
HAL Id: hal-03279349
https://hal.science/hal-03279349

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of Analytical Eco-Driving Cycles for
Electric Vehicles

Luis Alfredo Wulf Ribelles, Kristan Gillet, Guillaume Colin, Yann
Chamaillard, Antoine Simon, Cédric Nouillant

To cite this version:
Luis Alfredo Wulf Ribelles, Kristan Gillet, Guillaume Colin, Yann Chamaillard, Antoine Simon, et
al.. Development of Analytical Eco-Driving Cycles for Electric Vehicles. European Control Conference
ECC 2021, Jun 2021, Rotterdam (virtual), Netherlands. �hal-03279349�

https://hal.science/hal-03279349
https://hal.archives-ouvertes.fr


Development of Analytical Eco-Driving Cycles for Electric Vehicles

L. A. Wulf Ribelles a, K. Gillet a, G. Colin a, Y. Chamaillard a, A. Simon b and C. Nouillant b

Abstract— This paper presents the development of analytical
solutions for the computation of Eco-Driving cycles for electric
vehicles. The task of defining an Eco-Driving strategy is
formulated as an Optimal Control Problem aiming to minimize
the energy consumed during a trip subject to input and speed
constraints. Here, the final time of the driving mission is
set as a free parameter and only the relevant terms for the
optimization are taken into account. The problem is solved
using Pontryagin’s Minimum Principle in a systematic way,
allowing the derivation of closed-form expressions for the
different (un)constrained solutions. The results obtained with
the proposed approach are compared to the optimal solution
given by Dynamic Programming, where a minor deviation from
the optimal consumption is achieved while drastically reducing
the computation time of the solution.

I. INTRODUCTION

With the need to reduce greenhouse emissions, the im-

provement of vehicle energy efficiency has become a relevant

field of research for the automotive industry during the last

decades due to its role as a major energy consumer world-

wide. In this context, the combination of energy management

strategies (EMS), legal regulations and driver assistance

technology led to the concept of Eco-Driving (ED) [1], which

has become one of the most promising ways to improve

the energetic performance of road vehicles. Put briefly, it

describes an energy efficient driving behaviour based on the

trip information and previous studies to assess its potential

have reported up to 20% of energy savings [2], [3]. Together

with energy efficient strategies, governments and industry are

promoting the expansion of vehicle electrification to achieve

a lower number of petrol-based cars on the roads and mitigate

vehicle CO2 emissions. A market share of 30% is expected

for electric vehicles in the following years [4] and motivates

the development of EMS for electric vehicles (EV).

The definition of an ED strategy can be formulated as an

Optimal Control Problem (OCP) [5] and different methods

can be considered to solve it, namely, Dynamic Programming

(DP), Static Optimization (SO) and Pontryagin’s Minimum

Principle (PMP). Among the three, DP has been the most

common technique due to its ability to handle any kind of

OCP while guaranteeing global optimality of the solution.

In [6] and [7], DP was used to obtain the optimal speed

profiles for various driving missions and evaluate the trade-

off between model complexity and quality of the solution.

The main restriction of DP is caused by the so-called

”Curse of Dimensionality”, which limits the number of
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states and decision variables that can be considered in the

problem despite possible distance-based or receding horizon

reformulations to reduce the problem complexity [8].

Nowadays, methods based on SO are more prominent due

to their popularity in Model Predictive Control frameworks

and the improved computational power in today’s devices.

Nonetheless, the ED problem is generally non-convex and

requires special treatments in order to be solved efficiently,

e.g., convexification methods, in combination with fast state-

of-art solvers [9]–[11]. For instance, a reformulation dealing

with the loss of convexity during discretization to obtain

global optimal speed trajectories was developed in [9] while

proposing a sequential quadratic programming algorithm to

solve the problem but, despite an easier incorporation of

constraints and road grade information, this approach can

still be time consuming for long driving cycles or when

different position dependent constraints are imposed.

Alternatively, PMP has been used to tackle computation

complexity by deriving analytical solutions that provide a

better insight into how energy savings can be obtained while

allowing for an easier implementation in real time. Although

the non-linear characteristics of the ED problem often require

the use of numerical methods to obtain a solution, it is

possible to arrive at a Boundary Value Problem (BVP) that

can be solved in closed-form if sufficiently simple models

are considered (a general overview of PMP-based solutions

can be found in [5] and [6]). Besides these examples, the

combination of speed and input constraints in ED for EVs

has not been explored in the literature and, to the Authors’

knowledge, only a few examples of state-constrained cases

are available [6], [12], [13]. Therefore, the contributions of

this paper attain the development of free final time analytical

solutions to obtain energy efficient driving profiles in the

presence of input and speed constraints. These solutions

provide a wider range of driving patterns in comparison to

the aforementioned studies while handling situations where

the trip duration is not known. Moreover, a tuning strategy

for the computation of the Eco-Driving cycles is adopted to

provide an alternative to the DP methods in [7], [8].

