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Abstract

Entropy (temperature) fluctuations produced by turbulent flames generate noise

when they are accelerated by the flow. This so-called entropy noise is an impor-

tant contributor to core noise in modern aeroengines and several semi-analytical

models exist in the litterature for its prediction. All these models assume the

flow to be inviscid. In the present paper, contribution of viscosity on entropy

noise generation and scattering through a nozzle is investigated numerically

with URANS simulations and analytically through the extension of the 2D in-

viscid model of Emmanuelli et al. (Journal of Sound and Vibration 472:115163

(2020)). Simulations indicate noise generation and scattering is slightly reduced

in the medium-frequency range in the presence of viscosity with variations below

3 dB in comparison to reference inviscid data. This noise variation is qualita-

tively well reproduced by the low-order model. The major effect of viscosity on

noise generation and propagation lies in the presence of boundary layers. Vis-

cous entropy noise sources and viscous diffusion of acoustic perturbations have

a negligible impact on noise. Discrepancies between simulations and analytical

solutions are found to come from the radial evolution of the acoustic waves in

thick boundary layers, not accounted for in the model, and which impact noise
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scattering.
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1. Introduction

The important efforts carried out during the last decades to reduce jet and

fan noise in turbojet engines led to the emergence of additional noise sources,

previously masked, among which combustion noise stands out [1, 2]. Combus-

tion noise issues are even more important for turboshaft engines where jet and5

fan noises are absent [3, 4]. Two different mechanisms are involved in combus-

tion noise. Direct combustion noise is associated with the acoustic fluctuations

generated by the turbulent flame through heat release fluctuations [5, 6], whereas

indirect combustion noise is produced when flow heterogeneities, such as entropy

(cold and hot spots), vorticity (turbulent spots) and compositional (mixture het-10

erogeneities) fluctuations are accelerated by the mean flow through nozzles and

turbine stages [7–10]. Such perturbations lead to a loss of balance, to which the

flow reacts by emitting acoustic waves [11, 12]. Relative contributions of direct

and indirect combustion noise to global sound emission of aeroengines is still an

open question [1, 13] but recent analytical investigations suggest indirect noise15

may dominate direct noise in several practical situations [1, 14], hence the need

for its modelling and reduction. Concerning indirect noise sources, entropy noise

is thought to dominate vorticity noise because of the large entropy fluctuations

produced by the turbulent flames inside combustion chambers, as well as large

dissipation of turbulent structures by viscosity, particularly important at high20

temperature [15]. As for compositional noise, it was shown analytically to be a

possible contributor in lean mixtures and supercritical nozzle flow regimes only

[16, 17].

The observations above outline the need for modelling of entropy noise. The

present paper focuses on its generation in a nozzle. Nozzle flow is a simple25

configuration very well suited to the investigation of entropy noise through an-

alytical, numerical and experimental approaches, before possible application
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to more realistic turbine geometries. Analytical studies dedicated to entropy

noise in nozzles essentially build on the seminal work of Marble and Candel

[18] assuming one-dimensional flow (flow variables do not vary along radial and30

azimuthal directions). Noise produced and scattered through the nozzle is ex-

pressed in the form of transfer functions evaluated algebraically in the compact

limit, i.e. acoustic and entropic wavelengths are assumed large compared to

the nozzle dimensions. Non-compact transfer functions are also evaluated in

the simplified configuration of a linear velocity profile, an hypothesis later re-35

laxed by Moase et al. [19] and Giauque et al. [20] considering a piecewise-linear

velocity profile. Using a different approach, Bohn [21] solves a system of par-

tial differential equations over pressure, velocity and entropy to determine the

transfer functions of generic nozzles and provides asymptotic solutions in the

large frequency limit in the case of a linear velocity profile, whereas Duran and40

Moreau [22] consider a system of partial differential equations over mass flow

rate, stagnation temperature and entropy solved with the Magnus expansion.

Additionally, Mahmoudi et al. [23] describe the nozzle geometry as a succession

of ducts of constant radii and apply the compact solutions of Marble and Can-

del between ducts to reconstruct frequency-dependant transfer functions. The45

one-dimensional hypothesis was recently relaxed by Duran and Morgans [24],

Dowling and Mahmoudi [1] and Mahmoudi et al. [23] by considering azimuthal

flow fluctuations in annular nozzles and by Emmanuelli et al. [25] and Huet

et al. [26] to account for the radial evolution of the flow. The former studies

allow to investigate the contribution of the different azimuthal modes in indirect50

noise, whereas the latter addresses the problem of shear dispersion of entropy

fluctuations by the mean flow and subsequent noise modifications. The role of

entropy dispersion in indirect noise production is also addressed in a different

way by Mahmoudi et al. [27] in a combustion chamber. The authors convect en-

tropy fluctuations along streamlines and reconstruct a radially averaged entropy55

fluctuation at combustor outlet, used to feed a one-dimensional model for the

nozzle. To end, the isentropic nozzle assumption is considered by De Domenico

et al. [28]. Marble and Candel’s [18] model is adapted to non isentropic flows,
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corresponding for instance to the presence of recirculation, and compact transfer

functions are expressed as a function of a pressure loss parameter.60

The hypotheses used in the models may appear restrictive in comparison

with the complex phenomena occurring in real flows. Concerning acoustics, it is

often argued that waves cannot exhibit radial variations because corresponding

radial modes are cut-off for the low frequencies considered and viscosity can

be neglected due to the short propagation distance. Limited contribution of65

acoustic-boundary layer interactions also plays in favour of the one-dimensional

flow assumption. Duran and Moreau [22] and Huet [29] showed that such one-

dimensional models indeed capture the acoustic reflection and transmission coef-

ficients of subsonic and choked nozzle flows with a good accuracy. The compact

model is also suitable to capture entropy noise in the compact limit, as illus-70

trated by Leyko et al. [30] with the reproduction of the experimental Entropy

Wave Generator test case in choked configuration [31]. When larger frequencies

are considered, Morgans et al. [32] and Giusti et al. [33] numerically demon-

strated that turbulent dissipation of entropy is negligible for constant section

duct flows. This finding was also observed through a nozzle flow by Becerril75

[34] and Moreau et al. [35]. Common to these studies is the importance of

shear dispersion of entropy perturbations by the mean flow and possible con-

tribution of turbulent mixing in entropy dispersion, the latter being restricted

to large frequencies because of the limited diameter of the duct where only

small-scale turbulence can develop. Inside the combustion chamber, however,80

large turbulent structures may grow and contribute to the dispersion of entropy

fluctuations before they reach the nozle, as demonstrated by Xia et al. [36] in a

realistic gas turbine combustor flow-field. Additionally, thermal diffusion may

play a role in the attenuation of entropy fluctuations. It was found numerically

to be negligible by Xia et al. [36] in the Siemens SGT-100 gas turbine com-85

bustor. From a theoretical point of view, thermal diffusion drops with pressure

and is expected to be negligible in industrial, pressurized combustors but may

contribute to entropy damping in ambient pressure, lab scale experiments [37].

Finally, most of the models use the strong assumption of negligible vorticity.
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Entropy-induced vorticity originates from a baroclinic torque when density (en-90

tropy) fluctuations are misaligned with the mean pressure gradient [24] and was

observed numerically by several authors. Its contribution was shown to be mi-

nor for inviscid nozzle flows by Duran and Morgans [24] and Emmanuelli et al.

[25] but a potential noise generator when viscosity is considered [34, 35, 38]. In

addition, viscosity influences the mean flow development, in particular through95

the presence of boundary layers, and may affect entropy dispersion and noise

generation in comparison to inviscid configurations.

The objective of the present paper is to assess the role of viscosity in entropy

noise generation within a nozzle through analytical modelling and numerical

simulations with the URANS approach. This numerical modelling is sufficient100

to capture the influence of viscosity on the mean flow, in particular boundary

layers, as well as on the propagation of acoustics and convection of entropy and

vorticity perturbations. These phenomena are expected to be the dominant ones

in the frequency bandwidth of indirect combustion noise considered here, below

1 kHz. The interaction between these perturbations and small-scale turbulence105

is not directly computed and cannot be accounted for in the present simulations,

but it is expected to be of second order following literature results [29, 39]. In

addition, URANS already proved successful in simulating entropy convection

and related noise production through nozzles and turbine stages [31, 39–41]. The

paper is organized as follows. Derivation of the Riemann invariants in duct flows110

with boundary layers is first detailed in Section 2 under simplifying assumptions.

