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Abstract: Aerodynamic drag is an important contributor to vehicle energy consumption, es-
pecially in highway conditions. Hence, estimating on-line the aerodynamic drag, or equivalently
its coefficient, is an interesting challenge in order to reduce the energy consumption of vehicles.
However, real systems are characterized by noisy sensor measurements. Extended Kalman Filter
(EKF) is a commonly used algorithm for parameter estimation due to its stochastic filtering
properties and is based on a first order approximation of the system dynamics. Similarly, the
Unscented Kalman Filter (UKF) has been proposed as an alternative to the EKF in the field
of nonlinear filtering and has received great attention in parameter estimation. This paper
presents these two observers EKF and UKF for online estimation of the aerodynamic drag
coefficient, based on noisy sensor measurements of a vehicle velocity, powertrain wheel torque
and a longitudinal dynamic vehicle model. The design of the estimators is described and the
performances are assessed against real measurements. The robustness is evaluated with different
spoiler positions and the optimal position corresponding to a minimum of the aerodynamic drag
coefficient is confirmed. Two different masses are used to validate each estimator.

Keywords: Drag vehicle, Observer, Extended Kalman Filter, Unscented Kalman Filter,
Nonlinear System, Experimental results.

1. INTRODUCTION

In the field of transportation, commercial vehicles, buses,
semi-tractors and cars are large fuel consumers and pol-
lutant emitters. Recently, the European Parliament and
Council adopted regulation on CO2 emissions for new
passenger cars and for new light-duty commercial vehicles
(European Commission, 2019). To address these issues,
researchers were interested in mitigating aerodynamic drag
in order to reduce fuel consumption and hence CO2 emis-
sions. In the field of fluid mechanics, drag is reduced
by controlling the flow, e.g. by using a vortex generator
(VG) or spoilers (Bansal and Sharma, 2014; Ajitanshu
and Dheeraj, 2018). The optimal conditions are found with
the minimum drag coefficient. Calculating this coefficient
online is not straightforward, however. In this paper, a
vehicle is equipped with spoilers that make the drag co-
efficient vary. In automotive sector, the aerodynamic drag
coefficient is generally estimated offline using the coast
down test (White and Korst, 1972) or with wind-tunnel
experiments (Walter et al., 2001). Here, we focus on an
online estimation of the drag coefficient.

The aerodynamic drag, rolling resistance, vehicle mass
and road grade can be used together with a longitudinal
model to estimate the vehicle power demands, but these
parameters are often subject to change. For example with
the variation in the passenger number or the payload, the
vehicle mass can change. The rolling resistance depends
on tires and road conditions, and the aerodynamic drag
can change as a function of the vehicle mass and flow

control (e.g. with a spoiler). It is therefore necessary to
estimate these parameters online for conventional vehicles.
In (Vahidi et al., 2005) Recursive least squares with
forgetting was investigated to estimate online the vehicle
mass and road grade. (Sahlholm and Henrik Johansson,
2010) presented an experimental study, using a Kalman
filter to estimate the road grade coefficient. The extended
Kalman filter and the linear Kalman filter were used in
(Andersson, 2012) to estimate the aerodynamic drag and
the rolling resistance. Similarly a model-based estimation
for Vehicle Aerodynamic Drag and Rolling Resistance was
presented in (Zhang et al., 2015), this technique makes it
possible to estimate the two parameters together. In the
same way, (Trigui et al., 2016) compared two methods of
estimating the electric vehicle rolling resistance coefficient,
namely recursive least squares and neural network, in
winter conditions.

In this paper we propose two methods, the extended and
unscented Kalman filters, for online estimation of the aero-
dynamic drag coefficient. They both use the augmented
longitudinal vehicle model in discrete time and the mea-
sured signals obtained with the Control Area Network
(CAN) bus. The first method uses the linearized model,
while the second method investigates the nonlinear model
directly that can remove the error from the linearizing
procedures.

The rest of this document is organized as follows. The
nonlinear vehicle model is described in Section 2 and its
observability discussed in section 3. In Section 4, the two



observers designed for this application are presented. Sec-
tion 5 presents experimental results and compares different
driving conditions : two vehicle masses and five positions
of the spoiler. In light of the results, conclusions and per-
spectives are drawn on the problem under consideration.

