
HAL Id: hal-03279281
https://hal.science/hal-03279281

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of the travel time of an electric vehicle
with consideration of the recharging terminals

Saratou Souley, Kristan Gillet, Guillaume Colin, Antoine Simon, Cédric
Nouillant, Yann Chamaillard

To cite this version:
Saratou Souley, Kristan Gillet, Guillaume Colin, Antoine Simon, Cédric Nouillant, et al.. Optimization
of the travel time of an electric vehicle with consideration of the recharging terminals. 16th IFAC
Symposium on Control in Transportation Systems, CTS 2021, Jun 2021, Lille (virtual), France. �hal-
03279281�

https://hal.science/hal-03279281
https://hal.archives-ouvertes.fr


Optimization of the travel time of an
electric vehicle with consideration of the

recharging terminals

Saratou Souley ∗ Kristan Gillet ∗ Guillaume Colin ∗

Antoine Simon ∗∗ Cédric Nouillant ∗∗ Yann Chamaillard ∗

∗ Laboratoire PRISME - Univ. Orléans, 8, rue Léonard de Vinci,
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Abstract: This paper deals with the computation of the energy profile of a battery electric
vehicle in order to find the optimal path in terms of travel time on a defined route in the
presence of recharging terminals. The model used in this study to calculate the energy profile
must respect constraints such as speed limits, desired initial and final battery energy states, and
maximum terminal power. This problem can be written as an Optimal Control Problem and
will be solved using the dynamic programming method in order to find the optimal speed and
charging quantity at the terminal to save time. The results from a defined scenario show that
recharging is done in favour of terminals with a higher maximum power and that our vehicle is
constantly driving at the maximum speed allowed. The vehicle can also adapt its speed to reach
the next charging station with the consideration of a waiting time at a station. The Dynamic
Programming method allows us to respect the final energy constraints and shows that charging
at high-powered terminals saves time.
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1. INTRODUCTION

The automotive sector has undergone profound economic
and ecological changes for many years. This has resulted in
the gradual electrification of vehicles because it allows, on
the one hand, the reduction in pollutant emissions and, on
the other hand, reductions in cost in view of the increase
in the price of fuel. However, there are drawbacks to the
electrification of vehicles. Apart from the high purchase
price, users face a limited autonomy, frequent and lengthy
recharging and the lack of recharging infrastructure. It
takes an average of 3 minutes to fill up a car with an
internal combustion engine compared to 15 minutes to 6
hours for an electric car. All this contributes to increasing
the user’s travel time over a given cycle. There is also the
Range anxiety syndrome, i.e. the user’s fear of having an
empty battery before finishing the journey or arriving at
a recharging station (Neubauer and Wood, 2014). Thus, it
is important to develop tools that allow the user to cope
with these constraints.

Several studies have proposed methods of optimal alloca-
tion of recharging stations on the basis of a green routing
solved with the method of the algorithm of the shortest
path (Baouche, 2015). With the same method, (Schoen-
berg and Dressler, 2019) searched for a compromise be-
tween optimizing the total travel time of an electric vehicle
by selecting charging stations and saving energy. Another
multi-objective approach by (Wang et al., 2018) was stud-
ied based on a genetic algorithm to optimize travel time,

energy consumption and billing costs for several electric
vehicles. Additionally, (Wang, 2007) proposed an integer
program allowing the allocation of recharging stations for
electric scooters by taking into account the waiting time
at the station. With the Dynamic Programming method,
(Škugor and Deur, 2015) minimized the charging energy
cost while satisfying the conditions for maintaining the
battery charge of an electric vehicle charged from both
Renewable Energy Sources (RES) and the electrical grid.

The main contribution of this article is to propose a
Dynamic Programming based optimization focusing on
the optimal speed to adopt and the amount of energy
to recharge at the terminals in order to find an optimal
energy path to save time. A second objective was to study
the influence of the waiting time at the terminal on the
results.

This paper contains 4 sections in which we will firstly do an
energy model of the battery in Section 2. In the Section
3, we will develop the resolution method with Dynamic
Programming .Then, we will show the global results based
on a given scenario and compare them to other scenarios
in Section 4. Section 5 gives a conclusion about the model
and adds some perspectives.