The inclusion of viscous terms in a two-dimensional low-order model is presented

in Section 3. This modelling allows for an analytical discussion on the role of

viscosity in entropy noise generation. The geometry considered to evaluate the

transfer functions is detailed in Section 4, along with the description of the mean115

flow fields and the numerical procedure to compute the transfer functions with

Euler and URANS equations. Modelled and simulated transfer functions are

then compared in Section 5. The role of viscosity in scattering and generation of

acoustic waves is discussed for both approaches and the accuracy and limitations

of the model are outlined, before providing conclusions in Section 6.120
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2. Planar acoustic waves in straight duct

Both low-order modelling and numerical simulations require the separation

of upstream and downstream travelling acoustic waves in ducts of constant ra-

dius upstream and downstream of a nozzle in order to evaluate the transfer

functions of the system. This separation is straightforward for one-dimensional125

flows where the acoustic characteristic waves are obtained with the Riemann in-

variants. In this section, the expression of the Riemann invariants is extended to

the case of two-dimensional duct flows with simplifying hypotheses. The mean

flow is assumed to be axisymmetric, oriented in the x direction and invariant

with respect to this coordinate. Tangential velocity is neglected (non-swirling130

flow). Continuity and axial momentum equations write, in cylindrical coordi-

nates

∂ρ

∂t
+
∂ρux
∂x

+
∂ρur
∂r

+
ρur
r

= 0 (1)

∂ux
∂t

+ ux
∂ux
∂x

+ ur
∂ux
∂r

= −1

ρ

∂p

∂x
(2)

where ρ, ux, ur, p, t, x and r stand respectively for the density, axial and radial

velocities, pressure, time and axial and radial coordinates. The flow variables

are then decomposed as a sum of their steady state and perturbation, p = p0+p′,135

etc. Perturbations are assumed to be linear and of acoustic nature only with

planar acoustic waves, i.e. ∂p′/∂r = 0, ∂u′x/∂r = 0 and u′r = 0. Noticing that

mean flow invariance with respect to x coordinate imply u0r = 0, the equations

above reduce to

∂p′

∂t
+ ρ0c

2
0

∂u′x
∂x

+ u0x
∂p′

∂x
= 0 (3)

∂u′x
∂t

+ u0x
∂u′x
∂x

= − 1

ρ0

∂p′

∂x
(4)

with c0 =
√
γp0/ρ0 the mean sound velocity. Multiplying Eq. (4) by ±ρ0c0

and after addition of Eq. (3), it comes

∂

∂t
(p′ ± ρ0u0u′x) + (u0x ± c0)

∂

∂x
(p′ ± ρ0u0u′x) = 0 (5)
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Equation (5) corresponds to the propagation equation of the fluctuation p′ ±140

ρ0c0u
′
x at the velocity u0x± c0. In the practical configurations considered here-

after the mean flow may vary slowly along the axial direction, the derivation

above is therefore not exact but it is considered to be a good approximation.

The classical 1D impedance relations therefore remain accurate even for 2D duct

flows and the non-dimensional form of the acoustic waves inside the duct may145

write

P± =
1

2

(
p′

γp0
± ρ0c0
γp0

u′x

)
(6)

where the overlined quantities (·) are reduced to 1D quantities using Eq. (7),

with A the duct section. It is worth mentioning that p′ = p′ and u′x = u′x for

planar acoustic waves.

f =
1

A

∫
A

fdA (7)

3. 2D model

In this section, the two-dimensional model proposed by Emmanuelli et al.

[25] for Euler flows is extended to include viscosity effects. This model is based

on the mass conservation and axial momentum equations. Mass conservation150

is not impacted by viscosity, which only appears in the momentum equation.

The derivation of the filtered momentum equation in cylindrical coordinates is

detailed in Appendix A and takes a similar form for URANS, LES and DNS. The

difference between these three numerical modelling methods lies in the value of

the viscosity. In DNS, all the physical scales are solved on the numerical grid155

with a proper time step and viscosity corresponds to the molecular viscosity µ.

In LES, small scale turbulence cannot be solved on the mesh and its associated

dissipation is modelled through an eddy viscosity coefficient µT , leading to an

effective viscosity µT+µ. Turbulence is completely modelled in URANS through

the eddy viscosity term, which exhibits values much larger than in LES. The160

kinetic energy per unit volume of the modelled fluctuations k also appears in

the momentum equation but it is often neglected [42].
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The model obeys the following hypotheses.

• The nozzle is oriented along the x axis and the fluid flows towards the

increasing x direction.165

• The flow variables can be separated between mean quantities and pertur-

bations.

• Geometry and flow fields are axisymmetric (no azimuthal variation) and

tangential velocity is nil.

• Pressure and velocity perturbations are of acoustic origin only. Vorticity170

is neglected.

• Acoustic perturbations are planar. No azimuthal variations exist due to

the axisymmetric hypothesis and radial modes are cut off by the ducts at

the frequencies considered.

• Perturbations are small and equations can be linearized.175

With these hypotheses, stochastic turbulence is not taken into account in the

perturbed flow field. The interaction of this stochastic turbulence with the fluc-

tuations considered in the model can only be represented through its numeri-

cal modelling, namely through the eddy viscosity and modelled kinetic energy

terms, and it is therefore at least partially neglected in DNS and LES compared180

to URANS where these terms encompass all the flow turbulence. From this

point of view, application of the model with RANS flow fields could lead to a

better simulation of a key part of the physical phenomena.

3.1. Equations of the model

Viscosity does not affect the mass conservation equation, which is identical

to the inviscid case. It is obtained by application of a mass budget on a slice of

the nozzle between positions x and x+ dx and writes

∂ρ

∂t
+
∂ρux
∂x

= − 1

A
ρux

dA

dx
(8)
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where the symbols for Reynolds- and Favre-averaged quantities are dropped to

simplify the notations and the overlined quantities correspond to the 1D aver-

aging of Eq. (7). Following the hypotheses listed above, the axial momentum

equation reduces to (see Appendix A and Hoffman et al. [43])

∂ux
∂t

+ ux
∂ux
∂x

+ ur
∂ux
∂r

= −1

ρ

∂p

∂x
+

1

ρ

∂τfxx
∂x

+
1

ρ

∂τfxr
∂r

+
τfxr
ρr

(9)

where τf represents the effective viscous stress tensor and is the sum of the185

real viscous stress tensor and of the Favre-averaged Reynolds-stress tensor (in

RANS) or the subgrid-scale stress tensor (in LES) [42]. Its components write

τfxx = 2 (µT + µ)

(
∂ux
∂x
− 1

3

(
~∇ · ~u

))
− 2

3
ρk (10)

τfxr = (µT + µ)

(
∂ux
∂r

+
∂ur
∂x

)
(11)

Equation (8)-(9) are linearized considering small amplitude perturbations and

assuming that µ and µT do not depend on flow fluctuations. Density pertur-

bations are substituted with entropy fluctuations using the linearized entropy190

relation s′/cp = p′/γp0 − ρ′/ρ0, with cp the heat capacity at constant pres-

sure, to express the linearized mass and axial momentum equations as functions

of pressure, velocity and entropy fluctuations. Temporal derivatives are then

dropped considering a harmonic regime where perturbations are expressed fol-

lowing Eqs. (12)-(14).195

u′x(x, t) = Re
[
û(x)eiωt

]
(12)

p′(x, t) = Re
[
p̂(x)eiωt

]
(13)

s′

cp
(x, t) = Re

[
σ̂(x)eiωt

]
(14)

