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ABSTRACT
Many observed disc galaxies harbour a central bar. In the standard cosmological paradigm, galactic bars should be slowed
down by dynamical friction from the dark matter halo. This friction depends on the galaxy’s physical properties in a complex
way, making it impossible to formulate analytically. Fortunately, cosmological hydrodynamical simulations provide an excellent
statistical population of galaxies, letting us quantify how simulated galactic bars evolve within dark matter haloes. We measure
bar strengths, lengths, and pattern speeds in barred galaxies in state-of-the-art cosmological hydrodynamical simulations of the
IllustrisTNG and EAGLE projects, using techniques similar to those used observationally. We then compare our results with the
largest available observational sample at redshift z = 0. We show that the tension between these simulations and observations in
the ratio of corotation radius to bar length is 12.62σ (TNG50), 13.56σ (TNG100), 2.94σ (EAGLE50), and 9.69σ (EAGLE100),
revealing for the first time that the significant tension reported previously persists in the recently released TNG50. The lower
statistical tension in EAGLE50 is actually caused by it only having five galaxies suitable for our analysis, but all four simulations
give similar statistics for the bar pattern speed distribution. In addition, the fraction of disc galaxies with bars is similar between
TNG50 and TNG100, though somewhat above EAGLE100. The simulated bar fraction and its trend with stellar mass both differ
greatly from observations. These dramatic disagreements cast serious doubt on whether galaxies actually have massive cold dark
matter haloes, with their associated dynamical friction acting on galactic bars.

Key words: gravitation – instabilities – galaxies: evolution – galaxies: bar – galaxies: spiral.

1 IN T RO D U C T I O N

The standard picture of galaxies residing within cold dark matter
(CDM) haloes was historically motivated in part by the numerical
result that self-gravitating Newtonian discs are very unstable to
the formation of a very strong bar (Miller & Prendergast 1968;
Hockney & Hohl 1969; Hohl 1971). This can in principle be
suppressed with a CDM halo as proposed by Ostriker & Peebles
(1973), but their equation (6) shows that they only considered a ‘rigid’
halo that provides a fixed extra contribution to the potential, as would
occur if e.g. the CDM particles in the halo did not move. If instead
a live (responsive) halo is considered, the situation is more complex,
as bars can be amplified (e.g. Sellwood 2016) or weakened (e.g.
Bournaud, Combes & Semelin 2005) through angular momentum
exchange with the halo. In all cases, the dark halo rapidly slows
down the bar pattern speed because it exerts efficient dynamical
friction on the bar, as confirmed by both analytical investigations
(Tremaine & Weinberg 1984) and N-body simulations (Debattista &
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Sellwood 2000). The actual pattern speeds �p of galactic bars can
thus in principle provide an important test of the CDM picture.

Since galaxies come in a range of sizes, to know whether a bar is
rotating fast or slow for its size, �p is parametrized by the ratio of
the corotation radius to the bar length. In other words, the important
statistic is the dimensionless quantity

R ≡ RCR

Rbar
, (1)

where Rbar is the bar semimajor axis, and RCR is the bar corotation
radius where the circular velocity vc plotted as a function of radius R
intersects a line with slope �p, i.e. these quantities satisfy the relation
�pRCR ≡ vc.

If 1.0 < R < 1.4, then the bar is considered to be ‘fast’ and
extends almost until its corotation radius. But if R > 1.4, the bar
is ‘slow’ and corotation occurs far outside the bar radius. Ultrafast
bars with R < 1 should not arise as such bars enter an unstable
regime and dissolve (Contopoulos & Grosbol 1989). Observations
of bar pattern speeds in real galaxies firmly show that most bars are
fast in the sense of having R ≈ 1 (Corsini 2011; Aguerri et al. 2015;
Cuomo et al. 2019b; Guo et al. 2019).
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In the CDM picture, however, dynamical friction tends to push R
into the slow regime. The density profile of the dark halo plays a key
role in the amount of friction (e.g. Read et al. 2006). Self-consistency
with �CDM (Efstathiou, Sutherland & Maddox 1990; Ostriker &
Steinhardt 1995) requires the CDM halo profiles and their velocity
fields to be computed self-consistently in the theory by evolving small
initial density perturbations into a population of galaxies 13.8 Gyr
later. We therefore compare observed bars with those that form in the
latest and highest-resolution �CDM galaxy formation simulations
in a proper cosmological context. In particular, the EAGLE and
IllustrisTNG simulations are used for this purpose. They rely on
very different computational methods, which in principle makes the
results robust. Our comparison with observations is done in terms of

(i) the fraction of galaxies that have bars, and
(ii) the pattern speeds of the bars.

A similar analysis for EAGLE previously revealed an 8σ tension
with �CDM (Roshan et al. 2021). The main advantage of this work is
a homogeneous analysis of several �CDM cosmological simulations
using techniques similar to those applied to real galaxies, along with
further improvements on the observational side (Cuomo et al. 2020).

The outline of this paper is as follows: In Section 2, we briefly
review the current status of bar pattern speed observations, and
describe the largest observational sample available to date. In
Section 3, we introduce the cosmological simulations used in this
paper, and discuss our selection rules to identify suitable barred
galaxies. We also explain the techniques used to measure the bar
strength and length, pattern speed, and corotation radius in the
simulated galaxies. We present our results in Section 4. We then
more carefully quantify the statistical distribution ofR in simulations
and in observations, thereby allowing us to find the level of tension
between them (Section 5). Since the simulations overpredict R, we
consider a less accurate method to obtain the rotation curve that
typically underestimates it, giving lower R and a more conservative
estimate of the disagreement with observations (Section 5.1). We then
discuss our results in Section 6. Conclusions are drawn in Section 7.

2 BAR PATTERN SPEED OBSERVATIONS

Tremaine & Weinberg (1984, hereafter TW) developed a straight-
forward technique to recover the pattern speed �p of a bar in
a barred galaxy without involving complex dynamical modelling.
With their approach, �p is directly determined from observable
quantities measured for a tracer population of stars or gas, which
only has to satisfy the continuity equation. Further assumptions of
the TW method are that the bar resides in a flat disc, and that its
angular frequency is characterized by a well-defined �p. In its first
application, the TW method was tested on a numerically simulated
galaxy, resulting in a reliable measurement of �p with 15 per cent
accuracy.

Both photometric and spectroscopic data are needed to apply the
TW method, which requires measurements of the surface density and
line-of-sight (LOS) velocity distribution of the tracer along apertures
located parallel to the major axis of the galactic disc. The first natural
application of the TW method involved long-slit spectroscopy (for a
review, see Corsini 2011). More than 10 �p estimates were obtained
in mainly early-type galaxies, with typical uncertainties of around
30 per cent. In fact, the most suited tracer for the TW method is an
old stellar population without contamination from gas.

The advent of integral field unit (IFU) spectroscopy allowed to
reduce the uncertainties and enlarge the samples (e.g. Aguerri et al.
2015; Guo et al. 2019). IFU spectroscopy greatly reduces the main

Table 1. Properties of our adopted observational sample of galaxy bars
(Cuomo et al. 2020). We use the (possibly distinct) high and low error bars
to get a single logarithmic uncertainty for each quantity for each galaxy, and
then apply the same quality cuts as in Section 5. This reduces the sample
size from 104 to 42. The calculations are done in log-space, and the mean
logarithm is then exponentiated to get what we call the logarithmic mean.
The intrinsic dispersion is calculated neglecting measurement errors, the rms
value of which is shown in the last column. The linear mean value ofR for the
104 (42) galaxies is 1.17 (1.02). Of these galaxies, ≈ 51 per cent (60 per cent)
have a reported R < 1.

