSS (red), SMOS L3 SSS (blue), SMAP L3 SSS (cyan),

and ISAS SSS (green). (c) As in (a), but for 26 transects across the tropical Atlantic box (408–108W/58S-208N; solid black in Atlantic map

above the panels). (d)As in (b), but for the tropical Atlantic. Dashed horizontal [in (b) and (d)] or vertical lines [in (a) and (c)] indicate the

level of significance at 95% for SMOS L3 and OI L4 (black) and SMAP L3 (cyan).
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such as SMAP L3 still allows to reduce the RMSD and bias

(Table 3) in the Arctic Basin.

In the Nordic seas and western Barents Sea, the OI SSS

presents small differences with respect to in situ measurements

(Fig. 11a). This is clearly due to the large-scale correction using

the ISAS fields (Fig. 11d). In the Siberian marginal seas and in

the Beaufort Gyre, the differences are significantly larger due

to the inaccuracy of ISAS climatology in the absence of in situ

data, as well as uncertain SMOS and SMAP retrievals in the

cold water areas and in the vicinity of the sea ice edge. In the

Nordic seas and Barents Sea, the SMOS L3 and SMAP L3 data

are generally too salty (Figs. 11b,c).

The comparison of the SSS from the different products with

the TSG SSS from S/V Tara sailing ship transects during 2013

(Figs. 12a,b) illustrates the expected improvements using the

OI correction procedure (red curve; Fig. 12a). It is shown that

the effectiveness of the correction depends on a first hand on the

accuracy of the climatology used. In the Nordic seas, Barents Sea,

andSiberianmarginal seas aswell asBeaufortBasin andBaffinBay

(except in Kara Sea), the relative agreement between OI SSS and

TSG SSS is closely related to the ISAS and TSG SSS agreement.

This also allows to correct the strongest anomalous SMOS L3 SSS

such as in BeaufortGyre andBaffinBay (blue curve, Figs. 12b, 11).

However, in theKara Sea, an inaccurate ISASclimatologyprevents

us from effectively correct the SMOS L3 SSS (Fig. 12b). Despite a

general improvement of SSS estimate in the Arctic Ocean, re-

trieving accurate SSS from L-bandmeasurement in cold water and

in the vicinity of sea ice edge require further research.

6. Discussion and conclusions

A new procedure for adjusting large-scale and time-varying

bias on SMOS and SMAP L3 products has been presented.

With respect to latitudinal and seasonal varying corrections

applied in SMOS and SMAP processing up to level 3, this

procedure allows to adjust large-scale biases that vary region-

ally and interannually. This procedure uses successive optimal

interpolations. A first optimal interpolation using a large co-

variance scale to estimate the large-scale difference between

Argo monthly climatology and interpolated SMOS and SMAP

L3 data. Then, a second optimal interpolation is used to merge

andmap SMOS and SMAPL3 products, after having corrected

them from large-scale biases determined in the first step. This

new procedure provides a significant improvement of the SSS

satellite products. The resulting OI L4 SSS product presents a

reduced signal-to-noise ratio in comparison to the SMOS and

SMAP L3 products with the same time resolution (between 7

and9days). The improvement fromL3SSSproducts comesmainly

from the seasonal and large-scale bias correction. Furthermore,

over the period 2015–17, including both SMOSand SMAPL3data

provides improved estimates of SSS since we double the SSS data

input in our OI. In the tropical open ocean, where the scale and

time-varying bias is smaller than the error RMSD differences es-

timated from the comparison with TSG (Boutin et al. 2018a), ad-

ditional correction to existing corrections performed in SMOS and

SMAP processings up to level 3 is not required. Eventually, for the

first time, the gain in resolution of such combination of consistent

L4 SSS and SST satellite maps provides density, spiciness and

thermodynamical variables computed from satellite SSS and SST.

The hydrological and thermodynamical parameters provide a

comprehensive insight in global sea surface water masses proper-

ties especially thermohaline contributions to mesoscale frontal

variability (Kolodziejczyk et al. 2015a,b).