To end, the momentum equation is spatially averaged over the nozzle cross-

section following Eq. (7). Noticing that p′ = p′ and u′ = u′ considering the

hypotheses of the model, the equations finally reduce to ordinary differential

equations over velocity and pressure fluctuations as functions of the axial posi-

tion and write(
A

(
1

c20

)
iω +

d

dx

[
A

(
u0x
c20

)])
p̂+

[
A

(
u0x
c20

)]
dp̂

dx
+

dAρ0
dx

û+Aρ0
dû

dx

9



=
d

dx

[
A(ρ0u0x) σ̂

]
+Aiωρ0σ̂ (15)

(
iω +

(
∂u0x
∂x

))
û+

(
u0x −

4

3ρ0

∂ (µT + µ)

∂x

)
∂û

∂x
−
(

4

3ρ0
(µT + µ)

)
∂2û

∂x2

+

(
u0x
γp0

∂u0x
∂x

+
u0r
γp0

∂u0x
∂r

+
2

3ρ0

∂

∂x

(
k

c20

))
p̂+

(
1

ρ0

(
1 +

2

3

k

c20

))
∂p̂

∂x

=

(
u0x

∂u0x
∂x

+ u0r
∂u0x
∂r

)
σ̂ +

2

3ρ0

∂ (ρ0kσ̂)

∂x
(16)

where γ = cp/cv is the adiabatic coefficient and cv is the heat capacity at con-

stant volume. From Eq. (16) the influence of viscosity on combustion noise

appears to be twofold. On the left-hand-side, terms combining viscosity and

pressure and velocity fluctuations represent the interaction between the turbu-200

lent, viscous mean flow and acoustic fluctuations and lead to acoustic scattering.

An additional contribution is present through the interaction between acoustic

perturbations and the mean flow field, which integrates viscous effects such as

boundary layers. This contribution of the viscous mean flow fields is also present

on the right-hand-side terms of the equation, which corresponds to the entropy205

noise source terms. These RHS terms also exhibit an additional term compared

to the inviscid configuration, which models the interaction between turbulent

kinetic energy and entropy as a supplementary noise production mechanism.

As pointed out previously, this contribution of viscous terms in noise scattering

and noise generation is more important with RANS flow fields than with time-210

averaged LES fields because of the larger value of the eddy viscosity term and

modelled turbulent kinetic energy. This is all the more true in comparison to

DNS where both terms vanish.

3.2. Numerical discretisation

For numerical resolution of the system, the geometry is discretised with n215

nodes along the axial direction, corresponding to n − 1 elements at the centre
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Figure 1: Numerical discretisation of the nozzle.

of which the mass and momentum equations are evaluated. The discretisation

of the system is illustrated in Fig. 1. Perturbed quantities and their first- and

second-order axial derivatives at the centre of each element k + 1/2, bounded

by nodes k and k + 1, are provided by Eqs (17)-(19).220

fk+1/2 =
fk+1 + fk

2
(17)

d

dx
fk+1/2 =

fk+1 − fk
∆xk+1/2

(18)

d2

dx2
fk+1/2 =

fk+2 − fk
∆xk+1/2

(
∆xk+1/2 + ∆xk+3/2

) − fk+1 − fk−1
∆xk+1/2

(
∆xk+1/2 + ∆xk−1/2

)
(19)

First-order derivatives correspond to a first-order Taylor expansion of the flow

quantity at the centre of the nozzle, with ∆xk+1/2 the size of the element k +

1/2, and second-order derivatives are obtained by two successive applications

of the first-order derivation operator. Second-order derivatives at the domain

boundaries are evaluated with the centred operator of Eq. (19) considering225

f0 = f1 and ∆x1/2 = 0 at the inlet and fn+1 = fn and ∆xn+1/2 = 0 at the

outlet.

The discretised mass conservation and axial momentum equations in each
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element k + 1/2 write

λ1k+1/2p̂k + λ2k+1/2ûk

+λ3k+1/2p̂k+1 + λ4k+1/2ûk+1 = ŜCk+1/2 (20)

φ0k+1/2ûk−1 + φ1k+1/2p̂k + φ2k+1/2ûk

+φ3k+1/2p̂k+1 + φ4k+1/2ûk+1 + φ6k+1/2ûk+2 = ŜMk+1/2 (21)
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with230

λ1k+1/2 =
1

2

(
A

(
1

c20

)
iω +

d

dx

[
A

(
u0x
c20

)])
− A

∆xk+1/2

(
u0x
c20

)
(22)

λ2k+1/2 =
1

2

dAρ0
dx

− Aρ0
∆xk+1/2

(23)

λ3k+1/2 =
1

2

(
A

(
1

c20

)
iω +

d

dx

[
A

(
u0x
c20

)])
+

A

∆xk+1/2

(
u0x
c20

)
(24)

λ4k+1/2 =
1

2

dAρ0
dx

+
Aρ0

∆xk+1/2
(25)

φ0k+1/2 = −4

3

1

∆xk+1/2

(
∆xk+1/2 + ∆xk−1/2

)( 1

ρ0
(µT + µ)

)
(26)

φ1k+1/2 =
1

2

((
u0x
γp0

∂u0x
∂x

)
+

(
u0r
γp0

∂u0x
∂r

)
+

2

3

(
1

ρ0

∂

∂x

[
k

c20

]))

− 1

∆xk+1/2

(
1

ρ0

(
1 +

2

3

k

c20

))
(27)

φ2k+1/2 =
1

2

(
iω +

(
∂u0x
∂x

))
− 1

∆xk+1/2

(
u0x −

4

3

(
1

ρ0

∂ (µT + µ)

∂x

))

+
4

3

1

∆xk+1/2

(
∆xk+1/2 + ∆xk+3/2

)( 1

ρ0
(µT + µ)

)
(28)

φ3k+1/2 =
1

2

((
u0x
γp0

∂u0x
∂x

)
+

(
u0r
γp0

∂u0x
∂r

)
+

2

3

(
1

ρ0

∂

∂x

[
k

c20

]))

+
1

∆xk+1/2

(
1

ρ0

(
1 +

2

3

k

c20

))
(29)

φ4k+1/2 =
1

2

(
iω +

(
∂u0x
∂x

))
+

1

∆xk+1/2

(
u0x −

4

3

(
1

ρ0

∂ (µT + µ)

∂x

))

+
4

3

1

∆xk+1/2

(
∆xk+1/2 + ∆xk−1/2

)( 1

ρ0
(µT + µ)

)
(30)

φ6k+1/2 = −4

3

1

∆xk+1/2

(
∆xk+1/2 + ∆xk+3/2

)( 1

ρ0
(µT + µ)

)
(31)

ŜCk+1/2 =
d

dx

[
A(ρ0u0xσ̂)

]
+Aiω(ρ0σ̂) (32)

ŜMk+1/2 =

([
u0x

∂u0x
∂x

+ u0r
∂u0x
∂r

]
σ̂

)
+

2

3

(
1

ρ0

∂ (ρ0kσ̂)

∂x

)
(33)

In these expressions the flow variables are evaluated inside the element k+ 1/2,

which is not explicitly written for the sake of clarity. The second term of ŜMk+1/2
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includes the axial derivative of a product between the mean flow variables and

the entropy fluctuation. Depending on how the entropy fluctuation is computed

this derivative may not be easily evaluable (see for instance the method proposed

in §3.4). This expression can be approximated by Eq. (34), whose derivation

is detailed in Appendix B, and which is valid for small mean flow angles with

respect to the axial direction.

ŜMk+1/2 '
([
u0x

∂u0x
∂x

+ u0r
∂u0x
∂r

]
σ̂

)
+

2

3

([
− iωk

u0

∂l

∂x
+

1

ρ0

∂ (ρ0k)

∂x

]
σ̂

)
(34)

In this equation, l stands for the curvilinear abscissa along the streamlines.

3.3. Boundary conditions

The evaluation of mass and momentum equations inside the n− 1 axial ele-

ments discretising the geometry provides 2n−2 equations, whereas 2n unknowns

corresponding to û and p̂ at the n nodes need to be determined. The last two235

equations are provided by the inlet and outlet boundary conditions. For the

sake of simplicity, it is considered in the present study that there is no acoustic

reflection on the boundaries so that the acoustic waves entering the domain

correspond to the imposed acoustic forcings. Using the expressions of the Rie-

mann invariants derived in §2, Eq. (6), this translates in the numerical domain240

to Eqs (35)-(36), where P+
1,f and P−n,f correspond respectively to the upstream

and downstream acoustic forcings imposed by the user. In these equations, the

subscripts (·)1 and (·)n indicate that the flow quantities are evaluated at nodes

1 and n.

