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Entropy (temperature) fluctuations produced by turbulent flames generate noise when they are accelerated by the flow. This so-called entropy noise is an important contributor to core noise in modern aeroengines and several semi-analytical models exist in the litterature for its prediction. All these models assume the flow to be inviscid. In the present paper, contribution of viscosity on entropy noise generation and scattering through a nozzle is investigated numerically with URANS simulations and analytically through the extension of the 2D inviscid model of Emmanuelli et al. (Journal of Sound and Vibration 472:115163 (2020)). Simulations indicate noise generation and scattering is slightly reduced in the medium-frequency range in the presence of viscosity with variations below 3 dB in comparison to reference inviscid data. This noise variation is qualitatively well reproduced by the low-order model. The major effect of viscosity on noise generation and propagation lies in the presence of boundary layers. Viscous entropy noise sources and viscous diffusion of acoustic perturbations have a negligible impact on noise. Discrepancies between simulations and analytical solutions are found to come from the radial evolution of the acoustic waves in thick boundary layers, not accounted for in the model, and which impact noise

Introduction

The important efforts carried out during the last decades to reduce jet and fan noise in turbojet engines led to the emergence of additional noise sources, previously masked, among which combustion noise stands out [START_REF] Dowling | Combustion noise[END_REF][START_REF] Ihme | Combustion and engine-core noise[END_REF]. Combustion noise issues are even more important for turboshaft engines where jet and fan noises are absent [START_REF] Blacodon | Source localization of turboshaft engine broadband noise using a three-sensor coherence method[END_REF][START_REF] Livebardon | Combining LES of combustion chamber and an actuator disk theory to predict combustion noise in a helicopter engine[END_REF]. Two different mechanisms are involved in combustion noise. Direct combustion noise is associated with the acoustic fluctuations generated by the turbulent flame through heat release fluctuations [START_REF] Strahle | Some results in combustion generated noise[END_REF][START_REF] Hassan | Scaling of combustion generated noise[END_REF], whereas indirect combustion noise is produced when flow heterogeneities, such as entropy (cold and hot spots), vorticity (turbulent spots) and compositional (mixture heterogeneities) fluctuations are accelerated by the mean flow through nozzles and turbine stages [START_REF] Candel | Analytical studies of some acoustic problems of jet engines[END_REF][START_REF] Marble | Acoustic disturbance from gas non-uniformities convecting through a nozzle[END_REF][START_REF] Morfey | Amplification of aerodynamic noise by convected flow inhomogeneities[END_REF][START_REF] Magri | On indirect noise in multicomponent nozzle flows[END_REF]. Such perturbations lead to a loss of balance, to which the flow reacts by emitting acoustic waves [START_REF] Tam | The physical processes of indirect combustion noise generation[END_REF][START_REF] Tam | Combustion noise: modeling and prediction[END_REF]. Relative contributions of direct and indirect combustion noise to global sound emission of aeroengines is still an open question [START_REF] Dowling | Combustion noise[END_REF][START_REF] Strahle | On combustion generated noise[END_REF] but recent analytical investigations suggest indirect noise may dominate direct noise in several practical situations [START_REF] Dowling | Combustion noise[END_REF][START_REF] Leyko | Comparison of direct and indirect combustion noise mechanisms in a model combustor[END_REF], hence the need for its modelling and reduction. Concerning indirect noise sources, entropy noise is thought to dominate vorticity noise because of the large entropy fluctuations produced by the turbulent flames inside combustion chambers, as well as large dissipation of turbulent structures by viscosity, particularly important at high temperature [START_REF] Morgans | Entropy noise: A review of theory, progress and challenges[END_REF]. As for compositional noise, it was shown analytically to be a possible contributor in lean mixtures and supercritical nozzle flow regimes only [START_REF] Magri | Compositional inhomogeneities as a source of indirect combustion noise[END_REF][START_REF] Magri | Effects of nozzle Helmholtz number on indirect combustion noise by compositional perturbations[END_REF].

The observations above outline the need for modelling of entropy noise. The present paper focuses on its generation in a nozzle. Nozzle flow is a simple configuration very well suited to the investigation of entropy noise through analytical, numerical and experimental approaches, before possible application to more realistic turbine geometries. Analytical studies dedicated to entropy noise in nozzles essentially build on the seminal work of Marble and Candel [START_REF] Marble | Acoustic disturbance from gas non-uniformities convected through a nozzle[END_REF] assuming one-dimensional flow (flow variables do not vary along radial and azimuthal directions). Noise produced and scattered through the nozzle is expressed in the form of transfer functions evaluated algebraically in the compact limit, i.e. acoustic and entropic wavelengths are assumed large compared to the nozzle dimensions. Non-compact transfer functions are also evaluated in the simplified configuration of a linear velocity profile, an hypothesis later relaxed by Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF] and Giauque et al. [START_REF] Giauque | Analytical analysis of indirect combustion noise in subcritical nozzles[END_REF] considering a piecewise-linear velocity profile. Using a different approach, Bohn [START_REF] Bohn | Response of a subsonic nozzle to acoustic and entropy disturbances[END_REF] solves a system of partial differential equations over pressure, velocity and entropy to determine the transfer functions of generic nozzles and provides asymptotic solutions in the large frequency limit in the case of a linear velocity profile, whereas Duran and Moreau [START_REF] Duran | Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the Magnus expansion[END_REF] consider a system of partial differential equations over mass flow rate, stagnation temperature and entropy solved with the Magnus expansion.

Additionally, Mahmoudi et al. [START_REF] Mahmoudi | Acoustic and entropy waves in nozzles in combustion noise framework[END_REF] describe the nozzle geometry as a succession of ducts of constant radii and apply the compact solutions of Marble and Candel between ducts to reconstruct frequency-dependant transfer functions. The one-dimensional hypothesis was recently relaxed by Duran and Morgans [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF], Dowling and Mahmoudi [START_REF] Dowling | Combustion noise[END_REF] and Mahmoudi et al. [START_REF] Mahmoudi | Acoustic and entropy waves in nozzles in combustion noise framework[END_REF] by considering azimuthal flow fluctuations in annular nozzles and by Emmanuelli et al. [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF] and Huet et al. [START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF] to account for the radial evolution of the flow. The former studies allow to investigate the contribution of the different azimuthal modes in indirect noise, whereas the latter addresses the problem of shear dispersion of entropy fluctuations by the mean flow and subsequent noise modifications. The role of entropy dispersion in indirect noise production is also addressed in a different way by Mahmoudi et al. [START_REF] Mahmoudi | Low-order modeling of combustion noise in an aero-engine: The effect of entropy dispersion[END_REF] in a combustion chamber. The authors convect entropy fluctuations along streamlines and reconstruct a radially averaged entropy fluctuation at combustor outlet, used to feed a one-dimensional model for the nozzle. To end, the isentropic nozzle assumption is considered by De Domenico et al. [START_REF] De Domenico | A generalised model for acoustic and entropic transfer function of nozzles with losses[END_REF]. Marble and Candel's [START_REF] Marble | Acoustic disturbance from gas non-uniformities convected through a nozzle[END_REF] model is adapted to non isentropic flows, corresponding for instance to the presence of recirculation, and compact transfer functions are expressed as a function of a pressure loss parameter.