Observed Logarithmic Intrinsic rms error
quantity mean dispersion (dex) (dex)

Rbar (kpc) 5.23 0.20 0.08
R 0.92 0.20 0.16

source of error in the TW method because it allows to define a
posteriori the disc position angle (PA) along which to locate the
apertures, to extract a sufficient number of apertures, and to correctly
identify the centre of the galaxy and its systemic velocity. Thanks to
these technological improvements, the method was applied to late-
type galaxies as well, where dust and spurious elements (e.g. star-
forming regions and/or other galaxy components like rings, warps,
or strong spirals) may affect the surface mass density of the tracer.
Nevertheless, the applicability of the TW method to spiral galaxies
was tested by both theoretical (Gerssen & Debattista 2007; Zou
et al. 2019) and observational studies (Debattista & Williams 2004;
Aguerri et al. 2015; Cuomo et al. 2019b). The assumption of a
well-defined rigidly rotating pattern speed in a barred galaxy can
be questioned in the presence of rings and/or spiral arms – possible
effects due to multiple or variable pattern speeds are unavoidable,
but can be mitigated with a careful application of the TW method
(Debattista, Gerhard & Sevenster 2002; Maciejewski 2006; Meidt
et al. 2008; Williams et al. 2021).

Nowadays, the TW method can be applied using publicly avail-
able IFU surveys (Cuomo et al. 2019b; Guo et al. 2019; Garma-
Oehmichen et al. 2020). Efforts have been made to apply the TW
method using gaseous tracers as well (Zimmer, Rand & McGraw
2004; Fathi et al. 2009), but the reliability of the corresponding
results is still under debate (Williams et al. 2021). Recently, the
TW method can even be applied to stars in the Milky Way with a
combination of Gaia and VVV proper motions (Sanders, Smith &
Evans 2019).

Cuomo et al. (2019a) applied for the first time the TW method to
data from the Multi-Unit Spectroscopic Explorer (MUSE; Bacon
et al. 2010), reducing the uncertainties on �p to � 10 per cent.
Cuomo et al. (2020) collected all previous results based on com-
parable applications of the TW method to investigate the relations
between the properties of bars and their host galaxies. The authors
built the largest sample of barred galaxies available to date with an
available direct measurement of �p. The sample spans a wide range
in morphological types (from SB0 to SBd), redshifts (z < 0.08), and
Sloan Digital Sky Survey (SDSS; SDSS Collaboration 2000) r-band
absolute magnitudes (−23 < Mr < −18). Most of the galaxies in the
sample have a stellar mass M∗ in the range 109 < M∗/M� < 1011.

More than 100 galaxies have been analysed with the TW method
so far, yielding their bar pattern speeds from stellar absorption spectra
based on both long-slit and IFU data (Cuomo et al. 2020; Williams
et al. 2021). In this work, we use the sample provided by Cuomo
et al. (2020), which consists of 104 galaxies since we retain the
formally ultrafast bars. Some properties of this sample are shown in
Table 1. Due to the large spread in values, we work in logarithmic
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space, and also impose limits to the maximum allowed error on
the bar length and R parameter similarly to our main statistical
analysis (Section 5). This leaves us with 42 galaxies. For ease of
comparison, the logarithm of the mean value is then exponentiated,
yielding e.g. a typical bar length in kpc rather than log kpc. The
intrinsic dispersion is estimated from a simple population standard
deviation neglecting measurement errors, which is justified because
the intrinsic dispersion exceeds the root mean square (rms) of the
individual fractional measurement errors. However, this is only just
true for the crucially important R parameter, so both measurement
errors and intrinsic dispersion need to be simultaneously considered
– this is done in Section 5.

After discarding measurements of �p with large errors, Cuomo
et al. (2020) reported in their Section 5.1 that all bars analysed so
far with the TW method are compatible with being fast or ultrafast
at the 95 per cent confidence level. The apparently ultrafast bars
(responsible for a logarithmic mean R < 1 in Table 1) are likely
due to measurement errors and/or bar-spiral arm alignment leading
to an overestimated Rbar, as discussed in Hilmi et al. (2020) and
Roshan et al. (2021) in the context of Newtonian and extended gravity
theories, respectively. While a slight underestimation ofR is possible
in some cases, the bar must be quite fast intrinsically if it appears
ultrafast in a careful analysis. Moreover, we explain in detail in the
following sections that the employed methods to find theR parameter
in simulated galaxies are identical to those used in observations, so
the comparison is in relative terms rather than the true values of R.

Cuomo et al. (2020) suggested that the observed lack of slow bars
could be explained if the sample of galaxies analysed so far with
the TW method does not include either dynamically evolved barred
galaxies or cases with very efficient exchange of angular momentum
between the bar and other galaxy components. Since only a small
fraction of galaxies are interacting, the more likely scenario seems
to be inefficient angular momentum exchange between the bar and
any CDM halo. In this work, we explore the feasibility of this in the
�CDM model, i.e. whether it necessarily implies efficient slowdown
of the bar.

3 C O S M O L O G I C A L H Y D RO DY NA M I C A L
SIMULATIONS

Using state-of-the-art cosmological hydrodynamical simulation runs
of the EAGLE (Schaye et al. 2015; McAlpine et al. 2016) and
IllustrisTNG (Nelson et al. 2018, 2019a; Pillepich et al. 2019)
projects, we investigate the properties of barred galaxies at z = 0
in the �CDM framework. In the following, we briefly describe the
here-assessed simulations, and the selection criteria for our galaxy
samples. We then describe the method used to estimate the bar
strength, length, and corotation radius in simulated galaxies. We
show the main steps in our analysis for one illustrative example.

3.1 The EAGLE simulation

The Evolution and Assembly of GaLaxies and their Environments
(EAGLE) project (Schaye et al. 2015; McAlpine et al. 2016) is a set of
cosmological simulation runs consistent with Planck Collaboration I
(2014), i.e. with H0 = 67.77 km s−1 Mpc−1, �b,0 = 0.04825, �m,0 =
0.307, ��,0 = 0.693, σ 8 = 0.8288, and ns = 0.9611. The EAGLE
simulations were performed with a modification of the GADGET-3
(Springel 2005) Smoothed Particle Hydrodynamics (SPH) code.

We use the simulations EAGLE Ref-L0050N0752 (hereafter
EAGLE50) and EAGLE Ref-L0100N1504 (hereafter EAGLE100),
which evolve 2 × 7523 (dark matter and baryon) particles in a box

with L = 50 co-moving Mpc (cMpc) per side and 2 × 15043 particles
in a box with L = 100 cMpc per side, respectively. Both simulations
have an initial baryonic particle mass of 1.81 × 106 M�, a dark matter
particle mass of 9.70 × 106 M�, a co-moving Plummer-equivalent
gravitational softening length of εcom = 2.66 ckpc, and a maximum
physical softening length of εphys = 0.70 kpc. An overview of numer-
ical parameters of different EAGLE simulations is given in tables 2
and 3 of Schaye et al. (2015). The EAGLE public data base, which
includes the EAGLE galaxy data base (McAlpine et al. 2016) and
EAGLE particle data (The EAGLE team 2017), can be accessed via
their website.1

3.2 The IllustrisTNG simulation

The Illustris The Next Generation (IllustrisTNG; Marinacci et al.
2018; Naiman et al. 2018; Nelson et al. 2018, 2019a, b; Pillepich et al.
2018a, b, 2019; Springel et al. 2018) project is a set of cosmological
hydrodynamical simulations that further develop the original Illustris
project (Genel et al. 2014; Vogelsberger et al. 2014a, b; Sijacki et al.
2015). IllustrisTNG consists of various simulation runs with different
resolution settings and box sizes. All simulations are consistent with
the Planck cosmology (Planck Collaboration XIII 2016) because they
adopt H0 = 67.74 km s−1 Mpc−1, �b,0 = 0.0486, �m,0 = 0.3089,
��,0 = 0.6911, σ 8 = 0.8159, and ns = 0.9667. The simulations were
performed with the AREPO code (Springel 2010).