2. BATTERY ENERGY MODELING

To define the remaining energy in the vehicle battery, the
SOC (State of Charge) is generally used, which indicates
the battery’s charge level in relation to its capacity. It is



the equivalent of a fuel gauge. Following (Li et al., 2017)
and (Zhang et al., 2015), several authors have referred to
another variable, the state of energy (SOE), which is more
representative of the amount of energy remaining in the
battery than the SOC. Hence, in this paper we will use
the variable SOE.

The SOE is defined as the ratio between the useful energy
remaining in the battery Ebat(t) and the maximum storage
energy Emax (Miro Padovani, 2015):

SOE(t) =
Ebat(t)

Emax
(1)

We can thus express the SOE as a function of the power
exchanged in the battery Pech.

SOE(t) = SOE(t0)− 1

Emax

∫ t

t0

Pech(τ) dτ (2)

The expression of Pech varies during the charging and
discharging phase. When the vehicle is in motion, Pech

is determined by the road power law with the coefficients
f0, f1, f2 and the speed v:

Pech(t) = f0v(t) + f1v(t)2 + f2v(t)3 (3)

In the charging phase at the terminal, Pech corresponds to
the power delivered by the terminal, Pterminal:

Pech(t, SOE) = Pterminal(t, SOE) (4)

Unlike the discharging phase, Pech depends on the SOE
remaining in the battery in our model. Indeed, a recharging
penalty is added to the terminal in the model. This
penalty consists of the fact that the recharging speed
becomes slower and slower as the recharging goes on.
Thus, with an empty battery, the recharging power is close
to the maximum power of the terminal and with a full
battery, the recharging power tends towards 0. Thus, the
recharging time will be longer at the charging point, which
will impact the travel time of the vehicle. Fig.1 shows the
evolution of the maximum power that can be used at the
charging station as a function of the SOE remaining in the
battery.
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Fig. 1. Charging power profile throughout the charging
process for two different maximum terminal power

In the algorithm, the amount of energy to be recharged is
discretized and the power that the terminal should deliver
is calculated with the SOE level.

3. CONSTRAINTS AND METHOD OF RESOLUTION

3.1 Assumptions and constraints

In the present study, It is assumed that:

(i) The vehicle does not stop outside the recharging
stations and that it drives at constant speed between
two recharging stations.

(ii) There are no constraints related to traffic. It is
assumed that traffic is fluid and that the charging
stations are not occupied.

(iii) There is no loss model for the electric machine.

Before formulating the optimal control problem, it is
necessary to define the constraints:

(i) Speed limit. On a given cycle, there are maximum
vmax and minimum vmin speeds not to be exceeded
defined by the traffic signs. In order to respect the
regulations, the maximum speed allowed is an impor-
tant constraint to consider.

(ii) Minimum threshold for final SOE on arrival. There
is therefore a constraint on the battery final State of
Energy (SOE).

(iii) Minimum and Maximum SOE. We wish throughout
the journey not to go below a threshold value of
SOE in order to avoid premature deterioration of the
battery.

(iv) Terminal Maximum power. The model takes into ac-
count the maximum power delivered by the recharg-
ing station Ptermmax which varies from station to sta-
tion. This a determining constraint for the calculation
of the travel time.

3.2 Optimal control problem formulation

The problem can be written as an Optimal Control Prob-
lem (OCP) aiming to find the minimum of a cost function
which in the present case is the vehicle total travel time
T . Here, the control inputs are defined as the speed v and
a variable pcharge, which is a ratio of Emax representing
the quantity recharged at the terminal. Thus, the OCP is
formulated as follows:

{v∗, p∗charge} = arg min
v∈V,pcharge∈P

T (5)

subject to the constraints:

vmin ≤ v ≤ vmax

0 ≤ pcharge ≤ 1

Pterminal ≤ Ptermmax

And the boundary conditions are defined as follows:

d(0) = 0 , d(tf ) = df (6)

SOE(0) = SOEinitial (7)

In a classical OCP, the state of the system (2) should
satisfy the following equation (Trélat, 2007):

dx(t)

dt
= ẋ(t) = f(t, x(t), u(t)) (8)

with u(t) = [v, pcharge] the control variables. From (2) we
can deduce the differential equation verified by the SOE,
the state of our system.



By defining x = SOE, we have:

ẋ(t) = − 1

Emax
Pech(t) = f(t, x(t), u(t)). (9)

(Ozatay et al., 2014) showed that an optimal control
problem can be solved in both the spatial and temporal
domains. As the goal is to trace the energy profile along
the entire travel distance, we therefore chose to work in
the space domain. The transition from the time domain to
the space domain is determined by the relationship:

dv

dt
= − dv

dD

dD

dt
= v

dv

dD
, (10)

where D is the distance traveled.