The hypotheses used in the models may appear restrictive in comparison with the complex phenomena occurring in real flows. Concerning acoustics, it is often argued that waves cannot exhibit radial variations because corresponding radial modes are cut-off for the low frequencies considered and viscosity can be neglected due to the short propagation distance. Limited contribution of acoustic-boundary layer interactions also plays in favour of the one-dimensional flow assumption. Duran and Moreau [START_REF] Duran | Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the Magnus expansion[END_REF] and Huet [START_REF] Huet | Budgets of disturbances energy for nozzle flows at subsonic and choked regimes[END_REF] showed that such onedimensional models indeed capture the acoustic reflection and transmission coefficients of subsonic and choked nozzle flows with a good accuracy. The compact model is also suitable to capture entropy noise in the compact limit, as illustrated by Leyko et al. [START_REF] Leyko | Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock[END_REF] with the reproduction of the experimental Entropy Wave Generator test case in choked configuration [START_REF] Bake | The Entropy Wave Generator (EWG): A reference case on entropy noise[END_REF]. When larger frequencies are considered, Morgans et al. [START_REF] Morgans | The dissipation and shear dispersion of entropy waves in combustor thermoacoustics[END_REF] and Giusti et al. [START_REF] Giusti | Experimental and numerical investigation into the propagation of entropy waves[END_REF] numerically demonstrated that turbulent dissipation of entropy is negligible for constant section duct flows. This finding was also observed through a nozzle flow by Becerril [START_REF] Aguirre | Simulation of noise emitted by a reactive flow[END_REF] and Moreau et al. [START_REF] Moreau | Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment[END_REF]. Common to these studies is the importance of shear dispersion of entropy perturbations by the mean flow and possible contribution of turbulent mixing in entropy dispersion, the latter being restricted to large frequencies because of the limited diameter of the duct where only small-scale turbulence can develop. Inside the combustion chamber, however, large turbulent structures may grow and contribute to the dispersion of entropy fluctuations before they reach the nozle, as demonstrated by Xia et al. [START_REF] Xia | Dispersion of entropy perturbations transporting through an industrial gas turbine combustor[END_REF] in a realistic gas turbine combustor flow-field. Additionally, thermal diffusion may play a role in the attenuation of entropy fluctuations. It was found numerically to be negligible by Xia et al. [START_REF] Xia | Dispersion of entropy perturbations transporting through an industrial gas turbine combustor[END_REF] in the Siemens SGT-100 gas turbine combustor. From a theoretical point of view, thermal diffusion drops with pressure and is expected to be negligible in industrial, pressurized combustors but may contribute to entropy damping in ambient pressure, lab scale experiments [START_REF] Huet | Influence of calorically perfect gas assumption and thermal diffusion on indirect noise generation[END_REF].

Finally, most of the models use the strong assumption of negligible vorticity.

Entropy-induced vorticity originates from a baroclinic torque when density (entropy) fluctuations are misaligned with the mean pressure gradient [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF] and was observed numerically by several authors. Its contribution was shown to be minor for inviscid nozzle flows by Duran and Morgans [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF] and Emmanuelli et al.

[25] but a potential noise generator when viscosity is considered [START_REF] Aguirre | Simulation of noise emitted by a reactive flow[END_REF][START_REF] Moreau | Large-eddy-simulation prediction of indirect combustion noise in the entropy wave generator experiment[END_REF][START_REF] Ullrich | Fundamental indirect noise generation by interactions between entropy, vorticity and acoustic waves in the context of aero engine applications[END_REF]. In addition, viscosity influences the mean flow development, in particular through the presence of boundary layers, and may affect entropy dispersion and noise generation in comparison to inviscid configurations.

The objective of the present paper is to assess the role of viscosity in entropy noise generation within a nozzle through analytical modelling and numerical simulations with the URANS approach. This numerical modelling is sufficient to capture the influence of viscosity on the mean flow, in particular boundary layers, as well as on the propagation of acoustics and convection of entropy and vorticity perturbations. These phenomena are expected to be the dominant ones in the frequency bandwidth of indirect combustion noise considered here, below 1 kHz. The interaction between these perturbations and small-scale turbulence is not directly computed and cannot be accounted for in the present simulations, but it is expected to be of second order following literature results [START_REF] Huet | Budgets of disturbances energy for nozzle flows at subsonic and choked regimes[END_REF][START_REF] Lourier | Numerical analysis of indirect combustion noise generation within a subsonic nozzle[END_REF]. In addition, URANS already proved successful in simulating entropy convection and related noise production through nozzles and turbine stages [START_REF] Bake | The Entropy Wave Generator (EWG): A reference case on entropy noise[END_REF][START_REF] Lourier | Numerical analysis of indirect combustion noise generation within a subsonic nozzle[END_REF][START_REF] Bach | Unsteady RANS simulation on the effect of film cooling on entropy noise generation in a two-dimensional stator cascade[END_REF][START_REF] Pinelli | Numerical study of entropy wave evolution within a HPT stage[END_REF]. The paper is organized as follows. Derivation of the Riemann invariants in duct flows with boundary layers is first detailed in Section 2 under simplifying assumptions.

The inclusion of viscous terms in a two-dimensional low-order model is presented in Section 3. This modelling allows for an analytical discussion on the role of viscosity in entropy noise generation. The geometry considered to evaluate the transfer functions is detailed in Section 4, along with the description of the mean flow fields and the numerical procedure to compute the transfer functions with Euler and URANS equations. Modelled and simulated transfer functions are then compared in Section 5. The role of viscosity in scattering and generation of acoustic waves is discussed for both approaches and the accuracy and limitations of the model are outlined, before providing conclusions in Section 6.

Planar acoustic waves in straight duct

Both low-order modelling and numerical simulations require the separation of upstream and downstream travelling acoustic waves in ducts of constant radius upstream and downstream of a nozzle in order to evaluate the transfer functions of the system. This separation is straightforward for one-dimensional flows where the acoustic characteristic waves are obtained with the Riemann invariants. In this section, the expression of the Riemann invariants is extended to the case of two-dimensional duct flows with simplifying hypotheses. The mean flow is assumed to be axisymmetric, oriented in the x direction and invariant with respect to this coordinate. Tangential velocity is neglected (non-swirling flow). Continuity and axial momentum equations write, in cylindrical coordinates

∂ρ ∂t + ∂ρu x ∂x + ∂ρu r ∂r + ρu r r = 0 (1) 
∂u x ∂t + u x ∂u x ∂x + u r ∂u x ∂r = - 1 ρ ∂p ∂x (2) 
where ρ, u x , u r , p, t, x and r stand respectively for the density, axial and radial velocities, pressure, time and axial and radial coordinates. The flow variables are then decomposed as a sum of their steady state and perturbation, p = p 0 +p , etc. Perturbations are assumed to be linear and of acoustic nature only with planar acoustic waves, i.e. ∂p /∂r = 0, ∂u x /∂r = 0 and u r = 0. Noticing that mean flow invariance with respect to x coordinate imply u 0r = 0, the equations above reduce to

∂p ∂t + ρ 0 c 2 0 ∂u x ∂x + u 0x ∂p ∂x = 0 (3) ∂u x ∂t + u 0x ∂u x ∂x = - 1 ρ 0 ∂p ∂x (4) 
with c 0 = γp 0 /ρ 0 the mean sound velocity. Multiplying Eq. ( 4) by ±ρ 0 c 0 and after addition of Eq. (3), it comes

∂ ∂t (p ± ρ 0 u 0 u x ) + (u 0x ± c 0 ) ∂ ∂x (p ± ρ 0 u 0 u x ) = 0 (5) 
Equation ( 5) corresponds to the propagation equation of the fluctuation p ± ρ 0 c 0 u x at the velocity u 0x ± c 0 . In the practical configurations considered hereafter the mean flow may vary slowly along the axial direction, the derivation above is therefore not exact but it is considered to be a good approximation.