2. VEHICLE MODEL

The vehicle dynamics is modeled on the longitudinal axis.
Vehicle motion is the result of the forces applied on its
body. According to Newton’s law of motion, the vehicle
speed v satisfies the following differential equation:

v̇(t) =
1

m
(Fpwt(t)− Fgravity − Frol − Fdd(t)), (1)

where (̇) denotes the time derivative, and m the vehicle
equivalent mass. The traction force of the vehicle Fpwt

can be calculated as follows

Fpwt(t) =
ηgbRgbRt

rtire
Tc(t), (2)

where Rgb is the gear-box ratio, ηgb the gear-box efficiency,
Rt the differential ratio, rtire the wheel radius [m] and Tc
the wheel torque [Nm].

The aerodynamic drag force Fdd can be calculated as

Fdd(t) =
1

2
ρcdSv

2(t), (3)

with S the vehicle frontal area [m2], ρ the air density and
cd the aerodynamic drag coefficient.

The rolling resistance Frol can be calculated as

Frol = mgcr cos(α) ≈ mgcr. (4)

A constant value of cr is often adequate for the rolling
resistance estimation. In (4), α represents the road slope
and g the gravity constant [m/s2]. The road grade force
Fgravity can be calculated as

Fgravity = mg sinα. (5)

Continuous augmented state space form
The parameter cd is estimated by augmenting the vehicle
model (1) with one state corresponding to the parameter
to be estimated. The parameter cd is assumed to change
slowly in comparison to the vehicle speed; its derivatives
are therefore approximated to zero ċd(t) = 0 (Gustafsson,
2001; Höckerdal, 2011). Augmenting the vehicle model
thus yields the following process model:

[
v̇(t)
ċd(t)

]
=

[
1
m (Fpwt(t)− Fgravity − Frol − Fdd(t))

0

]
(6)

In summary, the complete vehicle model in the continuous
state space form reads as:{

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(7)

In this paper, we chose u(t) as the powertrain wheel torque
Tc(t).

Discrete state space form
To obtain the discrete form representation of system (6),
a zero-order-hold assumption for the system input vector
u(t) during the sampling time T0 was used. This allows

us to apply the Taylor-Lie series discretization approach
(Kazantzis and Kravaris, 1997) in the form:

xi(k + 1) = xi(k) +

Ni∑
i=1

(Ll
fxi)|x(k),u(k)

T l
0

l!
, (8)

Here, k refers to the discrete time step, i = 1, 2 denotes
the ith element of the state vector x, Ni is the trunca-
tion order of the Taylor-Lie series, and Ll

fxi is the lth
order Lie derivative of xi along the vector field f . In
order to reduce the computational effort, the Taylor-Lie
series of order N = 1 is used for the states v and cd.
This choice corresponds to the classical forward Euler
integration since u(k) is constant due to the zero-order-
hold assumption. Introducing the stochastic process noise
ω and the stochastic measurement noise b, we obtain the
final system description for the filter design in the form:{

xk+1 = f(xk, uk) + wk

yk = h(xk) + bk
, (9)

where h(xk) is the measurement equation equal to vehicle
speed at time k.

In (9), the measured output y is the vehicle speed, the
states x are vehicle speed v and drag coefficient cd and the
input is the powertrain wheel torque Tc.

3. OBSERVABILITY OF THE NONLINEAR SYSTEM

In this section, we employ the observability rank criterion
based on Lie derivatives to verify the conditions under
which the nonlinear system that describes the process
of the vehicle is observable. For a nonlinear system, the
observability matrix O can be calculated as the Jacobian
of the matrix spanned by the Lie derivative L along the
vector field f :

O =


dh
dLfh

:
:

dLn−1
f h

 =

[
1 0

1
mSρcdv −

1
2mSρcdv

2

]
. (10)

The elements of the observability matrix of our system
(Boutat, 2014) are written as follows:

dh = (
∂h

∂x1
,
∂h

∂x2
, .....,

∂h

∂xn
), (11)

where dh is the differential of h. Lfh is called the Lie
derivative of h in the direction of f :

Lfh = f1
∂h

∂x1
+ f2

∂h

∂x2
+ .....+ fn

∂h

∂xn
, (12)

where the writing of dLk
fh here is given by the co-vector:

dLk
fh = (

∂Lk
fh

∂x1
,
∂Lk

fh

∂x2
, .....,

∂Lk
fh

∂xn
). (13)

As for linear systems, if the matrix O has full column rank,
then the system is said to be observable:

rank(O) = n (14)

By performing the calculations and applying the observ-
ability criterion (14) it can be shown that the system is
observable as long as the vehicle speed is nonzero.