The large-scale correction presented in this study was ini-

tially developed from SMOS L2 and L3 data with the aim of

getting SSS fields resolving large mesoscale features. Since

TABLE 3. As in Table 2, but with RMSD, bias, and correlation (using an outlayers filtering at 3s) for in situ data in the Arctic (north

of 608N).

2011 2012 2013 2014 2011–14 2015 2016 2017 2015–17

N 24 242 56 741 107 441 50 256 238 680 9400 16 147 13 568 39 115

RMSD

OI L4 0.87 1.80 1.98 1.61 1.78 0.73 1.03 0.35 0.78

OI SMOS only 0.78 1.06 1.00 0.98

SMOS L3 1.05 2.75 2.19 3.61 2.61 1.21 1.09 1.06 1.11

SMAP L3 1.35 1.09 0.59 1.02

ISAS 0.85 1.99 2.02 1.34 1.80 0.69 1.03 0.36 0.77

Bias

OI L4 0.03 0.92 20.42 0.93 0.23 0.13 0.02 0.02 0.05

OI SMOS only 0.12 0.00 0.11 0.07

SMOS L3 20.02 1.80 0.52 2.79 1.25 0.40 0.24 0.30 0.30

SMAP L3 0.51 0.17 0.10 0.23

ISAS 0.11 0.92 20.48 0.81 0.18 0.13 0.02 0.03 0.05

Correlation

OI L4 0.90 0.93 0.88 0.96 0.91 0.94 0.81 0.91 0.88

OI SMOS only 0.93 0.77 0.80 0.82

SMOS L3 0.76 0.88 0.83 0.83 0.83 0.80 0.73 0.75 0.75

SMAP L3 0.81 0.79 0.90 0.83

ISAS 0.96 0.95 0.91 0.97 0.94 0.97 0.83 0.95 0.91
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SMAP SSS presents about the same time and space resolution

as SMOS SSS and a comparable satellite swath, the correction

and merging approach also fits the SMAP SSS. Although

Aquarius satellite is an important source of satellite SSS data, it

was not considered in this study for the following reasons:

SMOS and SMAP have about the same resolutions (;45 km),

large swath width on the order of thousands of kilometers,

allowing revisit time on the order of 3 days, while Aquarius has

only a 150-km effective resolution (Lee et al. 2012), a swath

width of ;300 km, and a revisit time of 7 days. Moreover, a

strategy for adjusting Aquarius satellite SSS with Argo SSS has

already been presented in Melnichenko et al. (2014) and sub-

stantially differ from our approach.

Although the OI approach is commonly used to intercali-

brate and map multisatellite SST L4 products (Autret et al.

2019; Reynolds and Smith 1994), the OI L4 SSS satellite

products merging SSS data retrieved from different L-band

sensors remain uncommon. Melnichenko et al. (2014) used OI

scheme tomapAquarius alone and corrected interswath biases

providing O(150 km) and O(1 week) corrected SSS maps.

Buongiorno Nardelli (2012) used OI to map in situ SSS using a

multidimensional correlation function involving satellite SST

gradients to extrapolate SSS at smaller resolution than per-

mitted by in situ data. They also provided ‘‘high resolution’’

SSS map and sea surface density (SSD) maps (Droghei et al.

2016). This approach was also adapted to provide high reso-

lution SSS maps from SMOS SSS (Buongiorno Nardelli et al.

2016). Although, this approach can potentially provide SSS

and SSD fields at a finer resolution, assuming the SST and SSS

gradients correlation is a strong hypothesis and its validity is

limited to certain times and locations (Kolodziejczyk et al.

2015a,b).

The approach we follow here differs from the one followed

for developing the CCI1SSS (Boutin et al 2019) product using

the three historical L-band radiometer missions measuring SSS

from space, i.e., Aquarius (Lagerloef 2012), SMAP and SMOS.