The classical 1D impedance relations therefore remain accurate even for 2D duct flows and the non-dimensional form of the acoustic waves inside the duct may write

P ± = 1 2 p γp 0 ± ρ 0 c 0 γp 0 u x (6) 
where the overlined quantities (•) are reduced to 1D quantities using Eq. ( 7), with A the duct section. It is worth mentioning that p = p and u x = u x for planar acoustic waves.

f = 1 A A f dA (7) 

2D model

In this section, the two-dimensional model proposed by Emmanuelli et al.

[25] for Euler flows is extended to include viscosity effects. This model is based on the mass conservation and axial momentum equations. Mass conservation is not impacted by viscosity, which only appears in the momentum equation.

The derivation of the filtered momentum equation in cylindrical coordinates is detailed in Appendix A and takes a similar form for URANS, LES and DNS. The difference between these three numerical modelling methods lies in the value of the viscosity. In DNS, all the physical scales are solved on the numerical grid with a proper time step and viscosity corresponds to the molecular viscosity µ.

In LES, small scale turbulence cannot be solved on the mesh and its associated dissipation is modelled through an eddy viscosity coefficient µ T , leading to an effective viscosity µ T +µ. Turbulence is completely modelled in URANS through the eddy viscosity term, which exhibits values much larger than in LES. The kinetic energy per unit volume of the modelled fluctuations k also appears in the momentum equation but it is often neglected [START_REF] Blazek | Computational Fluid Dynamics: Principles and Applications[END_REF].

The model obeys the following hypotheses.

• The nozzle is oriented along the x axis and the fluid flows towards the increasing x direction.

• The flow variables can be separated between mean quantities and perturbations.

• Geometry and flow fields are axisymmetric (no azimuthal variation) and tangential velocity is nil.

• Pressure and velocity perturbations are of acoustic origin only. Vorticity is neglected.

• Acoustic perturbations are planar. No azimuthal variations exist due to the axisymmetric hypothesis and radial modes are cut off by the ducts at the frequencies considered.

• Perturbations are small and equations can be linearized.

With these hypotheses, stochastic turbulence is not taken into account in the perturbed flow field. The interaction of this stochastic turbulence with the fluctuations considered in the model can only be represented through its numerical modelling, namely through the eddy viscosity and modelled kinetic energy terms, and it is therefore at least partially neglected in DNS and LES compared to URANS where these terms encompass all the flow turbulence. From this point of view, application of the model with RANS flow fields could lead to a better simulation of a key part of the physical phenomena.

Equations of the model

Viscosity does not affect the mass conservation equation, which is identical to the inviscid case. It is obtained by application of a mass budget on a slice of the nozzle between positions x and x + dx and writes

∂ρ ∂t + ∂ρu x ∂x = - 1 A ρu x dA dx ( 8 
)
where the symbols for Reynolds-and Favre-averaged quantities are dropped to simplify the notations and the overlined quantities correspond to the 1D averaging of Eq. [START_REF] Candel | Analytical studies of some acoustic problems of jet engines[END_REF]. Following the hypotheses listed above, the axial momentum equation reduces to (see Appendix A and Hoffman et al. [START_REF] Hoffman | Fundamental equations of fluid mechanics[END_REF])

∂u x ∂t + u x ∂u x ∂x + u r ∂u x ∂r = - 1 ρ ∂p ∂x + 1 ρ ∂τ f xx ∂x + 1 ρ ∂τ f xr ∂r + τ f xr ρr (9) 
where τ f represents the effective viscous stress tensor and is the sum of the real viscous stress tensor and of the Favre-averaged Reynolds-stress tensor (in RANS) or the subgrid-scale stress tensor (in LES) [START_REF] Blazek | Computational Fluid Dynamics: Principles and Applications[END_REF]. Its components write

τ f xx = 2 (µ T + µ) ∂u x ∂x - 1 3 ∇ • u - 2 3 ρk (10) 
τ f xr = (µ T + µ) ∂u x ∂r + ∂u r ∂x (11) 
Equation ( 8)-( 9) are linearized considering small amplitude perturbations and assuming that µ and µ T do not depend on flow fluctuations. Density perturbations are substituted with entropy fluctuations using the linearized entropy relation s /c p = p /γp 0 -ρ /ρ 0 , with c p the heat capacity at constant pressure, to express the linearized mass and axial momentum equations as functions of pressure, velocity and entropy fluctuations. Temporal derivatives are then dropped considering a harmonic regime where perturbations are expressed following Eqs. ( 12)- [START_REF] Leyko | Comparison of direct and indirect combustion noise mechanisms in a model combustor[END_REF].

u x (x, t) = Re û(x)e iωt (12) 
p (x, t) = Re p(x)e iωt (13)

s c p (x, t) = Re σ(x)e iωt (14) 
To end, the momentum equation is spatially averaged over the nozzle crosssection following Eq. [START_REF] Candel | Analytical studies of some acoustic problems of jet engines[END_REF]. Noticing that p = p and u = u considering the hypotheses of the model, the equations finally reduce to ordinary differential equations over velocity and pressure fluctuations as functions of the axial position and write

A 1 c 2 0 iω + d dx A u 0x c 2 0 p + A u 0x c 2 0 dp dx + dAρ 0 dx û + Aρ 0 dû dx = d dx A(ρ 0 u 0x ) σ + Aiωρ 0 σ (15) iω + ∂u 0x ∂x û + u 0x - 4 3ρ 0 ∂ (µ T + µ) ∂x ∂ û ∂x - 4 3ρ 0 (µ T + µ) ∂ 2 û ∂x 2 + u 0x γp 0 ∂u 0x ∂x + u 0r γp 0 ∂u 0x ∂r + 2 3ρ 0 ∂ ∂x k c 2 0 p + 1 ρ 0 1 + 2 3 k c 2 0 ∂ p ∂x = u 0x ∂u 0x ∂x + u 0r ∂u 0x ∂r σ + 2 3ρ 0 ∂ (ρ 0 kσ) ∂x (16) 
where γ = c p /c v is the adiabatic coefficient and c v is the heat capacity at constant volume. From Eq. ( 16) the influence of viscosity on combustion noise appears to be twofold. On the left-hand-side, terms combining viscosity and pressure and velocity fluctuations represent the interaction between the turbulent, viscous mean flow and acoustic fluctuations and lead to acoustic scattering.

An additional contribution is present through the interaction between acoustic perturbations and the mean flow field, which integrates viscous effects such as boundary layers. This contribution of the viscous mean flow fields is also present on the right-hand-side terms of the equation, which corresponds to the entropy noise source terms. These RHS terms also exhibit an additional term compared to the inviscid configuration, which models the interaction between turbulent kinetic energy and entropy as a supplementary noise production mechanism.

As pointed out previously, this contribution of viscous terms in noise scattering and noise generation is more important with RANS flow fields than with timeaveraged LES fields because of the larger value of the eddy viscosity term and modelled turbulent kinetic energy. This is all the more true in comparison to DNS where both terms vanish.