Here, we employ the simulations TNG100-1 and the high-
resolution realization TNG50-1, with the −1 suffix indicating the
highest available resolution for the box size, and e.g. 100 indi-
cating a box size close to 100 cMpc. The TNG100-1 simulation
includes 2 × 18203 initial gas cells and dark matter particles in
a co-moving box with length of L = 75 h−1 cMpc ≈ 110.7 cMpc
per side, where h is the present Hubble constant H0 in units of
100 km s−1 Mpc−1. TNG100-1 has a baryonic mass resolution of
mbaryon = 1.4 × 106 M�, a dark matter mass resolution of mDM =
7.5 × 106 M�, and a Plummer-equivalent gravitational softening
length for both the dark matter and stars of εz=0

DM, stars = 738 pc at
redshift z = 0. An overview of the TNG100-1 numerical parameters
is provided in table 1 of Nelson et al. (2018).

The TNG50-1 simulation has the highest resolution among
the here-assessed cosmological simulations, with a resolution of
mbaryon = 8.5 × 104 M�, mDM = 4.5 × 105 M�, and εz=0

DM, stars = 288 pc
(see also table 1 in Pillepich et al. 2019). It evolves 2 × 21603 initial
gas cells and dark matter particles in a box with L = 35 h−1 cMpc ≈
51.7 cMpc per side. Since we only consider the highest resolution
simulation for each TNG box size, we will usually drop the –1 suffix
in what follows. The IllustrisTNG data can be downloaded from the
dedicated website.2

In the TNG simulations, an extra flag is defined for each subhalo.
The value of this subhalo flag (subflag) determines if the galaxy has
a cosmological origin (subflag = 1), or if it might be a tidal dwarf
or CDM-deficient galaxy (subflag = 0). Only ≈ 0.13 per cent of the
TNG100 galaxies we use in the likelihood analysis (Section 5) are
of the second type, a proportion which drops to zero in TNG50
(Table 2). Therefore, our results are robust with respect to whether
we consider only galaxies with a primordial origin. However, we do
not apply this restriction in our main analysis because a similar cut
is very difficult to apply observationally.

1http://icc.dur.ac.uk/Eagle/database.php
2https://www.tng-project.org/data/
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Table 2. Bar statistics in different simulations at z = 0 based on galaxies with
stellar mass M∗ > 1010.0 M�. The selection rules for identifying discs are krot

≥ 0.5 and F ≤ 0.7 (Section 3.3). For consistency, we use the same selection
rules for all four simulations considered in this study. The value of Amax

2
(Section 3.4) is used to classify galaxies as unbarred (Amax

2 < 0.2), weakly
barred (0.2 ≤ Amax

2 < 0.4), or strongly barred (Amax
2 ≥ 0.4). For TNG100,

we recover the statistics presented in Zhao et al. (2020) if we instead require
F ≤ 0.5. In the case of EAGLE100, we find the same number of discs as
Algorry et al. (2017) if we limit ourselves to galaxies with 1010.6 ≤ M∗/M�
≤ 1011.0 and then require (krot ≥ 0.47, F ≤ 0.7) to select discs. However,
we find that 30 per cent of the discs are barred, 31 per cent of the bars being
strong and the other 69 per cent weak. In contrast, Algorry et al. (2017) report
in their last section that 40 per cent of the discs are barred, 20 per cent of
these being strong bars and ‘another 20 per cent weak bars’. We presume that
the second 20 per cent is a typo and the authors meant 80 per cent, in which
case there are only small differences in the fraction of barred galaxies and
the proportion of these that have weak bars. Of the TNG100 galaxies used
in the likelihood analysis, only 1 (ID 469502) out of 745 (≈ 0.13 per cent)
has subflag = 0 (for more details, see Section 3.2). This percentage is zero in
TNG50.

Simulation EAGLE EAGLE TNG TNG
100 50 100 50

Total 3638 481 6507 903
Discs 1512 96 3586 612
Barred 141 12 1166 259
Strong 19 4 455 126
Weak 122 8 711 133
With reliable �p 79 6 902 227
Used in likelihood 70 5 745 209
analysis (Section 5)

3.3 Selecting the simulated galaxy sample

In all runs, we focus our analysis on galaxies at the z = 0 snapshot.
Our sample includes only galaxies with stellar mass M∗ > 1010.0 M�
to ensure that every galaxy has enough resolution to resolve inner
structures.

First of all, the discs need to be identified. We find the direction
of the total angular momentum vector for particles with r ≤ 0.5 r∗

1/2,
where r∗

1/2 is the stellar half-mass radius. We set the z-axis along this
direction, which we take to be representative of the rotation axis for
the inner parts of the galaxy. We then implement two widely used
criteria to select disc galaxies:

(i) krot ≥ 0.5, where krot is the fraction of stellar kinetic energy
in ordered rotation (Sales et al. 2010). This is defined as the mass-
weighted average value of v2

φ/v2 within 30 kpc, where v is the total
velocity and vφ is the azimuthal velocity around the rotation axis for
each stellar particle.

(ii) The morphological flatness criterion F ≤ 0.7, where F ≡
M1/

√
M2 M3 is based on the eigenvalues of the moment of inertia

tensor sorted in ascending order so M1 ≤ M2 ≤ M3 (Genel et al.
2015).

The number of discs chosen in this way for different simulations
is given in Table 2. As a consistency check, in the case of TNG100
we apply similar selection rules to those in Zhao et al. (2020), and
we find a similar number of discs.

Among all the disc galaxies, we need to identify which ones host a
bar. This means we need to measure the bar strength, which quantifies
the non-axisymmetric forces due to the bar potential. To find the R
parameter, we also need to measure the bar length and pattern speed,
the latter entering into the corotation radius. In the following, we
describe the methods adopted to extract these quantities.

3.4 Bar strength measurement

The strength of a bar can be measured as the maximum amplitude
of the m = 2 azimuthal Fourier component used to describe the
galaxy surface density (Guo et al. 2019). We divide the disc into
annuli of fixed width δr and select only disc particles, i.e. those
with |z| < 1 kpc. We use δr = 0.1, 0.2, 0.3, and 0.5 kpc for
TNG50, TNG100, EAGLE50, and EAGLE100, respectively. We then
compute the Fourier coefficients

am (R) ≡ 1

M (R)

N∑
k=0

mk cos (mφk) , m = 1, 2, .. , (2)

bm (R) ≡ 1

M (R)

N∑
k=0

mk sin (mφk) , m = 1, 2, .. , (3)

where N is the number of particles in the annulus with mean
cylindrical radius R and total annulus mass M consisting of particles
labelled by the index k with mass mk and azimuthal angle φk. This
lets us define the Fourier amplitude for mode m at radius R.

Am (R) ≡
√

am (R)2 + bm (R)2 . (4)

The bar strength is defined as

Amax
2 ≡ max[A2(R)] . (5)

The radius at which the maximum occurs can be used as a lower
estimate for the bar length.3 We divide bars into two categories:
strong bars with Amax

2 ≥ 0.4, and weak bars with 0.2 ≤ Amax
2 < 0.4.

Discs with Amax
2 < 0.2 are considered unbarred.

3.5 Fraction of barred galaxies

After requiring krot ≥ 0.5 and F ≤ 0.5 to select discs, the bar
fraction measured using this approach is shown in Fig. 1 for different
simulations as a function of stellar mass. We see that compared with
TNG100, TNG50 increases the bar fraction almost everywhere in
the selected mass range. This might be expected due to the higher
resolution in TNG50, but the increase is quite modest and the bar
fractions are very similar.