The paper is organized as follows: Section II presents the

vehicle model considered in this work. An OCP formulation

for ED is provided in Section III. Section IV includes the

analytical solutions to the OCP for different combinations

of active constraints. Two simple case studies to illustrate

the behaviour of the closed-form solutions are presented in

Section V. After this, the considerations for the computation

of ED cycles are described in Section VI followed by

the simulation results in Section VII. Finally, Section VIII

presents some conclusions and perspectives for future work.



II. VEHICLE MODEL

In this section, we introduce the modeling approach used

in this paper and present the different simplifications and

assumptions considered for the analytical computations.

(The vehicle data and model parameters are confidential).

A. Vehicle Dynamics

The motion of the vehicle is modeled in a longitudinal

direction following Newton’s 2nd law:

ṡ(t) = v(t) (1a)

v̇(t) = 1
m
(Ft(t)− Fr(t)) (1b)

where Ft is the traction force to propel the vehicle, Fr is the

sum of resistance forces and m is the total mass of the vehicle

including the inertia of the rotating parts in the driveline.

The resistance forces in (1b) are represented by a quadratic

polynomial of the vehicle speed [7], [8]

Fr(t) = a0 + a1 v(t) + a2 v(t)
2 (2)

where a1 and a0 = ā + mg sin(θ(s)) describe the rolling

and road slope resistance, respectively, and a2 captures the

aerodynamic resistance. These coefficients are identified for

the particular vehicle in this work considering a flat road.

B. Transmission

In this model, the relation between the traction force Ft
and the torque of the electric motor assuming no slip at

wheels is described as

Ft =
(

ηt Rt T (t)
)

/rtire (3)

with ηt being a constant transmission efficiency, Rt the

transmission ratio, T the motor torque and rtire the wheel

radius. Here, a positive torque propels the vehicle and

negative values correspond to regenerative braking. Similarly,

the relation between the angular speed of the motor and the

vehicle speed is given by v(t) = (ω(t) rtire)/Rt.

C. Vehicle Dynamics Simplifications

As expressed in [6], the non-linear characteristics of

the vehicle dynamics have a large impact on complexity

when used to generate closed-form solutions. The velocity

dependent terms in (1b) were therefore neglected in this

study, given that this approximation tends to be valid for

urban driving scenarios [6], [12], [13]. Moreover, the vehicle

dynamics are written in terms of acceleration and a flat

road is assumed, resulting in v̇(t) = u(t) − c0, with the

acceleration input u(t) = (ηt Rt T (t))/(mrtire) and c0 = a0/m.

D. Electric Motor

In order to describe the energy consumption of the EV,

the power losses of the battery are neglected to reduce the

complexity of the model, giving Pb(t) = Pm(t)+Paux. Here,

the power consumed by the electric motor is represented by

Pm(u, v) = b1 v(t) + b2 u(t) v(t) + b3 u(t)
2 (4)

where b1 captures the friction losses, b2 corresponds to

a mechanical power equivalence and b3 accounts for the

Ohmic losses, with b{1,2,3} ∈ R>0. This representation is

comparable to other models in the literature [6], [9] while

maintaining its simplicity to perform analytic calculations.

Here, the parameters of Pm are identified from a quasi-static

map of the electric machine that includes the power losses

of the motor and the electronic devices.

In this regard, Fig. 1 shows the model accuracy with

respect to the electric motor map, where the RMSE of the

power predictions with model (4) is 0.85 kW.

III. ECO-DRIVING PROBLEM

Now, the problem statement defined from the ED concept

is presented along with the method employed to obtain the

analytical solutions. In general, an Eco-Driving strategy aims

to define the optimal speed profile that a vehicle should

follow to minimize its energy consumption for a trip along

a specific route s(t) ∈ [s0, sf ] in a given time t ∈ [t0, tf ]
while respecting legal or situational driving restrictions, i.e.,

speed limits and traffic conditions [5]–[13].

A. Optimal Control Problem Formulation

The task of defining an ED strategy can be formulated as

the following continuous-time optimal control problem

min
{u(t),s(t),v(t),tf}

∫ tf

t0

(
L(u, v) + β

)
dt (5a)

subject to

ṡ(t) = v(t) (5b)

v̇(t) = u(t)− c0 (5c)

s(t0) = s0, s(tf ) = sf (5d)

v(t0) = v0, v(tf ) = vf (5e)

v(t) ≤ vmax (5f)

− umin ≤ u(t) ≤ umax (5g)

where the term β prioritizes the duration of the trip over

the energy savings, given that only certain applications have

predefined arrival times, e.g., schedules of city buses [10].