4. OBSERVER DESIGN

A common method for parameter estimation is to use
an observer based on a state space representation. This
estimator can be used to reconstruct the states of a system
that cannot be measured (Simon, 2006). Estimations of the
system internal states can be made based on knowledge of
the system’s input and output signals.

4.1 Extended Kalman Filter (EKF)

The Kalman filter is used as a state observer in the field
of linear system. It estimates the state of the real system
indirectly, by approximating the statistic properties of the
random variables. An extension of this observer is the
extended Kalman filter, in the case of nonlinear processes.
To tackle the nonlinear problem, the extended Kalman
filter linearizes the nonlinear function f in time k − 1
and predicts the image in time k. EKF uses the nonlinear
representation of the process model in the time update
equation for the estimated states (Simon, 2006). The esti-
mation is done in two steps: the time update equations and
the measurement update equations. The notation xk|k−1 is
used to indicate the state x at time k given the information
up until time k − 1. The time update equations predict
the estimated states x̂k|k−1 and estimated error covariance
Pk|k−1 for the next time step; the global algorithm is given
by:

{
x̂k|k−1 = f(x̂k−1|k−1, uk),
Pk|k−1 = FkPk−1|k−1F

T +Qk,
(15)

where Fk = ∂f
∂x (x̂k−1|k−1, uk).

The measurement update equations are used to correct
the estimated states and error covariance predicted in the
time update equations by comparing the estimated states
with the measurements:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1), (16)

with
Kk = Pk|k−1H

T
k (HkPkH

T
k +Rk)−1, (17)

and
Pk|k = (I −KkHk)Pk|k−1, (18)

where Qk and Rk are positive definite matrices that
represent respectively the covariance of process noise and
measurement noise. Hk is the Jacobian of h(xk). Note
that all the process noise and measurement noise used
in Kalman filters are white Gaussian noise as well as
independent from each other. This is an essential condition
for the estimator to converge.

4.2 Unscented Kalman Filter (UKF)

Another application of Kalman ideas to the state esti-
mation of nonlinear systems is the UKF. The UKF also
approximates the statistic properties of the random vari-
ables up to the second order. In contrast to EKF and the
standard Kalman filter for linear systems, it is not the
mean value and covariance but a minimal set of carefully
chosen weighted sample points, the so-called sigma points,
that are used for the approximation. These points are

chosen as 2n+ 1, where n given in (Chowdhary and Jate-
gaonkar, 2006) as the total number of augmented states
to be estimated. More details can be found in (Antonov
et al., 2011), (Wan and Van Der Merwe, 2000).

Before giving the algorithm of UKF we have to define the
weighted sigma points as:

w0 =
κ

κ+ n
and wi =

1

2(κ+ n)
for i = 1, ..., 2n,

(19)

where κ provides an extra degree of freedom, and can
be used to reduce the overall prediction errors. A useful
heuristic is to select n+κ = 3 (Julier and Uhlmann, 1997).

There are two steps for the UKF algorithm, the first is the
prediction and the second is the update.

1st step: Prediction

χx(k|k) = [x̂(k|k), x̂(k|k) + η
√
Px(k|k), x̂(k|k)

− η
√
Px(k|k)],

(20)

χx
i (k + 1|k) = f(χx

i (k|k), u(k)), (21)

x̂(k + 1|k) =

2n∑
i=0

wiχ
x
i (k + 1|k), (22)

Px(k + 1|k) =

2n∑
i=0

wi(χ
x
i (k + 1|k)− x̂(k + 1|k))

(χx
i (k + 1|k)− x̂(k + 1|k))T +Rk.