Numerical discretisation

For numerical resolution of the system, the geometry is discretised with n nodes along the axial direction, corresponding to n -1 elements at the centre of which the mass and momentum equations are evaluated. The discretisation of the system is illustrated in Fig. 1. Perturbed quantities and their first-and second-order axial derivatives at the centre of each element k + 1/2, bounded by nodes k and k + 1, are provided by Eqs ( 17)- [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF].

f k+1/2 = f k+1 + f k 2 (17) d dx f k+1/2 = f k+1 -f k ∆x k+1/2 (18) 
d 2 dx 2 f k+1/2 = f k+2 -f k ∆x k+1/2 ∆x k+1/2 + ∆x k+3/2 - f k+1 -f k-1 ∆x k+1/2 ∆x k+1/2 + ∆x k-1/2 (19)
First-order derivatives correspond to a first-order Taylor expansion of the flow quantity at the centre of the nozzle, with ∆x k+1/2 the size of the element k + 1/2, and second-order derivatives are obtained by two successive applications of the first-order derivation operator. Second-order derivatives at the domain boundaries are evaluated with the centred operator of Eq. ( 19) considering f 0 = f 1 and ∆x 1/2 = 0 at the inlet and f n+1 = f n and ∆x n+1/2 = 0 at the outlet.

The discretised mass conservation and axial momentum equations in each element k + 1/2 write

λ 1 k+1/2 pk + λ 2 k+1/2 ûk +λ 3 k+1/2 pk+1 + λ 4 k+1/2 ûk+1 = ŜC k+1/2 (20) 
φ 0 k+1/2 ûk-1 + φ 1 k+1/2 pk + φ 2 k+1/2 ûk +φ 3 k+1/2 pk+1 + φ 4 k+1/2 ûk+1 + φ 6 k+1/2 ûk+2 = ŜM k+1/2 (21) 
λ 1 k+1/2 = 1 2 A 1 c 2 0 iω + d dx A u 0x c 2 0 - A ∆x k+1/2 u 0x c 2 0 (22) λ 2 k+1/2 = 1 2 dAρ 0 dx - Aρ 0 ∆x k+1/2 (23) 
λ 3 k+1/2 = 1 2 A 1 c 2 0 iω + d dx A u 0x c 2 0 + A ∆x k+1/2 u 0x c 2 0 (24) λ 4 k+1/2 = 1 2 dAρ 0 dx + Aρ 0 ∆x k+1/2 (25) 
φ 0 k+1/2 = - 4 3 1 ∆x k+1/2 ∆x k+1/2 + ∆x k-1/2 1 ρ 0 (µ T + µ) (26) 
φ 1 k+1/2 = 1 2 u 0x γp 0 ∂u 0x ∂x + u 0r γp 0 ∂u 0x ∂r + 2 3 1 ρ 0 ∂ ∂x k c 2 0 - 1 ∆x k+1/2 1 ρ 0 1 + 2 3 k c 2 0 ( 27 
)
φ 2 k+1/2 = 1 2 iω + ∂u 0x ∂x - 1 ∆x k+1/2 u 0x - 4 3 1 ρ 0 ∂ (µ T + µ) ∂x + 4 3 1 ∆x k+1/2 ∆x k+1/2 + ∆x k+3/2 1 ρ 0 (µ T + µ) (28) 
φ 3 k+1/2 = 1 2 u 0x γp 0 ∂u 0x ∂x + u 0r γp 0 ∂u 0x ∂r + 2 3 1 ρ 0 ∂ ∂x k c 2 0 + 1 ∆x k+1/2 1 ρ 0 1 + 2 3 k c 2 0 ( 29 
)
φ 4 k+1/2 = 1 2 iω + ∂u 0x ∂x + 1 ∆x k+1/2 u 0x - 4 3 1 ρ 0 ∂ (µ T + µ) ∂x + 4 3 1 ∆x k+1/2 ∆x k+1/2 + ∆x k-1/2 1 ρ 0 (µ T + µ) (30) 
φ 6 k+1/2 = - 4 3 1 ∆x k+1/2 ∆x k+1/2 + ∆x k+3/2 1 ρ 0 (µ T + µ) (31) 
ŜC k+1/2 = d dx A(ρ 0 u 0x σ) + Aiω(ρ 0 σ) (32) ŜM k+1/2 = u 0x ∂u 0x ∂x + u 0r ∂u 0x ∂r σ + 2 3 1 ρ 0 ∂ (ρ 0 kσ) ∂x (33) 
In these expressions the flow variables are evaluated inside the element k + 1/2, which is not explicitly written for the sake of clarity. The second term of ŜM

k+1/2
includes the axial derivative of a product between the mean flow variables and the entropy fluctuation. Depending on how the entropy fluctuation is computed this derivative may not be easily evaluable (see for instance the method proposed in §3.4). This expression can be approximated by Eq. ( 34), whose derivation is detailed in Appendix B, and which is valid for small mean flow angles with respect to the axial direction.

ŜM k+1/2 u 0x ∂u 0x ∂x + u 0r ∂u 0x ∂r σ + 2 3 - iωk u 0 ∂l ∂x + 1 ρ 0 ∂ (ρ 0 k) ∂x σ (34) 
In this equation, l stands for the curvilinear abscissa along the streamlines.

Boundary conditions

The evaluation of mass and momentum equations inside the n -1 axial elements discretising the geometry provides 2n-2 equations, whereas 2n unknowns corresponding to û and p at the n nodes need to be determined. The last two equations are provided by the inlet and outlet boundary conditions. For the sake of simplicity, it is considered in the present study that there is no acoustic reflection on the boundaries so that the acoustic waves entering the domain correspond to the imposed acoustic forcings. Using the expressions of the Riemann invariants derived in §2, Eq. ( 6), this translates in the numerical domain to Eqs ( 35)- [START_REF] Xia | Dispersion of entropy perturbations transporting through an industrial gas turbine combustor[END_REF], where P + 1,f and P - n,f correspond respectively to the upstream and downstream acoustic forcings imposed by the user. In these equations, the subscripts (•) 1 and (•) n indicate that the flow quantities are evaluated at nodes 1 and n.

P + 1 = P + 1,f = 1 2 p γp 0 + ρ 0 c 0 γp 0 û 1 ( 35 
) P - n = P - n,f = 1 2 p γp 0 - ρ 0 c 0 γp 0 û n (36)

Modelling of the entropy fluctuations

The last part of the modelling concerns the evaluation of the entropy fluctuations inside the nozzle. For the subsonic flows considered here, entropy is not affected by the acoustics and can be computed prior to the resolution of Eqs.

(15)-( 16). This is however not always the case, e.g. when entropy fluctuations interact with a shock located in the diffuser. In such cases, entropy fluctuations are modified through the shock and need to be computed jointly with acoustics, see for instance Huet et al. [START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF].

Several possibilities can be considered for the computation of the entropy fluctuations, depending on the level of modelling desired. The numerical resolution of the convection equation for entropy may be considered when effects such as thermal diffusion or turbulent mixing need to be captured. In this section, a simplified approach corresponding to the pure convection of entropy is used.

This method proved to reproduce shear dispersion of entropy with an excellent agreement when Euler equations are considered [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF] and it is reasonable to assume thermal diffusion is negligible when pressurized combustors are considered [START_REF] Xia | Dispersion of entropy perturbations transporting through an industrial gas turbine combustor[END_REF][START_REF] Huet | Influence of calorically perfect gas assumption and thermal diffusion on indirect noise generation[END_REF].

The method is based on streamlines, constructed from the mean flow field.