Based on the study [7], only the power consumed by the

electric motor is considered in (5a) since the auxiliaries had a

minor influence in the optimization of the vehicle speed, thus

L(u, v) = Pm(u, v); although Paux could be linked to β in

low charge scenarios. Additionally, vmax, umax and umin are

considered as constant speed and input limits, respectively.
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Fig. 1: Normalized electric motor power map vs. model

power predictions as a function of torque and angular speed.



Even though the solution to (5) can be obtained through

different methods, e.g., DP, SO or PMP, we focus on

a Pontryagin’s Minimum Principle approach to derive a

set of analytical solutions that provides a straightforward

implementation when including position-based information

while having a simple interpretation of the speed behaviour.

Nonetheless, it should be noted that fewer terms involved in

the OCP can lead to simpler closed-form expressions.

To this end, the previous OCP can be reformulated

to obtain more compact expressions by removing the

terms that can be solved in advance, considering that

conditions (5d) and (5e) are fixed as explained in [6], [9].

A compact representation can be obtained by substituting

the simplified speed dynamics (5c) in the consumption

model and then integrating the resulting cost function J =
∫ tf
t0

(
b1 v(t) + b2 (v̇(t) + c0) v(t) + b3 (v̇(t) + c0)

2 + β
)
dt

over the boundary conditions (5d) and (5e), leaving only

the terms contributing to the energy saving along the trip

J = (b1 + b2c0) (sf − s0)+
1
2b2 (v

2
f − v20)

+2 b3 c0 (vf − v0) +

∫ tf

t0

(
b3 v̇(t)

2 + b3 c
2
0 + β

)
dt (6)

Despite being constant, the last two terms in the integral

are kept since tf is an unknown parameter. With this new

cost and substituting back the speed dynamics (5c), the

continuous-time Eco-Driving OCP to be solved is given by

min
{u(t),s(t),v(t),tf}

∫ tf

t0

(b3 (u(t)− c0)
2 + b3 c

2
0

︸ ︷︷ ︸

L̃(u)

+ β)dt (7)

subject to

Constraints (5b) - (5g)

IV. ANALYTICAL SOLUTION TO THE ECO-DRIVING OCP

In this section, the analytical solutions to problem (7) and

the methodology used for their derivation are presented.

A. Pontryagin’s Minimum Principle and Solution Approach

We begin by defining the Hamiltonian

H = L̃(u) + β + λsv + λv(u− c0) (8)

Following [14], the equations describing the state and co-

state dynamics are obtained by taking the partial derivatives

of (8) with respect to each variable such that

dH
dλs

= ṡ = v
dH
dλv

= v̇ = u− c0

−dH
ds

= λ̇s = 0

−dH
dv

= λ̇v = −λs

(9)

In the absence of any input or speed constraint, the optimal

input that minimizes the Hamiltonian is given by

dH
du

= 2 b3 (u− c0) + λv = 0 → u∗ = − λv
2 b3

+ c0 (10)

which is substituted in (9) to obtain a Two Point Boundary

Value Problem (TPBVP). Furthermore, one can guarantee

that (10) is optimal if d2H/du2 = 2b3 ≥ 0, which is already

satisfied by the definition of the consumption model.

The following step is the integration of the resulting

system of differential equations but, in order to obtain the

solution to (7) in a compact and systematic way, the system

(9) with (10) is written in matrix form with the help of an

augmented state vector, x = {s, v, 1, λs, λv, 0}⊺, giving the

system ẋ(t) = H x(t). Furthermore, the presence of input

and state constraints transforms the previous autonomous

system into a time-varying linear system ẋ(t) = H(t)x(t)
with piece-wise constant dynamics described by

H(t) =







Ha, if t0 ≤ t < ta

Hb, if ta ≤ t < tb
...

HF , if tk ≤ t ≤ tf

(11)

where t0 < ta < tb...tk < tf are switching times determined

by the active constraints defining different driving modes.

First, consider the presence of input constraints given that

(10) is limited by the maximum (minimum) torque capacity

of the motor. Thus, the constrained optimal input is given by

u(t)∗ =







umax, if u(t)∗ ≥ umax

− λv

2 b3
+ c0, if − umin < u(t)∗ < umax

−umin, if u(t)∗ ≤ −umin
(12)

In the case of pure state inequality constraints [14], the

Hamiltonian is modified by adjoining the constraints in an

indirect approach to form a Lagrangian L = H + µ g(1)

satisfying the tangency conditions

g(v) = 0 and g(1)(v) = d
dt
(g(v)) ≤ 0 (13)

where g(v) := v(t) − vmax and µ is a lagrange multiplier

satisfying the complementary slackness condition µ g = 0
with µ ≥ 0 for all t ∈ [t0, tf ]. Since this OCP only considers

first order indirect constraints, the speed limit is active during

a single interval, e.g., [ta, tb], and the continuity of the state

trajectory at the entry point imposes the jump conditions

λs(t
−
a ) = λs(t

+
a ) (14a)

λv(t
−
a ) = λv(t

+
a ) + πv

d
dv
(g(v∗, t+a )) (14b)

H(t−a ) = H(t+a ) (14c)

where the multiplier πv satisfies πv g = 0 and πv ≥ 0.