Erwin (2018) highlighted the discrepancy with the bar fraction-
stellar mass relation derived from the Spitzer Survey of Stellar
Structure in Galaxies (S4G) of the local Universe, and also with
most of the SDSS observations that span z ≈ 0.01–0.1. Fig. 5 of
their paper shows that in S4G-based observations of galaxies with
distances � 25 Mpc, the bar fraction peaks at M∗ ≈ 109.7M� and
then declines at higher stellar mass (blue curve in Fig. 1). On the
other hand, previous SDSS-based studies (e.g. Oh et al. 2012) show
that the bar fraction is small at M∗ � 1010.5 M�, but continues to
grow for larger masses (cyan dashed curve in Fig. 1). Erwin (2018)
states that the low fraction of barred galaxies at smaller M∗ in SDSS
observations is due to low spatial resolution making it difficult to
identify bars in lower mass galaxies, a problem which should be
greatly alleviated in S4G.

Zhao et al. (2020) found that in contrast to the bar fraction in S4G
observations (Erwin 2018), the fraction of barred galaxies in TNG100
does not follow a similar trend, instead peaking at M∗ ≈ 1010.9 M�.
We show their TNG100 result as the grey curve in Fig. 1. A similar
trend is also seen in Rosas-Guevara et al. (2020) for the bar fraction in

3We only use this value in the initial estimation of the slit length and height
in the TW method, so it is not directly included in our final bar length
evaluations.
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Figure 1. Bar fraction for different simulations. The disc selection rules are
krot ≥ 0.5 and F ≤ 0.5 (Section 3.3). The red (black) curve shows results
for TNG100 (TNG50), while the brown curve shows the bar fraction for EA-
GLE100. Results for EAGLE50 are not shown due to a very small sample size.
The fitted curve to observations (dotted blue) is from Zhao et al. (2020), while
the cyan curve with points shows results from the SDSS (Oh, Oh & Yi 2012).

TNG100, and has been argued to have compatibility with some SDSS
observations. Furthermore, Zhou et al. (2020) compared TNG100
with the S4G observational results of Dı́az-Garcı́a, Salo & Lau-
rikainen (2016), arguing that the bar fraction trend in TNG100 at high
stellar mass (1010.66 < M∗/M� < 1011.25) is in good agreement with
S4G observations. However, the discrepancy at lower stellar masses
of M∗/M� < 1010.66 is also evident in fig. 3 of Zhou et al. (2020).

Zhao et al. (2020) show that by using mock SDSS images of
TNG100 galaxies, a similar trend to SDSS-based studies is apparent.
However, they confirm that bars shorter than 2.5 kpc do not seem to be
resolved in SDSS observations, in compliance with the conclusion of
Erwin (2018). Therefore, Zhao et al. (2020) imply that by improving
the resolution in the simulations, one might be able to resolve the
discrepancy between them and the more reliable bar fractions from
S4G observations, especially at the low mass end.

We test this using the black curve in Fig. 1, which shows the
bar fraction in the higher resolution simulation TNG50. While the
fraction of barred galaxies is increased slightly at almost all stellar
masses, the overall picture is hardly changed, so the bar fraction
discrepancy reported for TNG100 (Zhao et al. 2020) persists into
TNG50. This is in line with the recent findings of Reddish et al.
(2021), highlighting a missing bar problem in the high-resolution
NewHorizon simulation (Dubois et al. 2021) with a resolution of
mstar = 1.3 × 104 M�, mDM = 1.2 × 106 M�, and a spatial resolution
of 34 pc. Our findings in TNG50 coupled to these works demonstrate
that the problem is not solved either by improving the resolution
or by changing the method from moving-mesh to adaptive mesh
refinement.

3.6 Bar length measurement

To recover the bar length, we adopt two methods that are commonly
used in observational studies: isophotal ellipse fitting and Fourier

analysis. The former is based on the radial profile of the ellipticity ε

and PA of the ellipses that best fit the galaxy isophotes (Aguerri,
Méndez-Abreu & Corsini 2009). The bar length coincides with
the maximum of the ellipticity profile, or to the radius where the
PA changes by 	 PA = 5◦ from the PA of the ellipse with the
maximum ellipticity. We select the longer determination in order
to infer lower values for the R parameter, which as we will see
later, makes our conclusions more conservative. The isophotal ellipse
fitting method is sensitive to the initial conditions, i.e. the semimajor
axis and eccentricity used for the first ellipse. Different viable initial
conditions are used. The mean value of the length is taken, while the
error is their standard deviation.

The other method to find the bar length makes use of the Fourier
decomposition of the surface density (Aguerri et al. 2000). The bar
length is computed using the ratio of intensity in the bar (Ib) and
inter-bar (Iib) zones, namely

I (R) ≡ Ib (R)

Iib (R)
= A0 + A2 + A4 + A6

A0 − A2 + A4 − A6
. (6)

The bar length is defined as the outer radius beyond which I (R) <

(Imax + Imin) /2. The error in this case is given by the annular width
δr.

We take the mean of the above two bar length determinations. It is
necessary to stress that we implement methods that give upper limits
for the bar length. Using other methods [e.g. just using the position
of the maximum in A2(R)] gives a shorter estimate for the bar length,
which would further increase the tension that we identify.

3.7 Pattern speeds in cosmological simulations

The bar pattern speed is easily found if viewing a movie of a
simulation. However, we need to measure the pattern speed using
techniques constructed for real galaxies, where we deal with a single
snapshot. The TW method is one of the most precise and widely used
methods that allows a direct recovery of �p when the positions and
LOS velocities of the particles/stars are known. The pattern speed is
obtained as �psin i = 〈V〉/〈X〉, where i is the inclination of the disc
plane to the sky plane, and

〈V 〉 ≡
∫

VLOS
 dX∫

 dX

, (7)

〈X〉 ≡
∫

X
 dX∫

 dX

(8)

are the so-called kinematic and photometric integrals, defined as
the luminosity-weighted average LOS velocity VLOS and position X
parallel to the major axis of the particles/stars, respectively, while

 is the corresponding surface density of the tracer. The integrals
have to be measured along apertures (or pseudo-slits) parallel to the
observed disc major axis projected on the sky.

We find these integrals by using the positions and velocities
of the particles in each pseudo-slit to reconstruct the density and
LOS velocity maps, thereby mimicking the procedure applied to
real data. To measure non-zero integrals, the galaxy should have
an intermediate inclination with a bar elongated at an intermediate
PA between the projected disc major and minor axes (Cuomo
et al. 2019b).

To apply this method, we start with the face-on view of the galaxy,
in which we find the bar’s PA. We then consider an observer who
views the disc at an inclination of i = 45◦ and whose line of nodes
between sky and disc planes is inclined by 60◦ to the bar major axis.
We vary the number of evenly spaced slits Ns, their width 	s, height
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hs ≥ Ns	s, and length ls over relatively wide yet reasonable ranges
until convergence is reached to the best fit for the pattern speed.

In detail, we start with a fixed combination of Ns, 	s, and hs, the
total extent of the analysed region perpendicular to the slit length
direction including also the gaps between slits. We then increase the
slit length ls until the pattern speed converges to a unique value.
Linear regression on the kinematic and photometric integrals is used
to find the slope �p, while the standard error of the regression is used
as the error on �p. Reliable pattern speeds are defined as those with
a standard error smaller than 20 per cent. We then repeat the whole
process using different sets of Ns, 	s, and hs. In this way, we find
several estimates for �p.

It is extremely useful to plot �p against Ns for each galaxy. In this
way, one can easily see that the pattern speed in most galaxies has
a converging behaviour (an example is shown in Fig. 2). Therefore,
it helps to ignore �p values obtained for those Ns where the pattern
speed has not yet converged. The minimum and maximum values of
Ns used in our analysis are 5 and 50, respectively. We take the mean
value of the pattern speed obtained for different values of Ns, 	s, and
hs as our final estimate for �p, while the largest deviation from the
mean value is taken as the error. Instead of taking the mean value, one
may take the best-fitting �p that has the smallest regression standard
error. It turns out that this choice does not change the final results.
However, we do not recommend it because for some galaxies, the
best-fitting �p occurs for some Ns where convergence has not yet
been established in the �p–Ns plane.