P̂+
1 = P̂+

1,f =
1

2

(
p̂

γp0
+
ρ0c0
γp0

û

)
1

(35)

P̂−n = P̂−n,f =
1

2

(
p̂

γp0
− ρ0c0
γp0

û

)
n

(36)

3.4. Modelling of the entropy fluctuations245

The last part of the modelling concerns the evaluation of the entropy fluctu-

ations inside the nozzle. For the subsonic flows considered here, entropy is not

affected by the acoustics and can be computed prior to the resolution of Eqs.
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(15)-(16). This is however not always the case, e.g. when entropy fluctuations

interact with a shock located in the diffuser. In such cases, entropy fluctuations250

are modified through the shock and need to be computed jointly with acoustics,

see for instance Huet et al. [26].

Several possibilities can be considered for the computation of the entropy

fluctuations, depending on the level of modelling desired. The numerical resolu-

tion of the convection equation for entropy may be considered when effects such255

as thermal diffusion or turbulent mixing need to be captured. In this section,

a simplified approach corresponding to the pure convection of entropy is used.

This method proved to reproduce shear dispersion of entropy with an excellent

agreement when Euler equations are considered [25] and it is reasonable to as-

sume thermal diffusion is negligible when pressurized combustors are considered260

[36, 37].

The method is based on streamlines, constructed from the mean flow field.

These streamlines are used to define streamtubes, in which the flow is assumed

to be radially uniform. This hypothesis is verified if a sufficient number of

streamtubes is considered, i.e. if their height is sufficiently small. Entropy

fluctuations being purely convected by the flow, they remain confined in the

same streamtube throughout the nozzle. Under these assumptions, entropy can

be expressed analytically at every position inside the nozzle for each streamtube

and writes in the harmonic regime [25, 26]

σ̂(l) = σ̂(l = 0) exp

(
−iω

∫ l

0

dζ

u0(ζ)

)
(37)

with l the curvilinear abscissa along the streamtube, σ̂(l = 0) the complex

amplitude of the entropy fluctuation at the domain inlet and u0 =
√
u20x + u20r

the mean flow velocity.

3.5. Equations in matrix form265

Combining Eqs (20)-(21) and Eqs. (35)-(36), the linear system to solve

writes in the matrix form as Eq. (38), that can be inverted numerically for

each frequency. There is a total of 2n + 4 unknowns in this equation because
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ghost nodes and associated relations have been added at nozzle boundaries to

allow the use of the centred second-order derivative operator for all geometry270

elements, as discussed in §3.2. Transfer functions are then reconstructed from

the computed pressure and velocity perturbations at both extremities using Eq.

(6). This numerical resolution is performed in the present study with the in-

house code CHEOPS-Nozzle (non-compact harmonic entropy noise predictions)

[25, 26].275
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(

1
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)
1

(
ρ0c0
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1
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..
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..

..

P̂−n,f

0

0


(38)

4. Numerical simulations

4.1. Geometry and operating conditions

The geometry considered is the converging-diverging DISCERN nozzle de-

signed in the framework of the ANR DISCERN project to investigate indirect

combustion noise. It was previously used for the validation of the inviscid ver-280

sion of the 2D model [25, 26] and is illustrated below in Fig 2. The nozzle is

185 mm long (100 mm for the convergent and 85 mm for the divergent) and

its radius varies from 29.5 mm at the inlet to 6.943 mm at the outlet, with a
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minimum of 5.5 mm at the throat. It is complemented by 100 mm long ducts

of constant section at both extremities to achieve a separation of the acoustic285

waves in the numerical simulations, as detailed in §4.4.

The operating point considered is very similar to the one used by Emmanuelli

et al. [25], with the exception of the back pressure set to 30 bar. This high pres-

sure value is representative of the pressure inside typical combustion chamber.

Inlet temperature and Mach number are 1300 K and 0.0179. For the Euler290

configuration, it leads to a Mach number of 0.658 at nozzle throat and 0.344 at

nozzle exit. To end, the fluid considered is air with constant heat capacities and

γ = 1.315.

4.2. Methodology

Numerical simulations are used to determine the noise scattered (acoustic295

transfer functions) or generated by the acceleration of entropy spots (thermo-

acoustic transfer functions) through the nozzle with both inviscid and viscous

flow fields. Inviscid flow simulations correspond to the resolution of the Euler

equations whereas k − ω SST URANS equations are considered when viscosity

is taken into account. Simulations are 2D axisymmetric and are performed300

with the unstructured flow solver CEDRE from ONERA [44]. The numerical

grid used is the same for Euler and URANS simulations and is identical to

that previously used by Emmanuelli et al. [25]. Nozzle walls are discretised

with 30 layers of quadrilateral cells and ensure a flow resolution with y+ = 1

at the walls in RANS, whereas the rest of the domain is filled with triangles305

sufficiently small to ensure that mean flow gradients are correctly captured

and numerical dissipation of acoustic and entropy waves is negligible for the

frequencies considered. The mesh is composed of 1,800,000 elements. Spatial

derivatives are evaluated with a second-order space scheme and the implicit

second-order Runge-Kutta scheme is used in time. The time step is chosen to310

ensure a CFL criterion below 1 in most of the numerical domain.

Three simulations are performed for both inviscid and viscous configurations,

corresponding to entropy and acoustic forcings from the upstream limit and

17



acoustic forcing from the downstream limit. Acoustic and entropy waves are

injected through the boundaries and non-reflective boundary conditions are used315

to avoid contamination of the numerical domain with spurious acoustic waves

[45]. Forcing frequencies are set from 100 Hz to 1000 Hz with a frequency

step of 100 Hz. The amplitudes of the injected perturbations are chosen to be

sufficiently small to remain linear and the phase of each harmonic is optimised

to ensure the signal-to-noise ratio is large for each forcing frequency [46, 47].320

Numerical dissipation is evaluated by comparing the amplitude of the in-

jected entropy fluctuation between the inlet and the outlet of the domain in

the case of the Euler simulation. A maximum attenuation of 2% is observed at

1000 Hz. It is considered to be negligible, which is supported by the excellent

agreement between the computed Euler transfer functions with those previously325

obtained by Emmanuelli et al. for the same configuration with CAA [25]. The

attenuation of the entropy fluctuations is also negligible for the URANS sim-

ulations. Thermal diffusion is negligible due to the very high pressure level

[36, 37] and turbulent thermal diffusion has been removed by setting the tur-

bulent Prandtl number to 107. This removal of the turbulent thermal diffusion330

is supported by the experimental and numerical observations of Morgans et al.

[32] and Giusti et al. [33]: for the frequencies considered in the present study,

mean-flow shear dispersion (i.e. convection by the mean flow) is the dominant

contributor in the evolution of entropy waves whereas turbulent mixing and dif-

fusion are of lower importance. These results were obtained for straight ducts335

but it is reasonable to consider they remain valid for nozzle flows. In addition,

an accurate evaluation of the turbulent thermal diffusion would require an LES

with turbulence representative of the exhaust of a combustion chamber, includ-

ing flame-induced and wall-cooling turbulence, which is out of the scope of the

present study. Its suppression moreover ensures the entropy fluctuations, and340

hence their associated noise sources, are similar in both inviscid and viscous

simulations. Having different entropy perturbation profiles between Euler and

URANS simulations would complicate the evaluation of the viscosity effect on

the thermo-acoustic transfer functions of the nozzle.
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4.3. Mean flow fields345

When the inviscid equations are solved the flow is uniform in the upstream

and downstream ducts; therefore uniform static temperature and velocity are

imposed on the inlet boundary and uniform static pressure is imposed on the

outlet boundary. For the viscous simulation, on the contrary, inlet and outlet

profiles need to reproduce the boundary layer that develops on the duct wall.350

In the present simulation, the boundary layer velocity profile is defined by Eqs.