In order to constrain the final condition xf = SOEfinal on
the state of Energy x = SOE, an external penalty function
is added in (5) :

p(x) =

{
K0(xf − x)2 , if x(df ) < xf
0 , if x(df ) ≥ xf

(11)

Fig. 2 shows the shape of this external penalty for xf =
SOEfinal = 0.075 and K0 = 25000
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Fig. 2. External penalty for the desired final state of charge

3.3 Discretization and Dynamic Programming

In this study, the control problem is solved using Dy-
namic Programming (Bellman and Kalaba, 1957). Dy-
namic Programming is an algorithm for solving optimiza-
tion problems that requires decision making (modeled by
the control) with respect to a criterion to be optimized.
Its principle is based on the search for an optimum of a
global problem by decomposing it into sub-problems that
are simpler to solve. The optimal trajectory that minimizes
the cost passes through optimal sub trajectories.

Here, the OCP is discretized in terms of distance where
the horizon N represents the number of sections on the
cycle and a section represents the distance between two
boundaries. Thus, the distance between terminals k − 1
and k is denoted Dk. An example of a cycle with four
terminals is represented in Fig. 3.

Fig. 3. Example of a cycle with four terminals

We define the steps of distance :

∆dk = Dk −Dk−1

with k ∈ {1, . . . , N}
The criterion to be minimized can be written as :

J(uk, Dk, x) = T =

N−1∑
k=1

(tk + dtk) + dtN + p(x), (12)

where tk represents the charging time at terminal k defined
by :

tk =
pcharge(k)Emax

Pterminal(k, SOE)
. (13)

and where dtk represents the travel time between terminal
k − 1 and k:

dtk =
∆dk
vk

. (14)

The state of charge SOE is also discretized. According to
(2), we have the following discretized SOE expression, in
discharging phase (3):

SOE(k + 1) = SOE(k)− Pech(k)dt(k)

Emax

(15)

and in charging phase (4):

SOE(k + 1) = SOE(k) + pcharge(k) (16)

The Dynamic Programming algorithm has two parts:
backward and forward. The backward part calculates all
possible paths from the end to the beginning and stores
the optimal ones. The forward part traces the optimal
path from the results of the backward. Algorithm 1 and
Algorithm 2 show the main steps of the backward and
forward algorithms implemented in the study.

Algorithm 1 Backward part of the DP algorithm

Define state and control vectors stab, pcharge, vtab
Form SOE, Pcharge, Pech and V, cubic matrices
of size length(pcharge) × length(vtab) × length(stab)
ix : stab index
for k = N − 1 to 1 do
TempSOE = SOE − Pech∗dt

Emax

SOEk+1 = TempSOE + Pcharge

G = dt+ tk
Jk = G+ J∗(SOEk+1, k + 1)
J(ix, k) = minJk
J∗(SOEk, k) = J(ix, k)
v∗(ix, k), p∗charge(ix, k) = argminJk

end for

Algorithm 2 Forward part of the DP algorithm

Define SOEinitial

time = 0, a = dp; tcharge = 0;
for k = 1 to N do
v(k, SOE) = v∗(k, SOE)
Calculate dt(k), Pech(v), SOE(k + 1)
pcharge(k) = p∗charge(k, SOE(k))

time = time+ dt(k)
while SOE(k + 1) ≤ SOE(k + 1) + pcharge(k) do
Find Pterminal(k, SOE(k))
SOE(k + 1) = SOE(k + 1) + a
tcharge = tcharge + aEmax

Pterminal(k,SOE(k+1))

end while
time = time+ tcharge

end for



4. NUMERICAL RESULTS

4.1 Scenario used

The Dynamic Programming method was implemented on
a defined scenario whose parameters are listed below:

Parameters Values units

Initial SOE 0.075 -

Desired final SOE 0.075 -

Minimum SOE allowed on the route 0.01 -

Distance of the trip 600 km

Emax 40000 Wh

f0 180 N

f1 1.1 N/m/s

f2 0.45 N/m2/s2

Distance between terminals 40 km

Distance from the starting point to the
first terminal

10 km

Distance from the last terminal to the
end point

30 km

Maximum power of terminals 50 or 100 kW

Table 1. Parameters of the scenario used

In Dynamic Programming, a mesh on the state of the
system (SOE) and control (v, pcharge) is necessary to
perform the calculations. In particular SOE is meshed
every 0.025, speed every 0.1111[m/s] and recharges every
0.012.