3.8 An illustrative example

Fig. 2 illustrates all the above-mentioned steps to find the R
parameter for a single galaxy in the TNG50 simulation with subhalo
ID no. 229935. The face-on projection of the galaxy is demonstrated
in the upper left panel, which shows higher density regions using
brighter colours. This plot makes use of the YT project (Turk et al.
2011).

The Fourier method to find the bar length is shown in the upper
right panel. The blue curve shows I as estimated by fitting a 20th

order polynomial to the values of Ib/Iib at several discrete azimuths.
The brown vertical dashed lines in this plot show the radii at Imax

and Imin, the maximum and minimum, respectively, of the I curve.
The bar radius is the outer radius at which the horizontal brown line
at (Imin + Imax)/2 crosses the I (R) curve. This radius is shown by
the orange vertical dashed line in the upper right panel. It is our first
estimate of the bar length.

The isophotal ellipse fitting method (the second bar length esti-
mation in our analysis) is displayed in the middle panels of Fig. 2.
Comparing the upper left and middle left panels, it is apparent that
the inner isophotal ellipses are aligned with the bar. Since the bar
is located at an angle of 90◦, the inner ellipses would also start
with a PA of about 90◦. This is shown in the lower plot of the
middle right panel. In the two plots of this panel, it can be seen that
the maximum in the ellipticity curve occurs at radius R < 1 kpc
(upper plot), while the radius at which 	 PA = 5◦ is at R � 2 kpc
(lower plot). Each determination is demonstrated by a vertical orange
dashed line in the corresponding panel. As mentioned in Section 3.6,
the larger of these two radii would be selected as the bar length
in the ellipse fitting method. The final bar length, with which we
continue our calculations of the R parameter, is the mean value of
the bar length from the Fourier and the ellipse fitting methods. This
average value is shown as the white circle in the upper left panel of
Fig. 2.

The lower panels of Fig. 2 detail the computation procedure of
the TW method in our analysis. As described in Section 3.7, to
calculate the pattern speed, we select different sets of variables Ns,
	s, hs, and ls, which are the number of slits, their width, height, and
length, respectively. For each set of Ns, 	s, and hs, we first vary ls

and find the slit length at which �p converges. Such convergence is
demonstrated in the inset to the lower left panel. To check this, we
vary the slit length with constant intervals of 0.1 kpc, and calculate
the pattern speed each time. The selected slit length is determined
such that the standard deviation of �p for the 10 previous points is
less than 10 per cent of the pattern speed’s mean value. Furthermore,
we recall that to calculate �p and its error for each case, we use
linear regression and its standard error to find the slope of 〈V〉 as a
function of 〈X〉. An explanatory example is plotted in the lower right
panel of Fig. 2. As mentioned in Section 3.7, we use intermediate
values for the disc inclination and the bar PA, in compliance with
previous studies (Debattista 2003; Zou et al. 2019). The reliability of
our TW method with respect to different choices for these parameters
is examined in the insets to the lower right panel of Fig. 2.

Considering different sets of parameters and choosing only results
with a standard error < 20 per cent, we plot �p as a function of Ns.
This is demonstrated in the lower left panel of Fig. 2, where there
exist two converging branches. As explained in Section 3.9, since the
difference is not large, we only validate the �p results with Ns larger
than the converging point of these branches. This point is shown as
the vertical brown dashed line in the lower left panel. The existence
of these two branches could be linked to the background features
that are visible in the face-on view of the upper left panel. The final
�p and its error are calculated as the mean value of the selected
pattern speeds and the largest deviation from the mean, respectively.
The final �p and its error are illustrated as the horizontal solid and
dashed lines in the lower left panel.

By combining the final pattern speed with an estimation of the rota-
tion curve as explained in Section 3.10, we find the corotation radius,
which is shown as the yellow circle in the upper left panel of Fig. 2.

3.9 Test of our TW code

In order to test if our TW code is able to correctly measure the
pattern speed, we simulate an isolated exponential galactic disc
with the GALAXY code (Sellwood 2014). In this case, the pattern
speed is exactly known as a function of time because results from
multiple timesteps are used. In Fig. 3, we compare the correct value
of �p with the one inferred by our TW code at various times.
The mean fractional error is < 6.7 per cent, which translates to
an error on �p of ±1.97 km s−1 kpc−1 – this is a fairly good
agreement.

The simulated disc develops spiral features at t ≈ 2.4 Gyr and
6.4 Gyr. In these cases, our TW code is not able to correctly identify
the pattern speed of the bar, and our estimate deviates by up to
20 per cent from the true value. A similar deviation due to spiral
arms was already pointed out by Hilmi et al. (2020). Therefore, we
carefully treat galaxies that have spiral structures. These galaxies
typically yield more than one �p using the TW method. Such
behaviour can also happen in observations (Rand & Wallin 2004).
For these galaxies, we see at least two converging branches in the
�p–Ns plane. When the difference between the branches is large,
we categorize the galaxy as not having a reliable pattern speed.
Otherwise, the mean value of �p described in Section 3.7 gives a
reliable pattern speed. In most galaxies with the above-mentioned
bifurcation, our approach gives larger errors for �p compared to
galaxies without any spiral structures, so in principle, our analysis
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Figure 2. Galaxy ID 229935 in TNG50 as a representative to schematically illustrate the main steps needed to measure R. Top left: Face-on view of the
stellar particles, with circles showing the bar length (white) and corotation radius (yellow). Top right: The intensity ratio between the bar and inter-bar regions
(equation 6) around different annuli. Middle left: Isophotal ellipse fits. Middle right: Ellipticity and PA of these ellipses as a function of their semimajor axis.
Bottom left: Inferred �p as a function of the number of slits Ns. The inset fixes Ns at 11 and instead varies the slit length. Bottom right: Example of a linear
regression between the kinematic and photometric integrals, the slope of which gives �p. The upper and lower insets show, respectively, the reliability of the
TW method for different values of the disc inclination i and bar PA relative to the line of nodes between disc and sky planes.

automatically inflates the uncertainties when the technique is less
reliable.

3.10 Rotation curve and corotation radius measurement

To find the corotation radius RCR of each galaxy, we need to
measure its rotation curve vc(R) in order to solve the implicit
equation �pR = vc(R), the non-zero solution to which gives the
corotation radius. The rotation curve is found from the rms azimuthal

velocity
√

〈v2
φ〉 in terms of R for particles that belong to the

disc (|z| < 1 kpc). This gives a first estimation of the galaxy’s
rotation curve, which we call vrms

φ (R). Adding the extra condition
that the considered particles should move on nearly circular orbits
(with v2

φ/v2 ≥ 0.9) gives a second and much better estimation,
which we call vc(R). In this way, we ignore the existence of
azimuthal velocity dispersion and the asymmetric drift correc-
tion.
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Figure 3. The blue curve indicates the pattern speed for an exponential disc
model in the GALAXY code (Sellwood 2014). The red curve is our recovered
result using our TW code. The mean fractional error is < 6.7 per cent, causing
an error on the pattern speed below 1.97 km s−1 kpc−1. The deviation is larger
when spiral density waves propagate on the disc surface.

Our approach recovers the true rotation curve v∗
c (R) fairly well,

which we determine in some cases using a much more computation-
ally expensive procedure by calculating the radial gravity produced
by all the mass components of the galaxy at a suitable grid of positions
in the disc plane. Another way to measure the rotation curve is
v̂c (R) ≡ √

GM (R) /R, where M(R) is the total (baryonic and dark
halo) mass inside radius R. Using the estimates vrms

φ (R) or vc(R)
has the advantage that only the star particles would be enough, so
we do not need data on the CDM and gas particles to measure the
rotation curve. In addition to greatly reducing the computational cost,
it is satisfactory in the sense that our estimated pattern speeds also
use only star particles as tracers for the kinematic and photometric
integrals. We therefore choose vc as the main measure for the rotation
curve in this paper.