Actually, the Climate Change Initiative (CCI1SSS), as well as

the SMOS L3 CATDS methodology, is based on the self-

consistency of the satellite SSS measured in different geome-

tries and, in the case of CCI1SSS, with different sensors. It

requires a good characterization of the random and systematic

errors coming from both the satellite observing system and the

sampling error, hence a good knowledge of the satellite SSS

error sources and of the SSS natural variability between vari-

ous satellite passes. As a result, the efficiency of the self-

consistent method is largely linked to the definition of the

reference space used for characterizing the errors, considering

for instance instrument geometry relative to orbit passes, to

FIG. 11. Comparison with in situ SSS from available Arctic near surface in situ measurements (TSG, CTD, and

Argo) over the period 2011–17 for (a) OI L4, (b) SMOS L3, (c) SMAP L3, and (d) ISAS.
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coastline, to sun and seasonal related effects. No absolute

correction is introduced by in situ data such as in situ SSS

interpolated field at weekly or monthly time scales, so as to

preserve as much as possible the SSS variability sampled

by the satellite data and not to relax to a climatology in

regions/periods when no in situ measurement is available, at

the expense of possible remaining large-scale errors and re-

maining time-varying bias in the mid- to high latitudes (see

Figs. 3 and 6 at http://cci.esa.int/sites/default/files/SSS_cci-

D4.1-PVIR-v1.1-signed.pdf).

From the subtropical to subpolar latitudes, the present pro-

cedure significantly reduces the large-scale and time-varying

bias in comparison to L3 SSS products. This approach has been

demonstrated for correcting SMOS SSS alone in order to es-

timate the contribution of the eddy advection to the seasonal

and interannual SSS budget in the North Atlantic subtropical

SSS maximum (Sommer et al. 2015). However, at higher lati-

tudes the small eddy scales (Chelton et al. 1998) hinders proper

mapping of the major SSS eddy features with SMOS and

SMAP resolution, advocating for higher resolution satellite

observation of SSS.

The method is efficient in regions that are sufficiently sam-

pled by the Argo network, which provides accurate estimates

of the large-scale SSS pattern. In contrast, in regions that are

poorly sampled by the Argo array, that is, in the Arctic Ocean,

coastal regions and marginal ice zone, ISAS uses a background

WOA monthly climatology. Thus, reference large-scale SSS

fields are less reliable in these regions. Yet, despite higher

frequency coverage due to circular orbits of SMOS and SMAP

in the polar ocean, low SST and sea ice margins still result in

large errors in L-band radiometer SSS retrievals. Therefore,

the large-scale correction and merging of SMOS/SMAP data

still results in an improved signal-to-noise ratio of satellite SSS

field with respect to ISAS and L3 SSS products.

A remaining challenging issue is filtering the SSS from sea

ice contamination that introduces biases in the vicinity of the

ice marginal zone and the moving ‘‘coastal-like’’ contamina-

tion that results from the seasonal migration of the sea ice

edges. The SMOS ice mask applied on the SMOS L3 products

used in this study was derived from the SMOS retrieved pseudo

dielectric constant similar to what is used in Supply et al. (2020)

but using an earlier version of the processing with a more

permissive threshold. It is thus expected that sea ice filtering

could be improved in future SMOS L3. Olmedo et al. (2018)

have proposed a alternative method based on a correction of

the SMOS SSS at the L2 level using WOA. They produce

relatively accurate SSS field in the Arctic ocean; however, they

use a smoothing procedure with a large horizontal scale that

does not take advantage of the SMOS resolution capability.

Furthermore, as they use WOA monthly climatology, this

provides less accurate instantaneous corrections in regions

poorly sampled by the in situ network, such as the Arctic

Ocean. In this region, the major role played by the freshwater

flux and salinity for the ocean dynamics and the lack of

in situ data provides a high potential for SSS remote sensing.

Furthermore, SMOS SSS has proven to be relevant for ob-

serving strong SSS contrasts in large Arctic river plumes

(Matsuoka et al. 2016; Tarasenko et al. 2021; Supply et al.

2020). These methods for correcting L-band SSS and future

satellite missions will provide new opportunities to investigate

ocean freshwater and climate variability at high latitude.
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