(23)

2th step: Measurement update

χ∗(k|k) = [x̂(k + 1|k), x̂(k + 1|k) + η
√
Px(k|k), x̂(k + 1|k)

− η
√
Px(k|k)],

(24)

γyi (k + 1|k) = h(χ∗i (k + 1|k)), , (25)

ŷ(k + 1|k) =

2n∑
i=0

wiγi(k + 1|k), (26)

Py(k + 1|k) =

2n∑
i=0

wi(γi(k + 1|k)− ŷ(k + 1|k))

(γi(k + 1|k)− ŷ(k + 1|k))T +Qk,

(27)

Pxy(k + 1|k) =

2n∑
i=0

wi(χi(k + 1|k)− x̂(k + 1|k))

(γi(k + 1|k)− ŷ(k + 1|k))T ,

(28)

K(k + 1) = Pxy(k + 1|k)Py(k + 1|k)−1, (29)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)(y(k + 1|k)

− ŷ(k + 1|k)),
(30)



Px(k + 1|k + 1) = Px(k + 1|k)−K(k + 1)

Py(k + 1|k)K(k + 1)T .
(31)

4.3 Tuning of the observers

The tuning of the variance and covariance matrices Q, R
and P is an essential point during the implementation of
a Kalman filter. Firstly, we choose an arbitrary tuning to
select the following process noise covariance, measurement
noise variance and initial value for the estimated error
covariance in order to obtain a good convergence of the
estimates of speed and drag coefficient towards their real
values. Recall that these parameters are related to the
variance of random noise that is difficult to quantify. How-
ever we can neglect the influence of correlation between
the different noises as a first simplification and thus have
symmetric matrices defined positive. In the case of a non-
linear Kalman filter, the matrix P0 essentially determines
the initial dynamics of the filter, which is not of great
importance for an online application. On the other hand,
an incorrect setting of P0 can compromise the stability of
a Kalman filter.

For each estimator, Q , R and P are chosen as

QK =

[
10−3 0

0 q22

]
(32)

RK = 10−4 (33)

P0 =

[
10−3 0

0 10−1

]
(34)

Three values of q22 will be used in the following: 10−6,
10−7, 10−8 that define respectively dynamic, compromise
and slow tuning for drag coefficient estimation.

5. EXPERIMENTAL RESULTS

Experimental data were acquired from real-world driving
tests to assess the estimator performance. From an elec-
trical vehicle with two different masses, the vehicle rolling
resistance coefficient cr was identified to 0.007 and the
sampling time was set to 0.01s. The tests were done on
a regular road which implies considering the road-grade
equal to zero. To validate the proposed aerodynamic drag
estimation, two vehicle mass tests were achieved, and
for each vehicle mass five tests were done with different
spoiler positions. Real-time simulations were performed
using Matlab.

5.1 Offline estimation

Two classical ways are used to estimate offline the aero-
dynamic drag coefficient. The first solution is the use of
a wind tunnel (Walter et al., 2001), not shown here. The
second one (White and Korst, 1972), shown here, launches
the vehicle at a given speed in neutral gear (so Tc(t) = 0)
and the aerodynamic drag coefficient is identified with the
classical least square method. This estimation is noted ĉd.
Fig. 1 and 2 show the results for two vehicle masses. We

see the effect of the spoiler on the aerodynamic drag ĉd.
The variation of ĉd between the two masses is due to the
fact that neither the vehicle mass nor the rolling resistance
coefficient were changed during the identification to be
able to compare with the online estimation. With these
tests, we see that the optimal spoiler position seems to be
around 15◦. Note that the real value of the aerodynamic
drag coefficient has been changed for confidential reasons,
and some spoiler positions are missing due to experimental
problems.
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Fig. 1. Deceleration experiments for different spoiler posi-
tions with vehicle mass=1764kg
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Fig. 2. Deceleration experiments for different spoiler posi-
tions with vehicle mass=1950kg

5.2 Online estimation

To assess the robustness of the drag estimator, an add-on
protuberance (foam placed at the rear of the vehicle) was
implemented with the purpose of impacting the aerody-
namic performance of the vehicle.