To test the accuracy of our choice, we selected three strongly
barred and three weakly barred galaxies with a variety of pattern
speeds ranging from ≈16.3–73.6 km s−1 kpc−1. We compared vc

and vrms
φ (both available for our full sample) with v∗

c and v̂c. The
results are presented in Fig. 4. It is clear that v̂c (the black curves)
and v∗

c (the blue curves) match very well throughout the disc. In
addition, we see that vc (the red curves) also recover v̂c (and v∗

c ) to
an average accuracy of better than 4 per cent for R � 2 kpc. The
accuracy is lower (≈ 15 per cent) at R � 2 kpc. However, only a
very small fraction of galaxies have a corotation radius smaller than
2 kpc. Therefore, our decision to use vc should be appropriate for
most of the galaxies we study.

For the rare cases where RCR is small, vc overestimates the
rotation curve. Consequently, the corresponding corotation radius
will be overestimated. This increases the inferred R parameter,
which may enhance the tension with observations in a fake way.
To completely suppress this possibility, we also measure RCR using
vrms

φ , represented by the grey curves in Fig. 4. Notice that vrms
φ almost

always underestimates the rotation curve and thus the corotation
radius, which would lead to an underestimated R parameter that
artificially reduces the tension. However, we prove in Section 5.1 that
using vrms

φ does not alter our main conclusion that the observed R
parameter distribution rules out the standard dark matter simulations.
This is important because it is clear from Fig. 4 that the filled area
between the red and grey curves reliably brackets the true rotation
curve (v∗

c ) at almost all radii.
For a better illustration of the uncertainties in the corotation

radius, we also plot this as derived from our two generally available
estimations of the rotation curve (vc and vrms

φ ), and compare them

with the estimate using the true rotation curve (v∗
c ) for each of the

six galaxies in Fig. 4. Each estimated corotation radius is plotted
as a dashed vertical line with the same colour as the rotation curve
used to calculate it. Our decision to use vc is based on the fact that
corotation radii measured this way (the red dashed line in each panel)
gives a closer estimation to the true value based on v∗

c , shown as the
blue line. This underlines that vc should be a more reliable rotation
curve measure than vrms

φ in the outer regions relevant to corotation
radius measurements. As a final remark, let us mention that the mean
fractional error of the red corotation radii (our adopted values) in
comparison to the blue ones (v∗

c ) is only ≈ 3.41 per cent in these six
galaxies.

4 R ESULTS

4.1 Bar properties in the IllustrisTNG simulation

We restrict ourselves to the TNG100 and TNG50 main runs in
IllustrisTNG.4 In all of our samples, we select galaxies with stellar
mass M∗ > 1010.0 M�. Using our selection rules (Section 3.3), the
number of barred galaxies is shown in Table 2. We use Fig. 5 to
plot the bar corotation radius against the bar length for all TNG100
and TNG50 barred galaxies, with the colour of each point indicating
the bar strength, i.e. the maximum amplitude over radius of the
normalized azimuthal m = 2 Fourier component of the surface
density within each annulus (equation 5). The dashed lines indicate
the borders of the ultrafast bar (R < 1) and slow bar (R > 1.4)
regimes, with the region between them (R = 1 − 1.4) known as the
fast bar regime. The observational results from Cuomo et al. (2020)
are shown as grey points. It is clear that unlike real galaxies, most
barred TNG galaxies have a slow bar. Moreover, stronger bars tend to
be slower compared to weaker bars, which is to be expected because
a stronger bar should create a stronger response in the dark halo.
A positive correlation between bar length and bar strength is seen
in both TNG100 and TNG50, and is consistent with the numerical
simulations of Klypin et al. (2009).5

Table 3 shows a few summary statistics for bars in the IllustrisTNG
simulation, calculated similarly to Table 1 (i.e. in log-space, but the
mean logarithmic value is then exponentiated for convenience). The
mean pattern speed in TNG100 (TNG50) is �p = 19.58 km s−1

kpc−1 (30.79 km s−1 kpc−1). While bar pattern speeds are higher in
TNG50, bars are meaningfully shorter here. In particular, galaxies
in TNG100 with a well-defined pattern speed have a mean bar
length of Rbar = 3.43 kpc, while this is only Rbar = 2.05 kpc in
TNG50. Therefore, bars are 40 per cent shorter in TNG50. This
increases the R parameter, though both TNG50 and TNG100 give
a logarithmic mean R much higher than in observations (Table 1)
– we quantify the tension in Section 5. We stress that the higher
logarithmic mean R in TNG50 is already a sign that the bar
speed tension is not reduced by its higher resolution compared to
TNG100 (Section 3.2) – the change is in the wrong direction to bring
about agreement with observations, where R is typically close to 1
(Table 1).

4These are denoted with a suffix −1 in the technical literature because lower
resolution simulations with the same box size also exist for comparison
purposes, but are not considered here.
5For further discussion of previous isolated CDM simulations of galaxy bars,
we refer the reader to section 5.4.1 of Roshan et al. (2021).
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934 M. Roshan et al.

Figure 4. The rotation curve as calculated using different methods (Section 3.10). We use the red and grey curves as high and low estimates, respectively.
The vertical dashed lines are the corresponding corotation radii, with the colour matching that of the used rotation curve. The black and blue rotation curves
are based on force calculations that use the total matter distribution, including the CDM particles (see the text). The most accurate method should be v∗

c (blue
curve), but this is quite expensive to calculate in all cases, and would differ from observational studies that do not directly measure CDM. Since v∗

c matches the
vc curve (red) most closely, we use vc as our nominal choice instead of vrms

φ (grey curves).

Figure 5. Relation between bar corotation radius and length for IllustrisTNG at z = 0 (diamond markers). We show results for the barred galaxies in TNG100
(left) and TNG50 (right). The colour shows the bar strength Amax

2 (Section 3.4), as shown on the colour bar. The solid grey circles indicate observed data from
Cuomo et al. (2020). The TW method has been used to measure the pattern speeds. The dashed lines indicate the borders of the fast bar regime (R = 1 − 1.4).

Table 3. Similar to Table 1, but for bars in the IllustrisTNG simulations (Section 3.2). Calculations are done in
log-space after imposing quality cuts similarly to Section 5. The mean is then exponentiated.

Simulation TNG100 TNG50
Mean Intrinsic rms error Mean Intrinsic rms error

Quantity value dispersion (dex) (dex) value dispersion (dex) (dex)

�p 19.58 0.23 0.07 30.79 0.24 0.04
Rbar 3.43 0.11 0.06 2.05 0.13 0.05
R 2.77 0.20 0.12 3.03 0.20 0.08
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Figure 6. Similar to Fig. 5, but now showing barred galaxies in EAGLE100
(diamond markers) and EAGLE50 (star markers) at z = 0.

4.2 Bar properties in the EAGLE simulation

In addition to the more recent TNG100 and TNG50, we include
the earlier EAGLE simulation in our analysis for the sake of com-
pleteness. This is of great importance in helping to check if similar
bar statistics are obtained using a somewhat different simulation
setup to the IllustrisTNG project, though still within the �CDM
paradigm. In the EAGLE case, we focus on the runs EAGLE100
and EAGLE50 because EAGLE25 is too small to permit meaningful
statistics. We measure all the quantities using the same methods as
for the IllustrisTNG case. The relation between corotation radius and
bar length for EAGLE galaxies is shown in Fig. 6. In both runs,
most galaxies lie in the slow bar regime. As in the IllustrisTNG case,
stronger bars tend to be longer and slower.