(39)-(40), issued from Bogey et al. [48] and corresponding to a polynomial

approximation of a laminar boundary layer with a Blasius profile

ux(rw) = U0
rw
δB

[
2− 2

(
rw
δB

)2

+

(
rw
δB

)3
]

if rw < δB (39)

ux(rw) = U0 if rw ≥ δB (40)

where U0 is the flow velocity outside the boundary layer (same velocity as in

the Euler simulation), rw the distance to the wall and δB the boundary layer

thickness. Following the work of Bogey et al. [48], the boundary layer thickness

is set to 6.4% of the duct diameter, δB = 3.8 mm. The profile of the turbulent

kinetic energy is deduced from the velocity profile considering an isotropic ho-

mogeneous turbulence with the turbulence level being 5% of the mean velocity

k = 3/2× (0.05× ux)2 (41)

and ω is obtained from k using the relation

ω =

√
k

l
(42)

where l is the turbulent length scale, l = 0.038D with D the duct diameter. To

end, the temperature variation is evaluated using the adiabatic relation:

Tw = T0

(
1 +

γ − 1

2
M2

0

)
(43)

with Tw the temperature at the wall and T0 and M0 the temperature and Mach

number outside of the boundary layer. Temperature variations below 0.1K are355
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(a)

(b)

Figure 2: Mean Mach number evolution along the nozzle for RANS (top) and Euler (bottom)

simulations. (a) global view, (b) zoom on the downstream duct

found (in comparison to the mean temperature of 1300 K), so that a uniform

temperature profile is imposed at the inlet.

At the downstream end, the boundary layer develops freely and is not known

a priori, therefore the pressure profile cannot be imposed. Instead, the section-

averaged pressure is imposed on the exit surface, so that pressure can locally360

vary along the radial direction to reproduce the boundary layer profile.

The use of these boundary conditions leads to slightly different mass flow

rates between the two simulations. On the one hand, inlet pressure and hence

density is expected to be higher for the RANS simulation because of the pres-

sure loss along the nozzle, which tends to increase its mass flow rate. On the365

other hand, the mass flow rate is decreased in the viscous simulation due to the
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presence of the boundary layer. The combination of both effects leads to a de-

creased mass flow rate of 4.9 % for the RANS compared to the Euler simulation

(0.2975 kg/s for Euler and 0.2829 kg/s for RANS)

The evolution of the Mach number along the nozzle is illustrated in Fig. 2370

for both simulations. The Mach number barely depends on the radial position

for the Euler simulation. A similar observation is made for the RANS upstream

of the throat, where the boundary layer is very thin. It nevertheless broadens

quickly in the divergent part and is quite thick in the downstream duct, leading

to large mean flow variations along the radius as illustrated in Fig. 2 (b). A375

consequence of this thick boundary layer is the much larger Mach number on

the nozzle axis in RANS in the downstream region, where it rises to 0.40 in

comparison to 0.34 in the Euler simulation.

(a)

(b)

Figure 3: Axial evolution of section-averaged (a) Mach number and (b) pressure. —◦ CFD

Euler; —N CFD RANS.
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More detailed comparisons of the Mach number evolution along the nozzle

are provided in Fig. 3, which reproduces the section-averaged Mach number and380

pressure evolution as a function of the axial position. As indicated previously,

the Euler flow is accelerated from Mach 0.0179 at the inlet to 0.658 at the throat,

then decelerated towards 0.344 at the exit. Due to the boundary layer, the

section-averaged Mach number is slightly lower in the upstream duct (0.0165)

for the RANS, which explains the lower values also observed at the throat (0.585)385

and at the exit (0.327). The pressure loss due to viscosity is illustrated in Fig.

3 (b) and leads to a pressure variation of 0.9 bar between the two simulations

at the nozzle inlet.

Figure 4: Evolution of the viscosity ratio µT /µ along the nozzle for RANS simulation.

The viscosity ratio µT /µ obtained with the RANS simulation is shown in

Fig. 4. As mentioned during the derivation of the model, large values of this ratio390

correspond to zones where acoustic perturbations are scattered by modelled

turbulence. Inside the nozzle, turbulent viscosity remains limited and reaches a

maximum value of about 100 times the physical viscosity, with the exception of

the boundary layer at the very end of the nozzle where it rises very locally to

400. Larger values are observed in the core of the upstream duct (µT /µ ∼ 300)395

and in the boundary layer of the downstream duct (µT /µ ≤ 700). If present,

the scattering of acoustic waves by modelled turbulence is therefore expected to

occur essentially in the upstream and downstream ducts.

Finally, the evolution of the modelled turbulent kinetic energy and its axial

gradient are reproduced in Fig. 5. These two quantities are of interest because400
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(a)

(b)

Figure 5: Evolution of (a) the turbulent kinetic energy k and (b) its axial gradient inside the

nozzle for RANS simulation.

they drive the intensity of the viscous entropy noise source term, see Eq. (34).

Turbulent kinetic energy is low in most of the domain and its largest value

is observed in the boundary layer at the end of the divergent where its axial

derivative is also high. Additionally, the axial gradient presents large levels near

the wall and near the axis of the convergent part. Entropy noise source terms405

associated with viscous effects are thus expected to be observed in these two

regions of the flow.

4.4. Numerical transfer functions

Once the mean flows are computed, acoustic or entropic fluctuations are

injected through the boundaries. Noise is scattered or generated inside the410

nozzle and the resulting waves are used to construct the numerical transfer

functions of the nozzle. Three different forcings are considered: acoustic from
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the inlet, acoustic from the outlet and entropic from the inlet. These forcings are

achieved by superimposing perturbations to the imposed mean flow quantities.

It is chosen here to force the nozzle with plane waves. The shear layer in RANS415

nevertheless produces a strong shearing of the entropy fluctuation, which is

quickly dissipated numerically close to the wall. To allow fair comparisons

between RANS and Euler simulations, the inlet entropy fluctuation is set to 0

near the nozzle wall (r > 0.0265 m) for all simulations. It is worth noting such

attenuation of the entropy fluctuations may be expected experimentally in the420

boundary layers through shear dispersion and turbulent mixing.

Construction of the transfer functions requires the evaluation of entropy

and acoustic waves upstream and downstream of the nozzle. This wave sep-

aration process is carried out in the ducts. The planar inlet entropy wave is

obtained from its definition, σ = s′/cp, and acoustic waves are computed us-425

ing the Riemann invariants, see Eq. (6). This definition of the acoustic waves

is theoretically valid when all fluctuations are of acoustic origin only, which is

not the case here. Indeed, vorticity fluctuations may be generated through the

nozzle [24] and produce additional velocity perturbations in the downstream

duct. Such perturbations are removed through a characteristic filtering of the430

acoustic waves in each duct, performed along 9 evenly located stations [49].

In addition, despite the use of non-reflective boundary conditions, small spu-

rious acoustic reflections may occur on the domain boundaries. To get rid of

these reflections, non-reflective post-processing is performed through the writ-

ing of a linear system where the unknowns are the nozzle transfer functions and435

the parameters are the upstream and downstream computed waves. Details of

this post-processing method are given in Emmanuelli et al. [25]. This post-

processing proved to be successful in previous studies performed at ONERA

[45]. Simulated transfer functions are illustrated in Figs. 6-7 and Fig. 12 and

are discussed in the next section, along with the model predictions.440
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Label Main characteristics

CFD Euler

• inviscid flow simulation

• 2D flow and perturbations

CFD RANS

• viscous flow simulation

• 2D flow and perturbations

Quasi-1D model

• inviscid modelling

• quasi-1D (radius-independant)

mean flow and perturbations

Inviscid 2D model with Euler mean flow

• inviscid modelling

• 2D mean flow

• 2D entropy waves, 1D acoustic

waves

Viscous 2D model with RANS mean

flow

• viscous modelling

• 2D mean flow

• 2D entropy waves, 1D acoustic

waves

Inviscid 2D model with RANS mean

flow

• partially viscous modelling

(viscous mean flow, inviscid per-

turbations)

• 2D mean flow

• 2D entropy waves, 1D acoustic

waves

Table 1: Nomenclature and main characteristics of the different methods used to evaluate the

transfer functions.
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5. Comparisons between simulated and modelled transfer functions

The influence of viscosity on acoustic and thermo-acoustic nozzle transfer

functions is evaluated in this section through numerical simulations and analyt-

ical modelling. The different models used in the rest of the paper are summarised

in Table 1 where their main characteristics are recalled. These characteristics445

are described in more detail hereafter.