Fig. 3 shows an example of the real data (vehicle speed
and torque versus time) obtained for the vehicle mass
m=1764kg, used for our estimation algorithm. We present
five curves for different spoiler positions from 0◦ to 15◦,
and also with the protuberance at the rear of the ve-
hicle. These experiments change the aerodynamic drag
resistance, which is opposed to the vehicle movement.
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Fig. 3. Torque [Nm] (top) and vehicle speed [kmph] (bot-
tom) versus time [s] for vehicle mass m=1764kg for
different spoiler positions
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Fig. 4. UKF Drag coefficient estimation with compromise
(bottom) and slow (top) tuning versus time [s] for a
vehicle mass m=1764kg
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Fig. 5. EKF Drag coefficient estimation with compromise
(bottom) and slow (top) tuning versus time [s] for a
vehicle mass m=1764kg

Our proposed drag coefficient estimation algorithm was
evaluated by simulations, carried out using Matlab.

Thus, Fig. 4 shows the efficiency of the UKF estimator
with compromise (bottom) and slow tuning (top) for q22
(32). As we can see in the upper figure, the coefficient
obtained with a vehicle equipped with foam converges
near to 0.4, and decreases with spoiler position, except for
position 5◦, which converges near to 0.381. We can also

note that the slow tuning smoothes out the dynamics. In
the same way we conclude from Fig. 5 that the EKF also
converges to almost the same value.
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Fig. 6. UKF Drag coefficient estimation with compromise
(bottom) and slow (top) tuning versus time [s] for a
vehicle mass m=1950kg
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Fig. 7. EKF Drag coefficient estimation with compromise
(bottom) and slow (top) tuning versus time [s] for a
vehicle mass m=1950kg

Similarly, Fig. 6 and 7 show the simulation results for
the vehicle mass m=1950kg with different spoiler positions
from 0◦ to 15◦. We can note that both EKF and UKF give
similar results.

To sum up, Table 1 shows the average estimation of
the drag coefficient obtained for each experiment and
both observers (UKF and EKF). This table shows that
both estimators could be used for online vehicle drag
estimation. Finally, the experiments show that the optimal
spoiler position is here 15◦. The estimated drag coefficient
obtained in deceleration measurements is very close to the
value obtained by Kalman filters.

Fig. 8 shows a comparison of the estimator response from
all three different tunings of the UKF and spoiler position
versus time for a vehicle mass=1764kg. This shows that
the UKF is able to estimate the drag coefficient while the
spoiler varies but that the filter tuning has a great impact
on the results obtained.

6. CONCLUSION

The drag coefficient for an electrical vehicle has been
estimated, and the effect of the spoiler position has been



Table 1. Comparison of drag coefficient esti-
mation average obtained with a slow tuning
of both filters and ĉd obtained with the offline

estimation

m = 1764kg m = 1950kg

Spoiler UKF EKF ĉd UKF EKF ĉd

0◦ 0.377 0.375 0.377 0.342 0.339 0.335
5◦ 0.382 0.380 0.368 0.316 0.313 0.298

10◦ 0.369 0.367 - - - 0.309
15◦ 0.351 0.348 0.356 0.317 0.314 0.311

add-on 0.396 0.394 - - - -
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Fig. 8. Three different tunings of the UKF Drag coefficient
estimation (top) and Spoiler position [deg] (bottom)
versus time [s] for a vehicle mass=1764kg

discussed. Two nonlinear estimators EKF and UKF have
been investigated to solve the problem of aerodynamic
drag estimation. Additionally, the impact of the spoiler
position for the aerodynamic drag coefficient has been
studied. Based on real data measurements for two cars
of different weights, it is shown that it is possible to find
an optimal angle in order two improve fuel consumption
and vehicle control.

In future work, the estimator will be implemented to
obtain the optimal conditions for other actuators (vortex
generator and others spoilers) in order to improve vehicle
energy economy and thus decrease CO2 emissions.
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d’Orléans : Sciences et Technologies.

Chowdhary, G. and Jategaonkar, R. (2006). Aerody-
namic Parameter Estimation from Flight Data Apply-
ing Extended and Unscented Kalman Filter. In AIAA
Atmospheric Flight Mechanics Conference and Exhibit.
American Institute of Aeronautics and Astronautics,
Keystone, Colorado. doi:10.2514/6.2006-6146.

European Commission (2019). Post-2020 co2 emission
performance standards for cars and vans.

Gustafsson, F. (2001). Adaptive Filtering and Change
Detection. John Wiley & Sons, Ltd, Chichester, UK.
doi:10.1002/0470841613.

Höckerdal, E. (2011). Model Error Compensation in
ODE and DAE Estimators. Doctoral thesis, Linköping
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