Similarly to the IllustrisTNG case, we use Table 4 to show a few
summary statistics for the bars in EAGLE galaxies that have one.
The mean value of the bar length in EAGLE100 and EAGLE50 is
Rbar = 3.44 kpc and Rbar = 3.38 kpc, respectively, so the difference
is small. The bar pattern speed differs somewhat – its mean value
is �p = 24.34 km s−1 kpc−1 in EAGLE100 and �p = 32.25 km
s−1 kpc−1 in EAGLE50. However, given the small sample size
(Table 2) and the significant intrinsic dispersion, this might just
be a random fluctuation. One reason for the lack of difference
between EAGLE100 and EAGLE50 could be that they use the same
resolution (Section 3.1), while TNG50 has a much higher resolution
than TNG100 (Section 3.2).

5 STATISTICAL DISTRIBU TION O F THE R
PARAMETER

The parameter R (equation 1) specifies the ‘speed’ of the bar
in dimensionless form, with large values defined as a slow bar.
The logarithmic mean value of this parameter for the sample of
observed galaxies from Cuomo et al. (2020) is R = 0.92. In the
cosmological simulations, we have R = 2.77, 3.03, 2.42, and 1.91
for TNG100, TNG50, EAGLE100, and EAGLE50, respectively. The
discrepancy is probably not due to resolution effects because the
highest resolution run (TNG50) has the worst compatibility with
observations.

Although the discrepancy is clearly evident from the mean values
of R, one needs to carefully find its distribution in both observations
and simulations in order to quantify the tension between them. To
find the posterior inference on R and its intrinsic dispersion, we
follow the prescription presented in section 4.6 of Roshan et al.
(2021), which we briefly summarize here. The main difference with
their work is that they neglected uncertainties in simulated values
of R and thus considered errors only on the observational side,
whereas here we consider errors on both simulated and observed
R values. As in Roshan et al. (2021), we assume R̃ ≡ log10 R
is distributed as a Gaussian with mean R̃ and intrinsic dispersion

σ
˜R. We infer the population parameters (R̃, σ

˜R) from observations
(Cuomo et al. 2020) and using different cosmological simulations
(Section 3), allowing us to quantify the tension between them.

To calculate the uncertainty on the R parameter in each simulated
or observed galaxy, we average the low and high error bars to come
up with a single uncertainty δRbar for the measured bar length and
δRCR for its corotation radius. We then require Rbar and RCR to both
have a fractional uncertainty < ε = 1

3 . The analogous criterion is
imposed on the corotation radius RCR and its uncertainty δRCR.

We use the value and uncertainty for each corotation radius and
bar length to estimate the fractional uncertainty α in their ratio R.

α ≡ δR
R =

√(
δRbar

Rbar

)2

+
(

δRCR

RCR

)2

. (9)

To further assure the quality of our data set, we require that α < ε

and estimate σ i as

σi = 1

2
log10

(
1 + α

1 − α

)
. (10)

Fig. 7 shows our posteriors on (R̃, σ
˜R) based on a high-resolution

grid in both parameters, with the resulting array then normalized
to a sum of 1. There is a very significant mismatch between the
TNG50 and observational posteriors, mainly because observations
preferR ≈ 1 while TNG50 galaxies preferR ≈ 3 with slightly more
scatter – this is also evident from Tables 1 and 3.

To quantify the probability that e.g. TNG50 galaxy bars are
compatible with observations, we find the tension between each

(R̃, σ
˜R) pair and the simulated distribution. The tension is calculated

as the weighted average over all these determinations, with each

(R̃, σ
˜R) weighted by the observational likelihood that it is correct.

We then convert the so-obtained probability into an equivalent
number of standard deviations for a Gaussian random variable. In
this way, we find that the TNG50 results are incompatible with
observations at 12.62 σ confidence, demonstrating the seriousness
of the problem given also the excellent resolution of this simulation
(Section 3.2). The tension with the here-considered �CDM simula-
tions is summarized in Table 5.

Kim et al. (2021) have recently noted that bar lengths normalized
by the disc scale length do not show any strong cosmic evolution
over the period 0.2 < z ≤ 0.835, and that this result is consistent
with up-to-date simulations in the �CDM context. This agreement
is independent of our result that the simulated bar lengths at low
redshift are too small for the corotation radius given by the pattern
speed. Indeed, if dynamical friction with the CDM halo slows the bar
down while normalized bar lengths do not evolve much, one ends up
with slow bars in terms of the ratio between corotation radius and bar
length. This is indeed the case in up-to-date simulations as shown
here, but disagrees with observations.
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Table 4. Similar to Table 3, but for bars in the EAGLE simulations (Section 3.1).

Simulation EAGLE100 EAGLE50
Mean Intrinsic rms error Mean Intrinsic rms error

Quantity value dispersion (dex) (dex) value dispersion (dex) (dex)

�p 24.34 0.22 0.05 32.25 0.17 0.05
Rbar 3.44 0.13 0.07 3.38 0.11 0.08
R 2.42 0.16 0.11 1.91 0.27 0.12

Figure 7. The posterior inference on the mean value of R and its intrinsic

dispersion, both calculated in log-space (i.e. the x-axis shows 10 ˜R, see the
text). The vertical dashed grey lines demarcate the fast bar regime. The
solid black (green, blue, red, yellow) contour corresponds to 1σ outliers
from the observed (TNG100, TNG50, EAGLE100, EAGLE50) posterior.
The corresponding dotted curves are based on RCR measurements that use
vrms
φ for the rotation curve (see Section 5.1 for more details). Note that with

different methods for measuring the corotation radius, different galaxies in
each simulation pass the quality cuts.

Table 5. The level of tension between the observed R parameter distribution
and that in different �CDM cosmological simulations, shown for two
methods of calculating the rotation curve (Section 3.10). The low tension
in EAGLE50 is due to a very small sample size of 5 (Table 2), but its R
parameter distribution is consistent with the other simulations (Fig. 7).

Rotation curve method
Simulation vc vrms

φ

TNG100 13.56σ 12.06σ

TNG50 12.62σ 11.11σ

EAGLE100 9.69σ 8.14σ

EAGLE50 2.94σ 2.68σ

5.1 Corotation radius measured by vrms
φ

As mentioned in Section 3.10, another choice for the rotation curve
is vrms

φ . Though unsuitable for a comparison with observations, it
is useful in the sense that it underestimates the rotation curve,
thereby reducing the bar speed tension. If the tension remains strong
even when using vrms

φ , this would guarantee the existence of the
discrepancy. It turns out that this is indeed the case – even with
this determination of the rotation curve, the discrepancy remains

dramatic. More specifically, the average value of R is now R = 2.52
(TNG100), 2.74 (TNG50), 2.08 (EAGLE100), and 1.98 (EAGLE50).
The 1σ contours are shown by dotted curves in Fig. 7. As expected,
a tangible shift to the left is clearly seen compared to the solid
contours of the same colour, which show results using our nominal
rotation curve determinations. Consequently, the level of tension in
TNG100, TNG50, EAGLE100, and EAGLE50 reduces to 12.06σ ,
11.11σ , 8.14σ , and 2.68σ , respectively (Table 5). It is therefore
clear that the tension cannot be alleviated by any plausible choice
of method to find the rotation curve. We stress that in all cases, the
tension is even larger in our nominal analysis, where we adopt vc for
the rotation curve due to the higher accuracy (Fig. 4).