These streamlines are used to define streamtubes, in which the flow is assumed to be radially uniform. This hypothesis is verified if a sufficient number of streamtubes is considered, i.e. if their height is sufficiently small. Entropy fluctuations being purely convected by the flow, they remain confined in the same streamtube throughout the nozzle. Under these assumptions, entropy can be expressed analytically at every position inside the nozzle for each streamtube and writes in the harmonic regime [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF][START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF] σ(l) = σ(l = 0) exp -iω

l 0 dζ u 0 (ζ) (37) 
with l the curvilinear abscissa along the streamtube, σ(l = 0) the complex amplitude of the entropy fluctuation at the domain inlet and

u 0 = u 2 0x + u 2 0r
the mean flow velocity.

Equations in matrix form

Combining Eqs ( 20)-( 21) and Eqs. ( 35)-( 36), the linear system to solve writes in the matrix form as Eq. ( 38), that can be inverted numerically for each frequency. There is a total of 2n + 4 unknowns in this equation because ghost nodes and associated relations have been added at nozzle boundaries to allow the use of the centred second-order derivative operator for all geometry elements, as discussed in §3.2. Transfer functions are then reconstructed from the computed pressure and velocity perturbations at both extremities using Eq. ( 6). This numerical resolution is performed in the present study with the inhouse code CHEOPS-Nozzle (non-compact harmonic entropy noise predictions) [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF][START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF]. with the unstructured flow solver CEDRE from ONERA [START_REF] Refloch | CEDRE software[END_REF]. The numerical grid used is the same for Euler and URANS simulations and is identical to that previously used by Emmanuelli et al. [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF]. Nozzle walls are discretised with 30 layers of quadrilateral cells and ensure a flow resolution with y + = 1 at the walls in RANS, whereas the rest of the domain is filled with triangles sufficiently small to ensure that mean flow gradients are correctly captured and numerical dissipation of acoustic and entropy waves is negligible for the frequencies considered. The mesh is composed of 1,800,000 elements. Spatial derivatives are evaluated with a second-order space scheme and the implicit second-order Runge-Kutta scheme is used in time. The time step is chosen to ensure a CFL criterion below 1 in most of the numerical domain.
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Three simulations are performed for both inviscid and viscous configurations, corresponding to entropy and acoustic forcings from the upstream limit and acoustic forcing from the downstream limit. Acoustic and entropy waves are injected through the boundaries and non-reflective boundary conditions are used to avoid contamination of the numerical domain with spurious acoustic waves [START_REF] Emmanuelli | Numerical simulation and modelling of entropy noise in nozzle and turbine stator flows[END_REF]. Forcing frequencies are set from 100 Hz to 1000 Hz with a frequency step of 100 Hz. The amplitudes of the injected perturbations are chosen to be sufficiently small to remain linear and the phase of each harmonic is optimised to ensure the signal-to-noise ratio is large for each forcing frequency [START_REF] Guillaume | Crest-factor minimization using nonlinear chebyshev approximation methods[END_REF][START_REF] Zheng | Analytical and numerical study of the indirect combustion noise generated by entropy disturbances in nozzle flows[END_REF]. 

Mean flow fields

When the inviscid equations are solved the flow is uniform in the upstream and downstream ducts; therefore uniform static temperature and velocity are imposed on the inlet boundary and uniform static pressure is imposed on the outlet boundary. For the viscous simulation, on the contrary, inlet and outlet profiles need to reproduce the boundary layer that develops on the duct wall.

In the present simulation, the boundary layer velocity profile is defined by Eqs.

(39)-( 40), issued from Bogey et al. [START_REF] Bogey | Direct computation of the noise generated by subsonic jets originating from a straight pipe nozzle[END_REF] and corresponding to a polynomial approximation of a laminar boundary layer with a Blasius profile

u x (r w ) = U 0 r w δ B 2 -2 r w δ B 2 + r w δ B 3 if r w < δ B ( 39 
)
u x (r w ) = U 0 if r w ≥ δ B ( 40 
)
where U 0 is the flow velocity outside the boundary layer (same velocity as in the Euler simulation), r w the distance to the wall and δ B the boundary layer thickness. Following the work of Bogey et al. [START_REF] Bogey | Direct computation of the noise generated by subsonic jets originating from a straight pipe nozzle[END_REF], the boundary layer thickness is set to 6.4% of the duct diameter, δ B = 3.8 mm. The profile of the turbulent kinetic energy is deduced from the velocity profile considering an isotropic homogeneous turbulence with the turbulence level being 5% of the mean velocity

k = 3/2 × (0.05 × u x ) 2 (41) 
and ω is obtained from k using the relation

ω = √ k l ( 42 
)
where l is the turbulent length scale, l = 0.038D with D the duct diameter. To end, the temperature variation is evaluated using the adiabatic relation: found (in comparison to the mean temperature of 1300 K), so that a uniform temperature profile is imposed at the inlet.

T w = T 0 1 + γ -1 2 M 2 0 ( 43 
At the downstream end, the boundary layer develops freely and is not known a priori, therefore the pressure profile cannot be imposed. Instead, the sectionaveraged pressure is imposed on the exit surface, so that pressure can locally 360 vary along the radial direction to reproduce the boundary layer profile.

The use of these boundary conditions leads to slightly different mass flow rates between the two simulations. On the one hand, inlet pressure and hence density is expected to be higher for the RANS simulation because of the pressure loss along the nozzle, which tends to increase its mass flow rate. On the 365 other hand, the mass flow rate is decreased in the viscous simulation due to the presence of the boundary layer. The combination of both effects leads to a decreased mass flow rate of 4.9 % for the RANS compared to the Euler simulation (0.2975 kg/s for Euler and 0.2829 kg/s for RANS)

The evolution of the Mach number along the nozzle is illustrated in Fig. 2 for and at the exit (0.327). The pressure loss due to viscosity is illustrated in Fig. 3 (b) and leads to a pressure variation of 0.9 bar between the two simulations at the nozzle inlet. Finally, the evolution of the modelled turbulent kinetic energy and its axial gradient are reproduced in Fig. 5. These two quantities are of interest because they drive the intensity of the viscous entropy noise source term, see Eq. [START_REF] Aguirre | Simulation of noise emitted by a reactive flow[END_REF].

Turbulent kinetic energy is low in most of the domain and its largest value is observed in the boundary layer at the end of the divergent where its axial derivative is also high. Additionally, the axial gradient presents large levels near the wall and near the axis of the convergent part. Entropy noise source terms associated with viscous effects are thus expected to be observed in these two regions of the flow. 6). This definition of the acoustic waves is theoretically valid when all fluctuations are of acoustic origin only, which is not the case here. Indeed, vorticity fluctuations may be generated through the nozzle [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF] and produce additional velocity perturbations in the downstream duct. Such perturbations are removed through a characteristic filtering of the acoustic waves in each duct, performed along 9 evenly located stations [START_REF] Kopitz | Characteristics-based filter for identification of planar acoustic waves in numerical simulation of turbulent compressible flow[END_REF].

In addition, despite the use of non-reflective boundary conditions, small spurious acoustic reflections may occur on the domain boundaries. To get rid of these reflections, non-reflective post-processing is performed through the writing of a linear system where the unknowns are the nozzle transfer functions and the parameters are the upstream and downstream computed waves. Details of this post-processing method are given in Emmanuelli et al. [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF]. This postprocessing proved to be successful in previous studies performed at ONERA 

Comparisons between simulated and modelled transfer functions

The influence of viscosity on acoustic and thermo-acoustic nozzle transfer functions is evaluated in this section through numerical simulations and analytical modelling. The different models used in the rest of the paper are summarised in Table 1 where their main characteristics are recalled. These characteristics are described in more detail hereafter.