By incorporating these conditions into the switching dy-

namics (11), the solution to the LTV Hamiltonian system can

be easily obtained via the matrix exponential, such that

x(tf ) = eHF (tf−tk) . . . eHb(tb−ta)eHa(ta−t0)x(t0) (15)

where x(t0) = {s0, v0, 1, λs,0, λv,0, 0}⊺ and the particular

driving mode sequence is defined by the active constraints,

going from an unconstrained to a fully constrained solution.

Finally, the trip duration is determined by the transversal

condition Htf := H|t=tf = 0, given that the Hamiltonian

must be constant since it does not depend explicitly on time

[14] and where the trip time varies according to the value

of β. Furthermore, we consider t0 = s0 = 0 in order to

simplify the derivations and the resulting expressions.



B. Unconstrained Solution

In the absence of any input or speed constraint, the analyt-

ical solution is given by a single mode denominated Partial

Acceleration (PA) resulting from x(tf ) = eHp(tf )x(0) and

where the only unknowns are the co-state initial conditions

(Co-ICs) and the trip duration tf . The speed trajectory in this

driving mode coincides with the parabolic profile reported

in the literature [6], [12], [13] and is given by the quadratic

equation of time:

v(t) =
(
λs,0

4 b3

)

t2 +
(

−λv,0

2 b3

)

t+ v0 (16a)

where

λs,0 =
12 b3 (tf vf−2 sf+tf v0)

tf 3 (16b)

λv,0 =
4 b3 (tf vf−3 sf+2 tf v0)

tf 2 (16c)

Htf =
(β+b3 c0

2) t4f−b3 (6 sf−2 (vf+ v0) tf )
2+4 b3 vf v0 t

2
f

t4
f

(16d)

Here, the Co-ICs are given by the conditions v(tf ) = vf ,

s(tf ) = sf and the real positive solutions of Htf = 0 define

possible optimal final times. The selection of tf depends on

the boundary conditions of each particular trip.

C. Speed Constrained Solution

This scenario considers a situation where the speed limit

is reached but u∗ is not affected by any of the input

constraints and incorporates a second driving mode in the

solution denominated Constant Speed (CS). This results in

two additional conditions appearing at the entry time of the

constant speed phase, i.e., v(ta) = vmax and v̇(ta) = 0, that

need to be satisfied with (13) and (14).

Now, the speed constrained solution is composed by two

switching times and a driving mode sequence PA-CS-PA, i.e.,

x(tf ) = eHp(tf−tb)eHc(tb−ta)eHp(ta)x(0), where the Co-ICs

and the entry, exit and final times are unknown. This results

in a speed profile of the form:

v(t) =







(

λs,0

4 b3

)

t2+

(

−λv,0

2 b3

)

t+v0, if t∈[0,ta)

vmax, if t∈[ta,tb)
(

λs,0

4 b3

)

t2+

(

λs,0 (ta−tb)−λv,0

2 b3

)

t+ṽb, if t∈[tb,tf ]

(17a)

where ṽb, the Co-ICs and switching times are defined as

ṽb =vmax+
λv,0 tb
2 b3

+
λs,0 tb (tb−2 ta)

4 b3
(17b)

λs,0 =− 4 b3 (vmax−v0)
t2a

(17c)

λv,0 =− 4 b3 (vmax−v0)
ta

(17d)

ta =
3 tf vmax−3 sf

vmax−v0−vf σ+vmax σ
(17e)

tb =tf+
(3 tf vmax−3 sf ) (vf−vmax)

(vf−vmax)
2+σ (vmax−v0)2 (17f)

tf =
2 β sf+2 b3 c0

2 sf+
√
b3 vmax

√
b3 c02+β

√

− 16 γ
9 vmax

2 (b3 vmax c02+β vmax)
(17g)

γ =(vf−vmax)
3+(v0−vmax)

3+2σ (vf−vmax) (vmax−v0)2 (17h)

with σ =
√

−(vf − vmax)/(vmax − v0). In this case, an explicit

expression for the final time can be obtained since Htf = 0 is

a second order equation of tf with only one feasible solution.

D. Input Constrained Solution

Other possible variant of the analytic solution considers

the cases where one or both input limits are not respected

by the PA solution, requiring a new driving mode for each

input constraint referred to as Maximum Acceleration (MA)

and Maximum Deceleration (MD), respectively. Due to space

limitations, only the solution with both input constraints

active is presented, although closed-form solutions with a

single active input limit have been obtained and included

during the simulations presented in the following sections.