6 D ISCUSSION

In all four considered �CDM cosmological simulations (EAGLE50,
EAGLE100, TNG50, and TNG100), most galaxy bars are slow in the
sense of being much shorter than their corotation radius (R  1.4).
However, the majority of observed galaxies have fast bars (Cuomo
et al. 2020). The average observed value of R is around 1, whereas
in cosmological simulations it exceeds 1.9. It is striking that in the
most recent and highest resolution simulation (TNG50), the average
value of R has the largest value of ≈3.0 among the here-considered
simulations.6

To quantify the tension between standard cosmological simula-
tions and galactic bar pattern speed observations, we assumed that
galaxies obey a lognormal distribution of R with an unknown mean
and intrinsic dispersion. The observationally inferred values of the
two population parameters differ from that in TNG50 at 12.62σ

significance. For the other simulations, the level of tension is 13.56σ

(TNG100), 2.94σ (EAGLE50), and 9.69σ (EAGLE100). The low
tension with EAGLE50 is due to the fact that it only has six
galaxies that satisfy all our criteria to have a reliable pattern speed,
greatly increasing the uncertainties.7 Our reported 9.69σ tension for
EAGLE100 is similar to the 7.96σ tension estimated previously by
Roshan et al. (2021), which was based on 48 R parameter values
obtained from Algorry et al. (2017). Since the statistical analysis
applied in Roshan et al. (2021) is identical to that applied here, this
approximate agreement in the level of tension suggests that our R
parameter determinations are broadly in line with those of other
workers.

Using a lower estimate for the rotation curve amplitude does not
change the story significantly. In this case, we showed in Section 5.1
that the discrepancy is reduced to 11.11σ , 12.06σ , 2.68σ , and
8.14σ for the TNG50, TNG100, EAGLE50, and EAGLE100 run,
respectively. Another issue is that a wrong estimate of the bar length

6The overall tension is highest in TNG100 because it has a larger sample size
than TNG50.
7Only five of the six EAGLE50 galaxies have a sufficiently precise R to be
usable in our statistical analysis.
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Figure 8. The posterior inference on the population logarithmic mean
R and its intrinsic dispersion. The vertical dashed grey lines demarcate
the fast bar regime. The black (green, blue, red) contours correspond
to 1σ , 3σ , and 5σ outliers from the observed (TNG100, TNG50, EA-
GLE100) posterior. There are only six galaxies in the EAGLE50 run
with known R, so the relevant contours are too wide to be captured
in this figure. Nonetheless, its 1σ contour is shown in Fig. 7. No-
tice that all four simulations considered here give compatible results
with each other, but the overlap region is not consistent with observa-
tions.

may have corrupted the estimate of R, as pointed out for a small
subsample of real galaxies with apparently ultrafast bars (Cuomo
et al. 2021). Since we adopted here the same methods to recover the
bar length in simulated galaxies, an erroneous measurement of some
bar lengths, if present, should affect both real and simulated galaxies
in the same way.

The different levels of tension with observations in different
simulations can largely be attributed to sample size variations,
since the statistical properties of galaxy bars are consistent between
the different simulations we consider (Fig. 8). Thus, the fact that
observed bars are typically fast remains challenging for the latest
large-box �CDM cosmological simulations. It is also a challenge
for the zoom-in simulations of Zana et al. (2018, 2019).

We, however, note that a recent study explored the 16 most strongly
barred galaxies among the small sample of 30 Auriga zoom-in galaxy
simulations (Grand et al. 2017), and found that these simulated bars
do stay fast (Fragkoudi et al. 2021). However, their sample is small
by construction, which is why large-box simulations are generally
preferred to draw conclusions regarding overall galaxy statistics in
�CDM. Having some fast bars is to be expected (Fig. 6), and a small
sample is more likely to be biased and to evade other observational
constraints on the overall galaxy statistics. Understanding the reasons
for these different results is nevertheless of course highly interesting:
Fragkoudi et al. (2021) state that resolution is likely not the main
culprit, which we agree with as TNG50 reaches almost the same
resolution but typically produces slow bars. Fragkoudi et al. (2021)
instead attribute their success to their simulated disc galaxies being
much less dark matter dominated than in large-box simulations,
and than expected from abundance matching. It is unclear whether
this would give consistent results on the overall galaxy statistics

like the luminosity function in a large-box simulation. Furthermore,
their findings do not extend to lower mass galaxies compared to
the lowest masses in Cuomo et al. (2021): invoking similarly low
dark matter fractions in low mass galaxies would lead to conflict
with observations (as discussed in Roshan et al. 2021). Finally, we
note that while the Auriga simulations manage to mostly avoid the
formation of classical bulges (which probably are part of the problem
for both the fraction and pattern speeds of simulated bars in large-box
simulations), this success is at the expense of rather unrealistically
massive stellar haloes (see e.g. Peebles 2020).

The slow bars predicted by �CDM are a consequence of dy-
namical friction from the surrounding dark halo particles, as shown
explicitly by e.g. Roshan et al. (2021), where fast bars were produced
by using a rigid halo that would boost the rotation curve in a similar
way to a live halo, but would not cause dynamical friction on the
disc. Therefore, our results could imply that dark matter should
possess specific features that suppress the dynamical friction on
galaxy scales, by having a behaviour very different from a sea of
gravitating particles. This could be achieved by ultralight bosons
(Hui et al. 2017), but it has recently been shown that these particles
are inconsistent with Lyman-α forest observations at 99.7 per cent
confidence (Rogers & Peiris 2021). Superfluid dark matter would also
strongly suppress dynamical friction on galactic bars (Berezhiani,
Elder & Khoury 2019), but it was pointed out in section 5.6 of Roshan
et al. (2021) that this could be incompatible with the observed Local
Group satellite planes (Pawlowski 2018). This is because some of
their member satellites would be outside the superfluid halo of the
parent galaxy, causing the self-gravity of the satellite’s baryons to
receive no further superfluid enhancement. Another problem is that
stars on circular orbits would often be moving faster than the local
sound speed of the superfluid, leading to the emission of Cherenkov
radiation from the star that would lead to orbital decay in a small
fraction of a Hubble time (Mistele 2021).

As our final remark in this discussion, let us mention that the
significant failure of �CDM cosmological simulations with regards
to bar pattern speeds is in line with several previously documented
significant failures of �CDM in other respects (e.g. Kroupa 2012,
2015; Pawlowski 2018), including also on cosmological scales (e.g.
Haslbauer, Banik & Kroupa 2020; Asencio, Banik & Kroupa 2021;
Di Valentino 2021). Taken in combination, these failures cast doubt
on the existence of particle dark matter haloes around galaxies, with
consequent implications for our understanding of gravity. In this
regard, it is worth mentioning that in extended gravity models where
CDM particles are not present around galaxies, there is obviously no
dynamical friction from the halo. Therefore, such models predict fast
galactic bars in a natural way (e.g. Roshan et al. 2021). These theories
are also expected to yield a rather different evolution for the bar
strength, which may better explain the observed properties of M33
(Sellwood, Shen & Li 2019; Banik et al. 2020). However, there is no
sufficiently high resolution cosmological simulation in the context
of extended gravity theories (though lower resolution cosmological
simulations exist, see e.g. Katz et al. 2013). Consequently, it is not
yet possible to fairly compare them with the standard cosmological
model concerning issues like the fraction and pattern speeds of bars
in disc galaxies.

7 C O N C L U S I O N S

In this paper, we investigated the bar pattern speeds of disc galaxies
in the standard cosmological simulations known as EAGLE and
IllustrisTNG. To mimic the procedure used by observers on real
galaxies, we used only the final simulation snapshot and analysed it
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with the TW method. We showed that these simulations significantly
overpredict the R parameter, which is the ratio of corotation radius
to bar semimajor axis (equation 1). The tension is highly significant
(Table 5), and reaches 13.56σ in TNG100. In the more recent
and higher resolution TNG50, the tension is 12.62σ , which we
suggest is largely due to a smaller sample size. Therefore, the latest
cosmological �CDM simulations predict bars that are much slower
than observed bars.

In addition to this significant mismatch in pattern speeds, �CDM
simulations also yield a bar fraction rather different to what is inferred
observationally (Fig. 1). This result seems robust because the bar
fraction is quite similar between TNG50 and TNG100 in different
stellar mass bins, though EAGLE100 has a somewhat lower bar
fraction.

In conclusion, it is clear that the latest �CDM simulations do not
yield realistic properties for galaxy bars.
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