The quasi-1D model refers to the quasi-1D assumption, where the flow is inviscid and all variables are uniform along the radial direction (spatial dependance in the x direction only) [START_REF] Marble | Acoustic disturbance from gas non-uniformities convected through a nozzle[END_REF][START_REF] Giauque | Analytical analysis of indirect combustion noise in subcritical nozzles[END_REF][START_REF] Duran | Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the Magnus expansion[END_REF]. With these assumptions, acoustic With the 2D models, Both mean flow and entropy fluctuations depend on the radial position and are hence 2D, whereas acoustic waves are assumed to be 1D. In addition, it is worth recalling vorticity is neglected in these models. To end with 2D modelling, a convergence study was conducted and demonstrated that the results were stable if at least 100 streamtubes were considered. This value is used throughout the rest of the document. Next, the transfer functions corresponding to the downstream acoustic forcing P - n are reproduced in Fig. 7. As previously observed with the upstream acoustic forcing, computed (CFD) transmission and reflection coefficients are very similar when considering viscosity or not. In the present case, for both [P - 1 /P - n ] and [P + n /P - n ] this leads to similar transfer functions at high-frequency and to amplitude reductions in the low-frequency range when viscosity is included. This is again globally in agreement with the findings of Becerril [START_REF] Aguirre | Simulation of noise emitted by a reactive flow[END_REF].

Acoustic forcing

(a) (b) (c) (d) 
The noise reduction is qualitatively reproduced by the low-order model when viscous terms are included, despite being underestimated. With the quasi-1D model all the fluctuations are of acoustic origin and no dissipation occurs, so that all the incident acoustic energy is either transmitted or reflected by the nozzle [START_REF] Huet | Budgets of disturbances energy for nozzle flows at subsonic and choked regimes[END_REF]. The reduced amplitudes of the simulated transfer functions at low-frequencies with CFD RANS indicate that part of the acoustic energy is dissipated by viscosity, a behaviour captured -at least qualitatively-by the model. Concerning the medium-and high-frequency parts of the transfer functions, they are correctly reproduced for the transmission coefficient but slightly overpredicted for the reflection one. The agreement is nevertheless globally satisfactory. Differences are observed in the phase of the simulated transfer functions between CFD Euler and RANS. This indicates small variations in acoustic propagation velocity in these cases, but the discrepancies remain small. In addition, these phase variations are correctly captured by the model.

To understand the origin of the slight discrepancies between the numerical simulations and the model with a viscous mean flow field, Fig. 8 reproduces the pressure fluctuation along the downstream part of the nozzle for a harmonic downstream acoustic forcing P - n at 400 Hz. For the inviscid configuration, the pressure fluctuation does not vary with the radial position, as assumed in the model. Planar pressure fluctuations are also observed in the RANS simulations near the nozzle throat where the boundary layer is thin, but radial variations become more and more visible towards the end of the nozzle as the boundary layer thickens. These radial fluctuations cannot be captured by the model by definition and may explain the differences observed with the simulations. This distortion however remains sufficiently low for the separation of acoustic waves to remain valid under the planar acoustic wave assumption. In addition, it is worth noting it has been verified that vorticity remains negligible in RANS simulations and does not contribute to noise scattering.

To summarize the results obtained so far, numerical simulations proved viscosity does not strongly modify the scattering of acoustic waves through the nozzle. The key element to capture viscous effects with the model is to take into account the boundary layer of the mean flow field. Eddy viscosity only adds a minor contribution in modelling noise scattering, but its inclusion in the model reduces the discrepancies between the numerical and predicted transfer functions. In the last part of the paper, thermo-acoustic transfer functions of the nozzle corresponding to the noise generated by the acceleration of entropy fluctuations are investigated. These transfer functions combine the generation of entropy noise inside the nozzle and its scattering by the mean flow. sumption is not always verified for the entropy wave. Second, the quasi-1D low-order modelling strongly overestimates both numerical transfer functions for medium and large frequencies. This result has already been observed by Emmanuelli et al. [START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF] and is the consequence of the shear dispersion of the entropy wave through the nozzle, all the more important as frequency increases, and not reproduced with the quasi-1D assumption. When shear dispersion is taken into account in the modelling (2D model with entropy fluctuation near the wall), excellent agreement is obtained with the corresponding Euler simulation. It is also worth mentioning that no discrepancy is noticed here between the model and the simulation in the high frequency range for [P - 1 /σ 1 ], on the contrary to what was previously observed by Emmanuelli et al. This discrepancy hence cannot come from the possible contribution of vorticity, as evoked in their article, but is due to numerical errors in the CAA approach used in the previous study, amplified by the low noise levels at these frequencies.

Numerically, the absence of entropy fluctuations near the wall (CFD Euler without entropy fluctuation near the wall) leads to an increase of the generated noise in both upstream and downstream directions for medium and highfrequency noise, whereas the phases of the acoustic waves do not significantly vary. These results are very well captured by the 2D model, which reproduces the thermo-acoustic transfer functions with an excellent agreement both in amplitude and phase. In the model, the entropy noise source terms are related to the section-averaged value of the entropy fluctuation, see Eqs. ( 32)- [START_REF] Giusti | Experimental and numerical investigation into the propagation of entropy waves[END_REF]. As illustrated in Fig. 9, the shear dispersion of the entropy wave is very important inside the nozzle and leads to significant radial variations of the entropy fluctuations. Due to a compensation between positive and negative entropy fluctuations, the section-averaged entropy fluctuation is much lower than its initial amplitude. This is particularly visible in the converging section of the nozzle.

When entropy fluctuations are removed near the nozzle wall, this compensation is reduced and the entropy noise source term locally increases in comparison to the case where the fluctuation is present up to the wall, thus leading to a more important noise production. Physically, it corresponds to a lower decorrelation of the local entropy-related noise sources in the radial direction in comparison to fully planar entropy waves. This phenomenon is very similar to that already introduced to explain differences between the quasi-1D model (high correlation along the radial direction) and the 2D model (low correlation).

Contribution of viscosity to entropy noise

Before discussing the simulated and modelled thermo-acoustic transfer functions, the entropy fluctuations obtained with CFD Euler and RANS approaches for a harmonic forcing at 1000 Hz are reproduced in Fig. 11 (a). Simulated entropy fluctuations are globally similar but two main differences may be commented. First, the shear dispersion is slightly more visible near the wall for the URANS simulation, e.g. for x ∼ 100 mm, because this region corresponds to the external part of the boundary layer with decreased velocity compared to the Euler simulation. Second, the entropy wave fronts are not in phase and appear to be convected at a lower velocity in URANS, although the same velocity is imposed outside of the boundary layer in both simulations . This is a 610 consequence of the pressure loss. In the upstream duct, mean pressure slightly decreases along the axial direction in the URANS simulation because of viscosity. Due to the ideal gas law, and because temperature remains constant in the duct, density grows as pressure drops, so that velocity also drops for mass conservation purposes. These two effects are well reproduced by the 2D model fluctuations are known to generate vorticity through the baroclinic torque [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF],

which may in turn produce noise [START_REF] Cumpsty | The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise[END_REF][START_REF] Kings | Indirect combustion noise: noise generation by accelerated vorticity in a nozzle flow[END_REF]. It is reasonable to assume that the production of vorticity increases with viscosity, and as this vorticity is absent from the model, its associated noise cannot be captured. Numerical simulations nevertheless show that vorticity is of the same order for Euler and RANS simulations and therefore cannot be held responsible for the discrepancies observed.