In this case, the input constraints do not require any special

treatment before being incorporated in the Lagrangian and

they can be included in a sequential manner [6] using the

conditions u(ta) = umax and u(tb) = −umin, such that

x(tf ) = eHd(tf−tb)eHp(tb−ta)eHa(ta)x(0). This results in a

sequence MA-PA-MD with a speed trajectory following:

v(t) =







(−c0+umax) t+v0, if t∈[0,ta)
(

λs,0

4 b3

)

t2+

(

−λv,0

2 b3

)

t+ṽa, if t∈[ta,tb)

(−c0−umin) t+ṽb, if t∈[tb,tf ]

(18a)

Here, the initial speed for each phase is given by

ṽa =v0+ta (−c0+umax)+
λv,0 ta
2 b3

−λs,0 ta
2

4 b3
(18b)

ṽb =ṽa+tb (c0+umin)−
λv,0 tb
2 b3

+
λs,0 tb

2

4 b3
(18c)

and the expressions for the unknown variables are

λs,0 =−
√
3 b3 (umax+umin)

2

3
√
φ

(18d)

λv,0 =
λs,0 (vf−v0+c0 tf+tf umin)+b3 ((c0+umin)

2
−(c0−umax)2)

umin+umax

(18e)

ta =
vf−v0+c0 tf+tf umin−

√
3
√
φ

umin+umax
(18f)

tb =
vf−v0+c0 tf+tf umin+

√
3
√
φ

umin+umax
(18g)

φ =−(vf−v0)2+t2f (umax−c0) (umin+c0)+2 c0 tf (v0−vf )+

(2 tf vf−2 sf )umax+(2 tf v0−2 sf )umin (18h)

tf =−
√

3

√

p
q
√

umin+umax (β+b3 (c0 (umax−umin)+umin umax))

(c0+umin) (c0−umax)

+
c0 v0−c0 vf+umax vf+umin v0

(c0+umin) (c0−umax)
(18i)

The terms p and q in (18i) are omitted for space reasons.

Note that separate final time conditions Htf = 0 are obtained

when only one of the input constraints is active.

E. Fully Constrained Solution

To conclude, an input and speed constrained solution

is obtained by combining all the previous cases to define

a driving mode sequence MA-PA-CS-PA-MD. Even though

multiple variations of this solution can exist depending on the

constraints that become active during a particular trip, only

the case where all the driving modes appear in the trajectory

is presented in this paper, i.e., a switching sequence x(tf ) =
eHd(tf−td)eHp(td−tc)eHc(tc−tb)eHp(tb−ta)eHa(ta)x(0). This

gives the analytical speed profile:
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Fig. 2: Optimal speed and control input for the analytical solutions in Section IV-B to IV-E in a single trip of sf = 350 [m]
with v0 = vf = 0 [km/h], vmax = 50 [km/h], u{max,min} = 1.3 [m/s2] and tf = 36.02 [s] (β = 2× 104).

v(t) =







(−c0+umax) t+v0, if t∈[0,ta)
(

λs,0

4 b3

)

t2+

(

−λv,0

2 b3

)

t+ṽa, if t∈[ta,tb)

vmax, if t∈[tb,tc)
(

λs,0

4 b3

)

t2+

(

λs,0 (ta−tb)−λv,0

2 b3

)

t+ṽc, if t∈[tc,td)

(−c0−umin) t+ṽd, if t∈[td,tf ]

(19a)

again, the initial speeds can be explicitly defined as

ṽa =v0+ta (−c0+umax)+
λv,0 ta
2 b3

−λs,0 ta
2

4 b3
(19b)

ṽc =ṽmax+
λv,0 tc
2 b3

+
λs,0 tc (tc−2 tb)

4 b3
(19c)

ṽd =ṽc+td (c0+umin)+
λv,0 td
2 b3

+
λs,0 td (td−2 (tc+ tb))

4 b3
(19d)

and the switching times and Co-ICs are

λs,0 = − b3 c0
2+β

vmax
(19e)

λv,0 = −λs,0 (vmax−v0)−b3 (c0−umax)
2

(c0−umax)
(19f)

ta = −λs,0 (vmax−v0)+b3 (c0−umax)
2

λs,0 (c0−umax)
(19g)

tb = −λs,0 (vmax−v0)−b3 (c0−umax)
2

λs,0 (c0−umax)
(19h)

tc =
λs,0 (vf−vmax+tf (c0+umin))+b3 (c0+umin)

2

λs,0 (c0+umin)
(19i)

td =
λs,0 (vf−vmax+tf (c0+umin))−b3 (c0+umin)

2

λs,0 (c0+umin)
(19j)

tf = − ψ

6 vmax (c0+umin) (b3 c02+β)2 (c0−umax)
(19k)

where the term ψ is a function of the problem parameters

but the expression is omitted due to its length. The main

difference in this solution is related to the derivations of

the final time and the position co-state, since the resulting

transversal condition Htf = 0 does not depend on the final

time and condition s(tf ) = sf is linear in tf .