The quasi-1D model refers to the quasi-1D assumption, where the flow is

inviscid and all variables are uniform along the radial direction (spatial depen-

dance in the x direction only) [18, 20, 22]. With these assumptions, acoustic

and entropy waves are planar and vorticity perturbations are nil. For the sake450

of simplicity, in the present study the quasi-1D transfer functions are computed

with the 2D model. The quasi-1D mean flow is provided analytically through

mass conservation and the 1D character of the entropy wave is ensured by the

use of a unique streamtube that extends radially from nozzle axis to nozzle wall.

The viscous 2D model is the model detailed in Section 3 whereas the inviscid455

2D model corresponds to the inviscid formulation of the model, obtained by

zeroing all viscous terms (µ = µT = 0 kg/m/s and k = 0 m2/s2) in Eqs (22)-

(33). The inviscid 2D model is identical to the one presented in Emmanuelli et

al. [25]. In the viscous 2D model with RANS mean flow, viscosity is accounted

for both in the mean flow evaluation and in the propagation of the perturbations,460

whereas all viscous effects are neglected using the inviscid 2D model with Euler

mean flow. Midway between these two models, the inviscid 2D model with

RANS mean flow accounts for viscosity only through the mean flow for the

convection of entropy and noise-associated sources, as well as for the scattering

of the acoustic waves.465

With the 2D models, Both mean flow and entropy fluctuations depend on

the radial position and are hence 2D, whereas acoustic waves are assumed to be

1D. In addition, it is worth recalling vorticity is neglected in these models. To

end with 2D modelling, a convergence study was conducted and demonstrated

that the results were stable if at least 100 streamtubes were considered. This470
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value is used throughout the rest of the document.

5.1. Acoustic forcing

(a) (b)

(c) (d)

Figure 6: Computed and modelled nozzle transfer functions with upstream acoustic forcing

P+
1 . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, ampli-

tude, (d) downstream wave, phase. ◦ CFD Euler; N CFD RANS; �— quasi-1D model; �– –

inviscid 2D model with Euler mean flow; I– · · viscous 2D model with RANS mean flow; J–

· inviscid 2D model with RANS mean flow.

The transfer functions simulated with CFD Euler and CFD RANS ap-

proaches are reproduced in Fig. 6 for the upstream acoustic forcing P+
1 . Several

modelled transfer functions are also reproduced in the figure. Modelled trans-475

fer functions with Euler flow present excellent agreement with the associated

simulation. They correspond to the results of Emmanuelli et al. [25] and their

agreement will not be discussed further. Simulated transfer functions are slightly

modified when viscosity is considered. Specifically, the reflected acoustic wave

[P−1 /P
+
1 ] is slightly lowered in the medium to high frequency range whereas it is480

weakly increased at low frequencies. Similar modifications have been observed

numerically by Becerril for the EWG nozzle using 3D LES and Euler simulations
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[34]. This medium- and high-frequency noise decrease is well captured by the

model, which nevertheless fails to reproduce the slight low-frequency increase.

The solutions obtained with and without considering viscous terms in the model485

display almost identical results, which indicates that the modification of the re-

flection coefficient is driven by the mean flow field, in particular the presence

of the boundary layer, and not by viscous effects on the perturbations. Obser-

vations are very similar for the transmitted wave [P+
n /P

+
1 ]. Numerically, the

transmission coefficient is increased for high frequencies and decreased for low490

frequencies with viscosity. The high-frequency increase is correctly captured

by the model but not the low-frequency reduction. Taking into account the

viscous terms in the model –viscous 2D model with RANS mean flow– slightly

improves the comparison with the numerical simulation in regard to the inviscid

2D model with RANS mean flow fields, but differences are very low. Concerning495

the phase of the transfer functions, an excellent agreement is observed between

both simulations and all the modelled reflection and transmission coefficients,

which indicates that the presence of the boundary layer does not affect the

propagation velocity of the acoustic waves.

Next, the transfer functions corresponding to the downstream acoustic forc-500

ing P−n are reproduced in Fig. 7. As previously observed with the upstream

acoustic forcing, computed (CFD) transmission and reflection coefficients are

very similar when considering viscosity or not. In the present case, for both

[P−1 /P
−
n ] and [P+

n /P
−
n ] this leads to similar transfer functions at high-frequency

and to amplitude reductions in the low-frequency range when viscosity is in-505

cluded. This is again globally in agreement with the findings of Becerril [34].

The noise reduction is qualitatively reproduced by the low-order model when

viscous terms are included, despite being underestimated. With the quasi-1D

model all the fluctuations are of acoustic origin and no dissipation occurs, so

that all the incident acoustic energy is either transmitted or reflected by the510

nozzle [29]. The reduced amplitudes of the simulated transfer functions at

low-frequencies with CFD RANS indicate that part of the acoustic energy is

dissipated by viscosity, a behaviour captured –at least qualitatively– by the
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(a) (b)

(c) (d)

Figure 7: Computed and modelled nozzle transfer functions with downstream acoustic forc-

ing P−
n . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave,

amplitude, (d) downstream wave, phase. See Fig. 6 for legend.

model. Concerning the medium- and high-frequency parts of the transfer func-

tions, they are correctly reproduced for the transmission coefficient but slightly515

overpredicted for the reflection one. The agreement is nevertheless globally satis-

factory. Differences are observed in the phase of the simulated transfer functions

between CFD Euler and RANS. This indicates small variations in acoustic prop-

agation velocity in these cases, but the discrepancies remain small. In addition,

these phase variations are correctly captured by the model.520

To understand the origin of the slight discrepancies between the numerical

simulations and the model with a viscous mean flow field, Fig. 8 reproduces

the pressure fluctuation along the downstream part of the nozzle for a harmonic

downstream acoustic forcing P−n at 400 Hz. For the inviscid configuration, the

pressure fluctuation does not vary with the radial position, as assumed in the525

model. Planar pressure fluctuations are also observed in the RANS simulations

near the nozzle throat where the boundary layer is thin, but radial variations

29



Figure 8: Simulated pressure fluctuation inside the nozzle with a downstream harmonic acous-

tic forcing at 400 Hz. Isolines are added to help comparison.

become more and more visible towards the end of the nozzle as the boundary

layer thickens. These radial fluctuations cannot be captured by the model by

definition and may explain the differences observed with the simulations. This530

distortion however remains sufficiently low for the separation of acoustic waves

to remain valid under the planar acoustic wave assumption. In addition, it

is worth noting it has been verified that vorticity remains negligible in RANS

simulations and does not contribute to noise scattering.

To summarize the results obtained so far, numerical simulations proved vis-535

cosity does not strongly modify the scattering of acoustic waves through the

nozzle. The key element to capture viscous effects with the model is to take

into account the boundary layer of the mean flow field. Eddy viscosity only

adds a minor contribution in modelling noise scattering, but its inclusion in the

model reduces the discrepancies between the numerical and predicted transfer540

functions. In the last part of the paper, thermo-acoustic transfer functions of

the nozzle corresponding to the noise generated by the acceleration of entropy

fluctuations are investigated. These transfer functions combine the generation

of entropy noise inside the nozzle and its scattering by the mean flow.
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Figure 9: 2D modelled entropy fluctuation at 800 Hz with Euler mean flow without (top) and

with (bottom) entropy fluctuation near the wall.