Third, it was pointed out previously that thermo-acoustic transfer functions combine the generation of entropy noise inside the nozzle and its scattering by the mean flow. The acoustic transfer functions obtained in the previous section evidenced that this scattering is not perfectly reproduced by the model because of the boundary layer effect. The errors associated with this scattering are of the same order as those observed for the thermo-acoustic transfer functions.

The discrepancies thus seem to be a consequence of the flawed reproduction of noise scattering by the model.

Conclusion

The influence of viscosity on entropy noise generation and scattering inside The second term may be developed to give The derivative along the τ -direction may be neglected when the flow incidence θ is small (generally verified in the diffuser, but possibly too restrictive in the convergent section of the nozzle), so that the source term may be approxi- where nj is the number of streamtubes and A j the section of the j th streamtube.
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 1 Figure 1: Numerical discretisation of the nozzle.

) 4 . 4 .

 44 Numerical simulations4.1. Geometry and operating conditionsThe geometry considered is the converging-diverging DISCERN nozzle designed in the framework of the ANR DISCERN project to investigate indirect combustion noise. It was previously used for the validation of the inviscid version of the 2D model[START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF][START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF] and is illustrated below in Fig 2.The nozzle is 185 mm long (100 mm for the convergent and 85 mm for the divergent) and its radius varies from 29.5 mm at the inlet to 6.943 mm at the outlet, with a minimum of 5.5 mm at the throat. It is complemented by 100 mm long ducts of constant section at both extremities to achieve a separation of the acoustic waves in the numerical simulations, as detailed in §4.The operating point considered is very similar to the one used by Emmanuelli et al.[START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF], with the exception of the back pressure set to 30 bar. This high pressure value is representative of the pressure inside typical combustion chamber.Inlet temperature and Mach number are 1300 K and 0.0179. For the Euler configuration, it leads to a Mach number of 0.658 at nozzle throat and 0.344 at nozzle exit. To end, the fluid considered is air with constant heat capacities and γ = 1.315.4.2. MethodologyNumerical simulations are used to determine the noise scattered (acoustic transfer functions) or generated by the acceleration of entropy spots (thermoacoustic transfer functions) through the nozzle with both inviscid and viscous flow fields. Inviscid flow simulations correspond to the resolution of the Euler equations whereas k -ω SST URANS equations are considered when viscosity is taken into account. Simulations are 2D axisymmetric and are performed

  Numerical dissipation is evaluated by comparing the amplitude of the injected entropy fluctuation between the inlet and the outlet of the domain in the case of the Euler simulation. A maximum attenuation of 2% is observed at 1000 Hz. It is considered to be negligible, which is supported by the excellent agreement between the computed Euler transfer functions with those previously obtained by Emmanuelli et al. for the same configuration with CAA[START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF]. The attenuation of the entropy fluctuations is also negligible for the URANS simulations. Thermal diffusion is negligible due to the very high pressure level[START_REF] Xia | Dispersion of entropy perturbations transporting through an industrial gas turbine combustor[END_REF][START_REF] Huet | Influence of calorically perfect gas assumption and thermal diffusion on indirect noise generation[END_REF] and turbulent thermal diffusion has been removed by setting the turbulent Prandtl number to 10 7 . This removal of the turbulent thermal diffusion is supported by the experimental and numerical observations of Morgans et al.[32] and Giusti et al.[START_REF] Giusti | Experimental and numerical investigation into the propagation of entropy waves[END_REF]: for the frequencies considered in the present study, mean-flow shear dispersion (i.e. convection by the mean flow) is the dominant contributor in the evolution of entropy waves whereas turbulent mixing and diffusion are of lower importance. These results were obtained for straight ducts but it is reasonable to consider they remain valid for nozzle flows. In addition, an accurate evaluation of the turbulent thermal diffusion would require an LES with turbulence representative of the exhaust of a combustion chamber, including flame-induced and wall-cooling turbulence, which is out of the scope of the present study. Its suppression moreover ensures the entropy fluctuations, and hence their associated noise sources, are similar in both inviscid and viscous simulations. Having different entropy perturbation profiles between Euler and URANS simulations would complicate the evaluation of the viscosity effect on the thermo-acoustic transfer functions of the nozzle.

Figure 2 :

 2 Figure 2: Mean Mach number evolution along the nozzle for RANS (top) and Euler (bottom) simulations. (a) global view, (b) zoom on the downstream duct

  both simulations. The Mach number barely depends on the radial position for the Euler simulation. A similar observation is made for the RANS upstream of the throat, where the boundary layer is very thin. It nevertheless broadens quickly in the divergent part and is quite thick in the downstream duct, leading to large mean flow variations along the radius as illustrated in Fig. 2 (b). A 375 consequence of this thick boundary layer is the much larger Mach number on the nozzle axis in RANS in the downstream region, where it rises to 0.40 in comparison to 0.34 in the Euler simulation.

Figure 3 :

 3 Figure 3: Axial evolution of section-averaged (a) Mach number and (b) pressure. -• CFD Euler; -CFD RANS.
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 44 Figure 4: Evolution of the viscosity ratio µ T /µ along the nozzle for RANS simulation.

Figure 5 :

 5 Figure 5: Evolution of (a) the turbulent kinetic energy k and (b) its axial gradient inside the nozzle for RANS simulation.
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 4 Numerical transfer functions Once the mean flows are computed, acoustic or entropic fluctuations are injected through the boundaries. Noise is scattered or generated inside the nozzle and the resulting waves are used to construct the numerical transfer functions of the nozzle. Three different forcings are considered: acoustic from the inlet, acoustic from the outlet and entropic from the inlet. These forcings are achieved by superimposing perturbations to the imposed mean flow quantities. It is chosen here to force the nozzle with plane waves. The shear layer in RANS nevertheless produces a strong shearing of the entropy fluctuation, which is quickly dissipated numerically close to the wall. To allow fair comparisons between RANS and Euler simulations, the inlet entropy fluctuation is set to 0 near the nozzle wall (r > 0.0265 m) for all simulations. It is worth noting such attenuation of the entropy fluctuations may be expected experimentally in the boundary layers through shear dispersion and turbulent mixing. Construction of the transfer functions requires the evaluation of entropy and acoustic waves upstream and downstream of the nozzle. This wave separation process is carried out in the ducts. The planar inlet entropy wave is obtained from its definition, σ = s /c p , and acoustic waves are computed using the Riemann invariants, see Eq. (
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 45 . Simulated transfer functions are illustrated in Figs. 6-7 and Fig. 12 and are discussed in the next section, along with the model predictions. 2D entropy waves, 1D acoustic waves
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  and entropy waves are planar and vorticity perturbations are nil. For the sake of simplicity, in the present study the quasi-1D transfer functions are computed with the 2D model. The quasi-1D mean flow is provided analytically through mass conservation and the 1D character of the entropy wave is ensured by the use of a unique streamtube that extends radially from nozzle axis to nozzle wall.The viscous 2D model is the model detailed in Section 3 whereas the inviscid 2D model corresponds to the inviscid formulation of the model, obtained by zeroing all viscous terms (µ = µ T = 0 kg/m/s and k = 0 m 2 /s 2 ) in Eqs (22)-[START_REF] Giusti | Experimental and numerical investigation into the propagation of entropy waves[END_REF]. The inviscid 2D model is identical to the one presented in Emmanuelli et al.[START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF]. In the viscous 2D model with RANS mean flow, viscosity is accounted for both in the mean flow evaluation and in the propagation of the perturbations, whereas all viscous effects are neglected using the inviscid 2D model with Euler mean flow. Midway between these two models, the inviscid 2D model with RANS mean flow accounts for viscosity only through the mean flow for the convection of entropy and noise-associated sources, as well as for the scattering of the acoustic waves.