F. Sub-Problem Solutions

As mentioned before, several variations in the driving

mode sequences defining the optimal speed profiles can

appear depending on the trip at hand. Therefore, closed-form

solutions have been derived for the trips that do not present

all the driving modes in the cases previously mentioned.

This includes solutions where either the initial or final speed

conditions are equal to the speed limit, i.e., v(0) = vmax or

v(tf ) = vmax, since these situations are not compatible with

the expressions in Section IV-C and IV-E. To summarize, the
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Fig. 3: Optimal speed, control input, and (scaled) co-state

trajectories for a single trip of sf = 500 m with v0 = vf = 0
and a decreasing sequence of penalization values β.

driving mode sequences defined in this work can be grouped

in 3 categories:

• Accelerations: (MA-)PA-CS and (MA-)PA

• Decelerations: CS-PA(-MD) and PA(-MD)

• Eco-Trips: (MA-)PA(-MD) and (MA-)PA-CS-PA(-MD)

where the active constraints are successively verified to select

the appropriate driving mode sequence and each solution has

its own Co-ICs, switching and final time expressions.

V. SIMPLE CASE STUDIES

This section presents the simulations during two simple

case studies to show the capabilities of the different ana-

lytical solutions. The case studies consider single Eco-Trips

between two stops covering a distance of 350 and 500 [m],
respectively, and with a speed limit of 50 [km/h]. First, an

illustrative example of the trajectories generated with the

solutions in Section IV-B to IV-E is presented in Fig. 2.

Here, tf is fixed based on the fully constrained solution and

the input constraints are tightened for visualization purposes,

since the third speed profile tries to follow an unconstrained

behaviour while compensating for the limited acceleration

and deceleration patterns. In the second case, a longer trip

with free final time is considered, where the penalty term β
is modified to force the presence of the different driving

modes in the speed trajectories. As seen in Fig. 3, the

reduction of the final time has a strong influence on the

final driving mode sequence, going from an unconstrained

parabolic profile with tf = 56.03 [s] to a fully constrained

profile that takes 42.70 [s] to complete the trip.
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Fig. 4: Influence of active constraints on model simplifica-

tion. Top: Unconstrained, Bottom: Fully constrained.

Besides this, one of the main advantages of considering all

the different constraints is the reduction of the error induced

by the model simplifications, since an appropriate selection

of the input constraints can lead to similar acceleration and

deceleration patterns to those obtained with the full non-

linear model. In order to illustrate this, we obtained the

optimal speed profile for the second Eco-Trip numerically

to incorporate the speed-dependent terms in (2). Here, the

limit vmax is imposed with an exterior penalty function

Fp(v) = max(0, v(t) − vmax)
2 while considering the same

final time as in the analytical solution. The comparison

between the two speed trajectories is shown in Fig. 4, where

the variation during the unconstrained case is 2.51% while in

the fastest trip is only 2.16 ·10−4 %, which can be neglected.

Additionally, some inefficient control actions, like the ones

reported in [12], can be avoided since tf complies with the

accelerations patterns induced by the input constraints.

VI. ECO-DRIVING CYCLES

As stated in Section I, the goal of this work was to obtain

a method for the computation of driving cycles in a more

efficient way and with real-time implementation capabilities

compared to the Dynamic Programming developed in [7].

To this end, we first present the considerations adopted

for the generation of Eco-Driving cycles and afterwards,

a comparison between the solutions given by DP and the

proposed approach in an offline setting is provided for

different standard cycles.

A. Speed Limits

In this study, the maximum speeds are defined following a

”Standard” legal format [1], resulting in piece-wise constant

speed limits as a function of position. Similarly to [7],

we consider a sequence vlim = {vlim,1, vlim,2, . . . , vlim,J}
given by the legal restrictions and the maximum speed limits

are determined in two steps based on a reference cycle (vref ):

1) Starting from j = 2, find the index j ∈ J such that

vlim(j − 1) < vref (s(t)) and vlim(j) ≥ vref (s(t))
2) Set vmax(s(t)) = vlim(j)

Thanks to the current mapping services and traffic moni-

toring technology, similar speed limits could be obtained

as a combination of the legal limits and the current traffic

situation for a more practical online implementation.