The terminals are placed on the cycle so that one terminal
out of two has a maximum power of 100 kW from the
first terminal encountered. The other terminals have a
maximum power of 50 kW.

A speed limit scenario was also defined according to the
sections considered, ranging from 50 km/h to 130 km/h.
Fig.4 shows the limits defined for the simulation.

Fig. 4. Speed limits on each section of the cycle

4.2 Results with recharging penalty

With the scenario defined in Table 1, we compute the
SOE profile for different initial SOE. They are plotted
on a graph describing the different optimal recharging
commands (Fig.5) and optimal speeds (Fig.6) thanks to
the colour code.

In Fig.5, the vertical lines represent the stops at the ter-
minals for recharging the battery. It can be seen that the
vehicle stops at every two terminal corresponding to the
100 kW terminals. The algorithm therefore chooses to stop
at the terminals with higher power to recharge faster and
save travel time. These results are consistent with those

Optimal recharge control
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Fig. 5. Optimal energy profile and recharging commands
p∗charge for several initial SOE of 0.075, 0.3 and 0.8

Fig. 6. Optimal energy profile and speed commands
v∗[km/h] for initial SOE of 0.075, 0.3 and 0.8

found in the literature: (Schoenberg and Dressler, 2019)
were able to show through an adaptive algorithm that
travel time was optimized by charging at fast charging
stations. However, due to the effects of the mesh, our al-
gorithm has small numerical bounces that lead to charging
1 % at two 50 kW terminals if our starting SOE is less than
0.4. As can be seen, the higher the starting SOE is, the
fewer stops there will be at the terminals: for an initial
SOE of 0.8, the vehicle will stop only after 250 km. In
terms of recharging, the algorithm chooses to recharge the
battery to a maximum of 46 % on a given terminal in order
to stay within a range of [70 kW 100kW] for the recharge
power in order to save time. Note also that after a certain
distance the energy profile is the same whatever the initial
SOE. An external penalty was added on the final SOE
constraint to come as close as possible to the minimum
final SOE required at the finish. The final SOE is 0.082
(Table.2). With regard to speed Fig.6, the optimal control
corresponds to the maximum speed allowed according to
the section in order to have a minimum travel time between
each section. In all other simulations, the optimal speed
control always corresponds to the maximum allowed speed.

The cumulative time lost throughout the trip is plotted
in Fig.7. The lost time represents the percentage of time



lost in relation to the distance covered by an ICE vehicle
(without stopping at the terminal).
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Fig. 7. Cumulated lost times for several initial SOE

In the scenario considered (Initial SOE = 0.075) the travel
time corresponding to the optimal energy trajectory is 8
hours and 6 minutes. The figure above shows that even
if the travel time is optimal, 13.4% of travel time is lost
compared to an ICE vehicle. In the case of an electric
vehicle, it is necessary to start with a full battery to save
more travel time. With an Initial SOE of 0.8, there is only
a 9,4% difference to an ICE vehicle.

4.3 Results with an entry ticket

In section 4.2, the optimal SOE profile is calculated along
the route assuming no waiting time at the terminal.
Nevertheless, this does not correspond to reality because
there are other electric car drivers on the route who need
to be modeled (Tang et al., 2016). The waiting time
at a recharging station has to be taken into account.
Waiting times have often been considered in the literature,
particularly in the studies of (Liu et al., 2020) and (Luo
et al., 2020) which showed respectively with a genetic
algorithm and the Dijkrsa algorithm that the waiting time
of an electric vehicle at a station varies mainly between
0 and 10 minutes. The following simulations therefore
included an entry ticket, i.e. a waiting time at the terminal
in order to recharge the battery to see the impact on the
optimal energy profile. The SOE profiles for 3 different
waiting times, 2, 5 and 8 minutes are plotted in Fig.8 to
Fig.10.
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Fig. 8. Optimal energy profile and recharging commands
p∗charge with a 2-minute entry ticket

Adding an entry ticket means that the algorithm mini-
mizes its number of stops. Therefore the recharging com-
mands will be higher at a given terminal. For example
in Fig.9, the battery is recharged up to 62% at the first
terminal in order to skip the 100 kW terminal at 90 km.
Similarly, in Figures 9 and 10, the recharging commands
are constant at 81% for the terminal at 250 km. in order
to skip the 100 kW terminal that follows at 330 km. Also,
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Fig. 9. Optimal energy profile and recharging commands
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Fig. 10. Optimal energy profile and recharging commands
p∗charge with a 8-minute entry ticket

pcharge seems to increase with a higher entry ticket. By
comparing Fig.9 and Fig.10, it can be seen that there are
recharging commands (at 450 km) around 0.2 for 5 minutes
which become recharging orders around 0.5 for 8 minutes.