Figure 6 :

 6 Figure 6: Computed and modelled nozzle transfer functions with upstream acoustic forcing P + 1 . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude, (d) downstream wave, phase. • CFD Euler; CFD RANS; -quasi-1D model; -inviscid 2D model with Euler mean flow; -• • viscous 2D model with RANS mean flow; -• inviscid 2D model with RANS mean flow.

Figure 7 :

 7 Figure 7: Computed and modelled nozzle transfer functions with downstream acoustic forcing P - n . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude, (d) downstream wave, phase. See Fig. 6 for legend.

Figure 8 :

 8 Figure 8: Simulated pressure fluctuation inside the nozzle with a downstream harmonic acoustic forcing at 400 Hz. Isolines are added to help comparison.

Figure 9 :

 9 Figure 9: 2D modelled entropy fluctuation at 800 Hz with Euler mean flow without (top) and with (bottom) entropy fluctuation near the wall.

5. 2 .Figure 10 :

 210 Figure 10: Computed and modelled inviscid nozzle transfer functions with entropy forcing σ 1 . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude, (d) downstream wave, phase. • CFD Euler without entropy fluctuation near the wall; CFD Euler with entropy fluctuation near the wall; -quasi-1D model; --2D model (Euler mean flow) without entropy fluctuation near the wall; -• 2D model (Euler mean flow) with entropy fluctuation near the wall.

Figure 11 :

 11 Figure 11: Entropy fluctuation at 1000 Hz with RANS (top) and Euler (bottom) mean flow fields obtained by (a) numerical simulations and (b) 2D modelling.

615Figure 12 :

 12 Figure 12: Computed and modelled nozzle transfer functions with entropy forcing σ 1 . (a) upstream wave, amplitude, (b) upstream wave, phase, (c) downstream wave, amplitude, (d) downstream wave, phase. See Fig. 6 for legend.

a

  nozzle is investigated numerically and analytically. Acoustic and thermoacoustic nozzle transfer functions are evaluated numerically by solving Euler and URANS equations, whereas the inviscid analytical model of Emmanuelli et al.[START_REF] Emmanuelli | Description and application of a 2D-axisymmetric model for entropy noise in nozzle flows[END_REF], based on the linearization of the flow equations, is extended to include viscous terms. With both approaches, the interactions between entropy and acoustic fluctuations and the mean flow field are correctly accounted for, but small scale turbulence is not taken into account and its contribution to entropy dispersion and noise scattering is not reproduced. This contribution is expected to be of minor importance in contrast with the influence of mean flow and viscous diffusion on the resolved perturbations. Numerically, viscosity slightly modifies acoustic scattering but changes in transmission and reflection coefficients of the nozzle are limited. Such modifications are qualitatively well captured by the viscous model, even if the quantitative agreement is lower than for inviscid flows. Discrepancies are caused by the radial evolution of the acoustic waves in the thick boundary layer, not accounted for by the model that assumes planar acoustic waves. Considering entropy forcing, an important shear dispersion is first observed near the walls due to the boundary layer and dissipates entropy fluctuations. A similar dissipation is most likely to occur in real configurations and entropy fluctuations must be removed near the walls for accurate predictions. The capacity of the model to reproduce entropy noise generation in such cases is demonstrated for inviscid flows. The absence of entropy fluctuations near the nozzle wall leads to a noise increase, explained by the lower decorrelation of the related noise sources in the radial direction in comparison to initially planar entropy waves. Second, viscosity essentially reduces the amplitude of the transfer functions obtained by simulation in the medium frequency range. Noise reduction is reproduced by the model but discrepancies remain, as for acoustic forcing. Changes are almost totally captured when considering a viscous mean flow field, whereas viscous entropy noise source term and viscous diffusion of acoustic perturbations have a negligible impact on the noise. Discrepancies with numerical simulations are hence attributed to the inaccurate noise scattering discussed in the acoustically forced cases.

Figure B. 1 :

 1 Figure B.1: Cartesian and curvilinear systems.

  l the curvilinear abscissa based on a streamline and τ its normal direction, see Fig. B.1. Noting that the entropy fluctuation writes analytically (see §3.4) σ(l) = σ(l = 0) exp -iω
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Nomenclature and main characteristics of the different methods used to evaluate the transfer functions.

  with ∂l/∂x = 1/ cos θ and tan θ = u 0r /u 0x by definition.To comply with the formalism used in CHEOPS-Nozzle, which is necessary to take into account the presence of a normal shock in the diffuser[START_REF] Huet | Entropy noise modelling in 2D choked nozzle flows[END_REF], the
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Appendix A. Derivation of the filtered momentum equation

The filtered momentum equation is obtained from the momentum equation, Eq. (A.1) [START_REF]Large-Eddy Simulation for Acoustics[END_REF] ∂ρ u ∂t

where ⊗ is the tensor product, τ = µ ∇ T u + ∇ u -2/3µ ∇ • u I is the viscous stress tensor, µ is the dynamic viscosity of the fluid and I the identity matrix, to which we apply the filter operator noted (•). This operator corresponds either to the Reynolds (ensemble) averaging defined in Eq. (A.2) for the RANS approach [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] or to the spatio-temporal filter of Eq. (A.3) for LES [START_REF]Large-Eddy Simulation for Acoustics[END_REF] φ( x, t) = lim

with N the number of realizations, G(∆, θ) the kernel of the filter, the convolution product and ∆ and θ the cutoff length and the cutoff time, respectively.

The filtered equation hence writes

with φ the Favre (mass-weighted) averaging defined from Reynolds averaging as φ = ρφ/ρ. In Eq. (A.4), (ρ u ⊗ u -ρ ũ ⊗ ũ) needs to be modelled. The closure is classically achieved using the Boussinesq approximation with suitable generalization for compressible flows [START_REF] Blazek | Computational Fluid Dynamics: Principles and Applications[END_REF][START_REF] Wilcox | Turbulence Modeling for CFD[END_REF]:

with µ T the eddy viscosity and k the kinetic energy per unit volume of the modelled fluctuations. To end, the filtered viscous stress tensor is approximated by its expression evaluated from the resolved variables

It has been verified numerically that this assumption is globally verified both for RANS [START_REF] Barre | Compressible, high speed flows[END_REF][START_REF] Rai | Direct simulation of spatially evolving compressible turbulent boundary layers[END_REF] and LES [START_REF] Blazek | Computational Fluid Dynamics: Principles and Applications[END_REF][START_REF] Vreman | A priori tests of large eddy simulation of the compressible plane mixing layer[END_REF] and Eq. (A.4) finally writes

with

It is worth noting that Eq. (A.7) reduces to the initial momentum equation, 715 used for instance in DNS, when the filter operator corresponds to identity and

Appendix B. Simplification of the momentum-equation source term

The momentum-equation source term writes, Eq. (