5.2. Entropy forcing545

5.2.1. Influence of the shape of the entropy wave on entropy noise generation

In a previous study, Emmanuelli et al. [25] demonstrated the capacity of

the inviscid 2D model with Euler mean flow to predict the entropy transfer

functions of the nozzle with an excellent agreement for planar inlet entropy

waves. In the present study, nevertheless, such planar waves are not considered550

because the near-wall entropy fluctuations are dissipated in the boundary layer

in the viscous simulation (CFD RANS), which would make comparisons between

CFD RANS and viscous 2D model with RANS mean flow unreliable. Prior to

discussing viscous effects on entropy noise generation, the influence of the shape

of the entropy wave on noise generation is hence discussed in this section for555

inviscid flows. The variation in the shape of the entropy wave corresponds to

the absence of entropy fluctuations near the wall, as illustrated in Fig. 9.

Simulated and modelled transfer functions are reproduced in Fig. 10. It is

recalled that the transfer functions correspond to the generated acoustic waves

P−1 and P+
n (one dimensional waves in the upstream and downstream ducts)560

divided by the section-averaged entropy fluctuations σ1. In the following, the

overbar is dropped in the definition of the transfer functions for the sake of sim-

plicity. First, it is observed in Fig. 10 that all simulated and modelled transfer

functions collapse in the compact limit, even if the one-dimensional wave as-
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(a) (b)

(c) (d)

Figure 10: Computed and modelled inviscid nozzle transfer functions with entropy forcing σ1.

(a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude,

(d) downstream wave, phase. ◦ CFD Euler without entropy fluctuation near the wall; � CFD

Euler with entropy fluctuation near the wall; �— quasi-1D model; �– – 2D model (Euler

mean flow) without entropy fluctuation near the wall; H– · 2D model (Euler mean flow) with

entropy fluctuation near the wall.

sumption is not always verified for the entropy wave. Second, the quasi-1D565

low-order modelling strongly overestimates both numerical transfer functions

for medium and large frequencies. This result has already been observed by

Emmanuelli et al. [25] and is the consequence of the shear dispersion of the

entropy wave through the nozzle, all the more important as frequency increases,

and not reproduced with the quasi-1D assumption. When shear dispersion is570

taken into account in the modelling (2D model with entropy fluctuation near

the wall), excellent agreement is obtained with the corresponding Euler simu-

lation. It is also worth mentioning that no discrepancy is noticed here between

the model and the simulation in the high frequency range for [P−1 /σ1], on the

contrary to what was previously observed by Emmanuelli et al. This discrep-575

ancy hence cannot come from the possible contribution of vorticity, as evoked
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in their article, but is due to numerical errors in the CAA approach used in the

previous study, amplified by the low noise levels at these frequencies.

Numerically, the absence of entropy fluctuations near the wall (CFD Euler

without entropy fluctuation near the wall) leads to an increase of the gener-580

ated noise in both upstream and downstream directions for medium and high-

frequency noise, whereas the phases of the acoustic waves do not significantly

vary. These results are very well captured by the 2D model, which reproduces

the thermo-acoustic transfer functions with an excellent agreement both in am-

plitude and phase. In the model, the entropy noise source terms are related to585

the section-averaged value of the entropy fluctuation, see Eqs. (32)-(33). As

illustrated in Fig. 9, the shear dispersion of the entropy wave is very impor-

tant inside the nozzle and leads to significant radial variations of the entropy

fluctuations. Due to a compensation between positive and negative entropy fluc-

tuations, the section-averaged entropy fluctuation is much lower than its initial590

amplitude. This is particularly visible in the converging section of the nozzle.

When entropy fluctuations are removed near the nozzle wall, this compensation

is reduced and the entropy noise source term locally increases in comparison to

the case where the fluctuation is present up to the wall, thus leading to a more

important noise production. Physically, it corresponds to a lower decorrelation595

of the local entropy-related noise sources in the radial direction in comparison

to fully planar entropy waves. This phenomenon is very similar to that already

introduced to explain differences between the quasi-1D model (high correlation

along the radial direction) and the 2D model (low correlation).

5.2.2. Contribution of viscosity to entropy noise600

Before discussing the simulated and modelled thermo-acoustic transfer func-

tions, the entropy fluctuations obtained with CFD Euler and RANS approaches

for a harmonic forcing at 1000 Hz are reproduced in Fig. 11 (a). Simulated

entropy fluctuations are globally similar but two main differences may be com-

mented. First, the shear dispersion is slightly more visible near the wall for605

the URANS simulation, e.g. for x ∼ 100 mm, because this region corresponds

33



(a)

(b)

Figure 11: Entropy fluctuation at 1000 Hz with RANS (top) and Euler (bottom) mean flow

fields obtained by (a) numerical simulations and (b) 2D modelling.

to the external part of the boundary layer with decreased velocity compared

to the Euler simulation. Second, the entropy wave fronts are not in phase and

appear to be convected at a lower velocity in URANS, although the same ve-

locity is imposed outside of the boundary layer in both simulations . This is a610

consequence of the pressure loss. In the upstream duct, mean pressure slightly

decreases along the axial direction in the URANS simulation because of viscos-

ity. Due to the ideal gas law, and because temperature remains constant in

the duct, density grows as pressure drops, so that velocity also drops for mass

conservation purposes. These two effects are well reproduced by the 2D model615

and predicted entropy fluctuations along the nozzle collapse very well with the

simulated ones, as illustrated in Fig. 11 (b).

The simulated and modelled thermo-acoustic transfer functions are now re-
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(a) (b)

(c) (d)

Figure 12: Computed and modelled nozzle transfer functions with entropy forcing σ1. (a)

upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude, (d)

downstream wave, phase. See Fig. 6 for legend.

produced in Fig. 12. Using CFD, viscosity essentially reduces the amplitude of

the transfer functions, up to -30% (-3 dB) at 500 Hz. Small noise increase is620

also observed for the low frequencies as well as for the high frequencies. Such

low-frequency noise increase and medium-frequency noise reduction with viscous

mean flow fields have already been observed numerically by Becerril [34]. Low-

frequency noise increases for dimensionless convective wavelengths Λ = λσ/L

above 0.3, where λσ is the entropy wavelength in the upstream duct and L625

the nozzle length. It is therefore limited to frequencies close to the compact

limit (i.e. λσ � L) and, on the opposite, noise reduction occurs when non-

compactness effects become important. In addition, phases are quite close for

low frequencies but discrepancies rise as frequency increases. This is essentially

caused by the different convection velocities of the entropy fluctuations in the630

upstream duct, discussed above, and is globally well reproduced by the model.

For the models, the noise modifications with viscous flow are qualitatively
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well captured. The medium-frequency noise reduction and low- and high-

frequency noise increase are reproduced, even if the cross-over frequencies do

not collapse with the numerical data. The agreement is nevertheless not as635

good as for the inviscid case and discrepancies are particularly visible in the

low-frequency part of the transfer functions, over-estimated by the model. Of

particular interest, no significant differences are visible for the 2D modelled

transfer functions with RANS mean flow including or not the viscous terms in

the perturbed flow equations. As previously stated for acoustic transfer func-640

tions, this means the contribution of viscous terms in Eqs. (22)-(31) is negligible

for the propagation of the acoustic perturbations. It indicates in addition that

modelled turbulent kinetic energy, present in the entropy noise source term of

the momentum equation, Eq. (33), does not contribute in the generation of

entropy noise. From a practical point of view, using the inviscid 2D model with645

RANS mean flow fields leads to acceptable modelled transfer functions.

Several reasons can be envisaged to explain the discrepancies between viscous

numerical simulations and 2D modelled transfer functions with RANS mean

flow. First, it can be argued that entropy noise sources, in particular the ap-

proximated source term associated with viscosity in Eq. (34), are not accurately650

reproduced analytically. The excellent agreement between the Euler simulation

and the 2D inviscid model on the one side, and the 2D modelled transfer func-

tion taking or not viscous terms into account on the other side nevertheless

prove that source terms are correctly captured by the model. Second, entropy

fluctuations are known to generate vorticity through the baroclinic torque [24],655

which may in turn produce noise [50, 51]. It is reasonable to assume that the

production of vorticity increases with viscosity, and as this vorticity is absent

from the model, its associated noise cannot be captured. Numerical simulations

nevertheless show that vorticity is of the same order for Euler and RANS simu-

lations and therefore cannot be held responsible for the discrepancies observed.660

Third, it was pointed out previously that thermo-acoustic transfer functions

combine the generation of entropy noise inside the nozzle and its scattering by

the mean flow. The acoustic transfer functions obtained in the previous section
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evidenced that this scattering is not perfectly reproduced by the model because

of the boundary layer effect. The errors associated with this scattering are of665

the same order as those observed for the thermo-acoustic transfer functions.