The speed profile also changes by adding an entry ticket.
Fig.11 plots the speed commands for a 5-minute entry
ticket. The different constant speed zones have small steps
of lower speeds for a well-defined SOE in order to jump on
a powerful charging station and save time. Thus, for the
same section, the optimum speed control varies according
to the SOE in the battery. Nevertheless, these speeds are
never achievable in the forward algorithm because there
are enough solutions not to go through these points.

Fig. 11. Optimal energy profile and speed commands
v∗[km/h] with a 5-minute entry ticket

Then, the driving and recharging times are extracted for
the different situations studied. The comparison between
the ICE and electric vehicles is made with respectively a



full tank and a low SOE at the beginning of the trip. The
results are summarized in Table 2.

w/o 2-min
entry
ticket

5-min
entry
ticket

8-min
entry
ticket

Final SOE 0.082 0.082 0.12 0.12

Total waiting time
(min)

0 14 20 36

Driving time (h) 7 7 7 7

Charging time (h) 1.09 1.07 1.29 1.29

Travel time (h) 8.1 8.27 8.62 8.89

Lost time compared
to ICE (%)

13.4 16 19 22

Table 2. Comparison for different waiting times
or entry ticket at the charging stations

The driving time between two terminals remains the same
regardless of the scenario for an initial SOE of 0.075
because the vehicle is always driven at the maximum
speed allowed to optimize the time spent. What changes
is the recharging time: the higher the entry ticket, the
higher the overall recharging time. This is because the
recharging command is much higher in order to skip as
many terminals as possible. Recharging more at a given
charging station saves more time than waiting 2, 5 or 8
minutes at all 100 kW charging terminals because the time
gained in these three cases is respectively 36 seconds, 3
minutes and 12 minutes. So, In the scenario with an entry
ticket, more time is saved by skipping terminals instead of
waiting at each 100 kW terminal.

5. CONCLUSION

In this study, an optimization method using Dynamic
Programming was presented to find an optimal route in
terms of travel time by selecting the charging stations. The
model considers battery state of energy as a state and then
the speed and the amount recharged at the stops as control
variables. After implementation, the numerical results
show a preference for charging at high power terminals
while keeping the SOE below a particular threshold to
avoid inefficient charging regions and reduce the time lost
along the trip. Also, in order to optimize the driving time,
the algorithm shows that the optimal speed is equal to the
maximum speed allowed. However, such a model is very
simplistic because it does not take into account the waiting
time, which has a considerable impact on the results.
By considering the waiting time, the algorithm skips as
many terminals as possible. It also prioritizes the powerful
charging station and is ready to adapt speed to reach
the next good one even if it means recharging more at
a given terminal. Nevertheless, Dynamic Programming
proves to be effective ensuring coherence results of the
model which is a good basis for adding other parameters
to be taken into account in future work : the battery
efficiency in charge and discharge phase (Škugor and Deur,
2015), traffic constraints that have been the object of
several studies (Tang et al., 2016), the price of the trip
and speed which is not assumed to be constant in reality
because of traffic constraints and stops at the terminals.
Several parameters in future work should be taken into
account not only offline but in real time to achieve greater
concordance in the results.
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Trélat, E. (2007). Commande optimale. Notes de cours.
Wang, Y.W. (2007). An optimal location choice model

for recreation-oriented scooter recharge stations. Trans-
portation Research Part D: Transport and Environment,
12(3), 231–237.

Wang, Y., Bi, J., Guan, W., and Zhao, X. (2018). Opti-
mising route choices for the travelling and charging of
battery electric vehicles by considering multiple objec-
tives. Transportation Research Part D: Transport and
Environment, 64, 246–261.

Zhang, Y.Z., He, H.W., and Xiong, R. (2015). A data-
driven based state of energy estimator of lithium-ion
batteries used to supply electric vehicles. Energy Proce-
dia, 75, 1944–1949.