B. Sub-Trip Segmentation

Since the analytical expressions consider constant speed

limits, we adopted the methodology proposed in [6] to define

the boundary conditions, where a set of breaking points is

used to divide a longer cycle into smaller sub-trips. Here,

the divisions are established in terms of position rather than

time given that the characteristics of the driving corridors

are generally based on distance [8]. Also, this difference

leverages the flexibility of the free final time solutions and

makes it possible to define the final speed conditions based

on static or long-term road conditions. With this in mind,

the boundary conditions for each sub-trip are defined by the

speed limits or the stops in a particular cycle such that:

vf (i) =







vmax(i) if vmax(i) ≤ vmax(i+ 1)

0 if vref (i) = 0

vmax(i+ 1) otherwise

(20)

where i is the position where the breaking point is located.

Additionally, short intermediate sub-trips appearing due to

consecutive speed limit changes in less than 30 meters are

removed to avoid infeasible accelerations or brakings.

C. Approximations to Dynamic Programming

1) Penalty Term Definition: In principle, an appropriate

definition of the parameter β is one of the main contributors

to obtain significant energy savings given that with a longer

trip time the vehicle can be driven at a lower speed, thus

reducing the energy consumption. This improvement is also

influenced by the softer acceleration patterns due to the

parabolic shape of the speed profiles. For this reason, the

heuristic approach in [8] is modified to reflect the wheel-to-

distance consumption [5], [6] and provide an intuitive way

to define the time penalty in (7) for a given driving cycle.

This results in the expression

WtDC := a0 + a1 v̄ + a2 v̄
2 +

β

v̄
(21a)

d
dv̄

(WtDC) = 0 → β = v̄2 (a1 + 2 a2 v̄) (21b)

where v̄ = v̄ref + ǫ, v̄ref is the mean speed value of the

original driving cycle, ǫ is a separate tuning parameter which

modifies the mean speed to meet the desired performance

in the ED cycle and the coefficients an with n ∈ {0, 1, 2}
correspond to the road load equation (2).

2) Optimal Cruise Speed Definition: Another relevant

point lost in the analytical solution is the effect of the

aerodynamic drag on the optimal speed profile. Specifically,

the absence of speed related terms in (5b) makes the resulting

trajectories reach a higher speed and reduces the energy

savings. In contrast, the DP solution tends to maintain a

particular cruise speed whenever the speed limits are not

reached, which has a large impact on the overall consumption

during a driving cycle. For this reason, we included an

externally defined Optimal Cruise Speed, denoted by vopt.c,
to mitigate the effects of the model simplifications and

approximate the trajectories to the DP results. This is done

with the help of what we refer to as the motor-to-distance



TABLE I: Energy Savings [%]

Driving Cycle EUDC NEDC WLTC Artemis

Analytical 7.47 16.65 29.34 17.01
Dynamic P. 8.26 21.91 31.51 18.17
Reduction 0.86 6.73 3.16 1.41

TABLE II: Difference in SOC [%]

Driving Cycle EUDC NEDC WLTC Artemis

Original 2.76 4 9.24 5.82
Analytical 2.57 3.39 6.77 5.42

Dynamic P. 2.54 3.07 6.48 5.19
Reduction 14.53 34.13 10.32 24.35

consumption, which is equivalent to the tank-to-distance

consumption in [5], [6]. In this case, the value of vopt.c is

determined with the data of the efficiency map, PEM (ω, T ),
instead of using the consumption model (4), such that

vopt.c = argmin
v

(
PEM (ω̃,T̃ )+β z

ṽ

)

(22)

Here, {T̃, ω̃, ṽ} are torque, angular speed and longitudinal

speed vectors corresponding to constant speed driving that

take the complete vehicle dynamic model into consideration

while using a fine grid of values between [1,130] [km/h].
Also, z is a scaling factor relating β and vopt.c.

Once the optimal cruise speed is defined for a particular

cycle, all the speed limits higher than vopt.c are replaced by

the optimal cruise speed to serve as constant speed periods

tailored for the trip at hand and avoid the large energy usage

incurred for driving at high speeds.

VII. SIMULATION RESULTS

In this section, the energy savings obtained with the

proposed approach in an offline way are evaluated and

compared to the global optimal solution given by DP. The

resulting speed profiles, the energy savings, final SOC and

the operating points in the motor efficiency map are consid-

ered to analyze the differences between both methods. To

this end, four different standard driving cycles are selected

as the reference speeds to evaluate the potential energy

savings, namely, the EUDC (Extra-Urban Driving Cycle),

NEDC (New European Driving Cycle), WLTC (Worldwide

harmonized Light vehicles Test Cycle) and the Artemis Road

cycle [15]. Also, we defined vlim = {0, 35, 50, 70, 100, 130}
as the speed limit vector for all the tests based on the

NEDC. Even though this vector can be freely chosen, it

is worth mentioning that its relation with the final speed

condition has a significant influence on the resulting profile,

since unnecessary sub-trip trajectories could be imposed.