The discrepancies thus seem to be a consequence of the flawed reproduction of

noise scattering by the model.

6. Conclusion

The influence of viscosity on entropy noise generation and scattering inside670

a nozzle is investigated numerically and analytically. Acoustic and thermo-

acoustic nozzle transfer functions are evaluated numerically by solving Euler

and URANS equations, whereas the inviscid analytical model of Emmanuelli et

al. [25], based on the linearization of the flow equations, is extended to include

viscous terms. With both approaches, the interactions between entropy and675

acoustic fluctuations and the mean flow field are correctly accounted for, but

small scale turbulence is not taken into account and its contribution to entropy

dispersion and noise scattering is not reproduced. This contribution is expected

to be of minor importance in contrast with the influence of mean flow and

viscous diffusion on the resolved perturbations.680

Numerically, viscosity slightly modifies acoustic scattering but changes in

transmission and reflection coefficients of the nozzle are limited. Such modifi-

cations are qualitatively well captured by the viscous model, even if the quan-

titative agreement is lower than for inviscid flows. Discrepancies are caused

by the radial evolution of the acoustic waves in the thick boundary layer, not685

accounted for by the model that assumes planar acoustic waves. Considering

entropy forcing, an important shear dispersion is first observed near the walls

due to the boundary layer and dissipates entropy fluctuations. A similar dis-

sipation is most likely to occur in real configurations and entropy fluctuations

must be removed near the walls for accurate predictions. The capacity of the690

model to reproduce entropy noise generation in such cases is demonstrated for

inviscid flows. The absence of entropy fluctuations near the nozzle wall leads to
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a noise increase, explained by the lower decorrelation of the related noise sources

in the radial direction in comparison to initially planar entropy waves. Second,

viscosity essentially reduces the amplitude of the transfer functions obtained by695

simulation in the medium frequency range. Noise reduction is reproduced by

the model but discrepancies remain, as for acoustic forcing. Changes are almost

totally captured when considering a viscous mean flow field, whereas viscous

entropy noise source term and viscous diffusion of acoustic perturbations have

a negligible impact on the noise. Discrepancies with numerical simulations are700

hence attributed to the inaccurate noise scattering discussed in the acoustically

forced cases.
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Appendix A. Derivation of the filtered momentum equation

The filtered momentum equation is obtained from the momentum equation,

Eq. (A.1) [52]

∂ρ~u

∂t
+ ~∇ · (ρ~u⊗ ~u) = −~∇p+ ~∇ · τ (A.1)

where ⊗ is the tensor product, τ = µ
(
~∇T~u+ ~∇~u

)
− 2/3µ

(
~∇ · ~u

)
I is the vis-710

cous stress tensor, µ is the dynamic viscosity of the fluid and I the identity

matrix, to which we apply the filter operator noted (·). This operator corre-

sponds either to the Reynolds (ensemble) averaging defined in Eq. (A.2) for the

RANS approach [53] or to the spatio-temporal filter of Eq. (A.3) for LES [52]

φ(~x, t) = lim
N→+∞

1

N

N∑
n=1

φn(~x, t) for RANS (A.2)

φ(~x, t) = G(∆, θ) ? φ(~x, t) for LES (A.3)
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with N the number of realizations, G(∆, θ) the kernel of the filter, ? the convo-

lution product and ∆ and θ the cutoff length and the cutoff time, respectively.

The filtered equation hence writes

∂ρ~̃u

∂t
+ ~∇ ·

(
ρ~̃u⊗ ~̃u

)
= −~∇p+ ~∇ · τ − ~∇ ·

(
ρ~̃u⊗ ~u− ρ~̃u⊗ ~̃u

)
(A.4)

with φ̃ the Favre (mass-weighted) averaging defined from Reynolds averaging

as φ̃ = ρφ/ρ. In Eq. (A.4), (ρ~̃u⊗ ~u − ρ~̃u ⊗ ~̃u) needs to be modelled. The

closure is classically achieved using the Boussinesq approximation with suitable

generalization for compressible flows [42, 53]:

−(ρ~̃u⊗ ~u− ρ~̃u⊗ ~̃u) = µT

(
~∇T ~̃u+ ~∇~̃u

)
− 2

3
µT

(
~∇ · ~̃u

)
I − 2

3
ρkI (A.5)

with µT the eddy viscosity and k the kinetic energy per unit volume of the

modelled fluctuations. To end, the filtered viscous stress tensor is approximated

by its expression evaluated from the resolved variables

τ ≈ µ(T̃ )
(
~∇T ~̃u+ ~∇~̃u

)
− 2

3
µ(T̃ )

(
~∇ · ~̃u

)
I (A.6)

It has been verified numerically that this assumption is globally verified both

for RANS [54, 55] and LES [42, 56] and Eq. (A.4) finally writes

∂ρ~̃u

∂t
+ ~∇ ·

(
ρ~̃u⊗ ~̃u

)
= −~∇p+ ~∇ · τf (A.7)

with

τf =

(
1 +

µT
µ

)
τ − 2

3
ρkI (A.8)

It is worth noting that Eq. (A.7) reduces to the initial momentum equation,715

used for instance in DNS, when the filter operator corresponds to identity and

µT = k = 0.

Appendix B. Simplification of the momentum-equation source term

The momentum-equation source term writes, Eq. (33)

ŜMk+1/2 =

([
u0x

∂u0x
∂x

+ u0r
∂u0x
∂r

]
σ̂

)
+

2

3

(
1

ρ0

∂ (ρ0kσ̂)

∂x

)
(B.1)
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Figure B.1: Cartesian and curvilinear systems.

The second term may be developed to give

1

ρ0

∂ (ρ0kσ̂)

∂x
= k

∂σ̂

∂x
+
σ̂

ρ0

∂ (ρ0k)

∂x
(B.2)

and the chain rule gives

∂σ̂

∂x
=
∂σ̂

∂l

∂l

∂x
+
∂σ̂

∂τ

∂τ

∂x
(B.3)

with l the curvilinear abscissa based on a streamline and τ its normal direction,

see Fig. B.1. Noting that the entropy fluctuation writes analytically (see §3.4)

σ̂(l) = σ̂(l = 0) exp

(
−iω

∫ l

0

dζ

u0(ζ)

)
(B.4)

the derivative along the l-direction may be further simplified

∂σ̂

∂l
= − iω

u0
σ̂ (B.5)

The derivative along the τ -direction may be neglected when the flow inci-

dence θ is small (generally verified in the diffuser, but possibly too restrictive in

the convergent section of the nozzle), so that the source term may be approxi-

mated by

ŜMk+1/2 '
([
u0x

∂u0x
∂x

+ u0r
∂u0x
∂r

]
σ̂

)
+

2

3

([
− iωk

u0

∂l

∂x
+

1

ρ0

∂ (ρ0k)

∂x

]
σ̂

)
(B.6)

with ∂l/∂x = 1/ cos θ and tan θ = u0r/u0x by definition.

To comply with the formalism used in CHEOPS-Nozzle, which is necessary

to take into account the presence of a normal shock in the diffuser [26], the

source term is rewritten

ŜMk+1/2 =

nj∑
j=1

νjk+1/2σ̂
0
j (B.7)
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with720

νjl+1/2 =

(
Aj
A

[
u0x,j

∂u0x,j
∂x

+ u0r,j
∂u0x,j
∂r

+
2

3

(
− iωkj
u0,j

(
∂l

∂x

)
j

+
1

ρ0,j

∂ρ0,jkj
∂x

)])
l+1/2

eiϕl+1/2,j (B.8)

where nj is the number of streamtubes and Aj the section of the jth streamtube.
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