To provide a fair comparison, the full vehicle model and

the electric motor map are used to obtain the torque, SOC

and energy trajectories required to follow each speed profile

and remove the influence of the simplifications. Also, the

parameter ǫ related to the mean speed in (21) is tuned such

that the difference in trip duration between the analytical and

DP cycles is less than 0.2%, removing the trade-off between

energetic performance and trip time. Besides, the state and
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Fig. 5: Comparison of speed profiles.

input discretization steps for DP are specified as δs = 4 [m],
δv = 0.02 [m/s] and δu = 0.5 [N m].

Even though the analytical and DP trajectories shown in

Fig. 5 are quite similar, some recurrent patterns causing most

of the differences in energy savings can be observed. First

of all, the fact that DP uses information about the entire

cycle to optimally balance the energy consumption results in

fast accelerations during low velocity sections to save time

and reduce the aerodynamic drag losses for driving at high

speeds. In contrast, the driving behaviour in the analytical

approach only depends on the time penalty specified and the

information embedded in the boundary conditions, the input

limits and the top speed for each sub-trip regardless of the

point at which the vehicle is located with respect to the cycle.

A second and more relevant characteristic is the presence

of a coasting mode, where shorter constant speed segments

are obtained with DP due to the distance covered without

applying any input, which leads to a reduced consumption

as presented in Table I. This feature is lost in the analytical

solution due to the parabolic form of the trajectories and

the modeling simplifications, affecting the modulation of

TABLE III: Final Time [s]

Driving Cycle EUDC NEDC WLTC Artemis

Original 360 1149 1785 1073
Analytical 360.95 1151.52 1783.63 1077.72

Dynamic P. 360.95 1151.53 1783.34 1076.12

TABLE IV: Time [s] to compute the eco-cycles

Driving Cycle EUDC NEDC WLTC Artemis

Analytical 0.046 0.080 0.096 0.091
Dynamic P. 119.60 188.17 382.04 118.44

Improvement × 2600 × 2352.1 × 3979.6 × 1301.5



EUDC

0 0.2 0.4 0.6 0.8 1

-1

0

1
T

o
rq

u
e

 [
N

m
]

NEDC

0 0.2 0.4 0.6 0.8 1

-1

0

1

T
o

rq
u

e
 [

N
m

]

WLTC

0 0.2 0.4 0.6 0.8 1

-1

0

1

T
o

rq
u

e
 [

N
m

]

Artemis

0 0.2 0.4 0.6 0.8 1

Speed [RPM]

-1

0

1

T
o

rq
u

e
 [

N
m

]

Fig. 6: Comparison of normalized operating points.

the braking patterns and thus, the energy recovered through

regeneration. Table II contains the difference in SOC for each

cycle and the relative reduction of the analytical solution with

respect to DP, where the influence of the constant speed

periods imposed by vopt.c becomes more evident since a

bigger cruise speed variation causes a larger SOC reduction.

In general, these differences are more evident in cycles

with multiple stops like the NEDC, where DP tends to

go as fast as possible during the low speed regions to

maintain a lower cruise speed after the 4th kilometer of

the cycle. Conversely, the analytical profile needs to go

about 10 [km/h] faster to reach the final position at the

same time, which increases the energy losses as depicted

by the operating points in Fig. 6. On the other hand, if the

original cycle travels longer distances with fewer stops (see

the WLTC and Artemis trajectories in Fig. 5) or even without

them, e.g., EUDC in Fig. 5, the speed profiles become

almost identical and the only meaningful differences are

the zero input periods shown in Fig. 6, i.e., coasting mode.

However, the main benefit of the analytical approach over

DP is its potential for a real-time implementation thanks to

the significant reduction in computation time (see Table IV).

VIII. CONCLUSION

In this paper, a continuous-time optimal control problem

to obtain an Eco-Driving strategy for electric vehicles with

free final time was formulated. We presented a systematic

approach based on Pontryagin’s Minimum Principle to solve

the problem analytically and different closed-form solutions

were developed depending on the constraints that become

active during a trip. A simple strategy was developed for

the computation of ED cycles with a reduced complexity

and real-time capabilities, where the proposed approach is

more than 2550 times faster than Dynamic Programming,

on average. Nonetheless, this improvement comes at the

cost of losing global optimality of the solution due to the

simplifications required. For this reason, a method to specify

the optimal cruise speed was proposed, which helped to

achieve between 93.27% and 99.14% of the optimal energy

savings when input and speed limits were incorporated.

Current research focuses on the extension of these closed-

form solutions for conventional and hybrid vehicles while

considering the incorporation of coasting phases to achieve

softer and more efficient decelerations. Furthermore, alter-

native strategies to define the final speed conditions as well

as feasibility restrictions for each driving mode sequence are

being explored to improve the performance and robustness

of the solutions while leveraging their low computational

complexity in a receding or shrinking horizon formulation.
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