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Abstract

In this article, we derive first-order necessary optimality conditions for a constrained optimal
control problem formulated in the Wasserstein space of probability measures. To this end, we
introduce a new notion of localised metric subdifferential for compactly supported probability
measures, and investigate the intrinsic linearised Cauchy problems associated to non-local continuity
equations. In particular, we show that when the velocity perturbations belong to the tangent cone
to the convexification of the set of admissible velocities, the solutions of these linearised problems
are tangent to the solution set of the corresponding continuity inclusion. We then make use of these
novel concepts to provide a synthetic and geometric proof of the celebrated Pontryagin Maximum
Principle for an optimal control problem with inequality final-point constraints. In addition, we
propose sufficient conditions ensuring the normality of the maximum principle.

Keywords : Mean-Field Optimal Control, Wasserstein Spaces, Pontryagin Maximum Principle, Differential Inclu-
sions, Inner-Approximations of Optimal Trajectories
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1 Introduction

In recent years, the mathematical analysis of collective behaviours in large systems of interacting agents
has been the object of a growing attention from several mathematical communities. The corresponding
class of so-called multi-agent systems appears in a wide number of applications, including e.g. the
modelling of autonomous vehicle ensembles [15], swarms and flocking structures in the animal kingdom
[23], opinion dynamics on networks [8] and pedestrian flows [22]. While these structures are frequently
represented first-handedly as large dynamical systems formulated in finite-dimensional spaces – e.g.
by means of families of ordinary differential equations or time-dependent graphs –, such discrete
formulations often give rise to intractable problems. Indeed, the main difficulty inherent to the study
of multi-agent systems is their very large dimensionality, which causes severe challenges when trying to
compute solutions using numerical methods or to describe agent-to-agent interactions in a meaningful
way. These aspects are particularly relevant in control-theoretic settings, where a policy maker aims at
synthesising a control law which is as generic and global as possible in order to stir a system towards
a desired goal. This type of control problems arise very frequently in the applied fields which were
previously mentioned, see e.g. [1, 2, 44] and references therein.

In this context, the first step in order to circumvent these high-dimension related issues is to
identify adequate infinite-dimensional approximations of the class of multi-agent systems at hand,
usually in the form of a family of partial differential equations. One subsequently aims at synthesising
a control law directly at the level of the PDE, and finally at returning to the original problem by
using the “infinite-dimensional” control signal to stir the original finite-dimensional system (see e.g.
the introduction of [13] for ampler details on this general scheme). To this day, the best identified
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framework to conduct such a program is that of mean-field approximations. In this setting, the discrete
agent trajectories are replaced by a curve of measures µ(·), whose time-evolution is described by means
of a non-local continuity equation (see Section 2.3 below) of the form

∂tµ(t) + div
(

v(t, µ(t))µ(t)
)

= 0. (1)

These equations appear very naturally when performing infinite-dimensional approximations of deter-
ministic particle systems driven by ODEs, and are usually studied in the space of probability measures
endowed with the Wasserstein metrics of optimal transport (see Section 2.1 below). For a modern
introduction to this topic, we point to [41] as well as to the survey [21].

In this article, we investigate necessary optimality conditions for the mean-field optimal control
problems of Bolza type

(P)



































min
u(·)∈U

[

∫ T

0
L(t, µ(t), u(t))dt + ϕ(µ(T ))

]

s.t.















∂tµ(t) + div
(

v(t, µ(t), u(t))µ(t)
)

= 0,

µ(0) = µ0,

µ(T ) ∈ QT .

The minimisation in problem (P) is taken over the set of admissible open-loop controls U := {t ∈
[0, T ] 7→ u(t) ∈ U s.t. u(·) is L 1-measurable}, where (U, dU ) is a compact metric space and L 1

denotes the standard one-dimensional Lebesgue measure. The state µ(·) of the system is stirred by the
controlled non-local velocity field v : [0, T ]×Pc(Rd)×U ×Rd → Rd, while µ0 ∈ Pc(R

d) denotes a fixed
initial datum and QT ⊂ P2(Rd) is a closed set which represents final-point constraints. As customary
in the modelling of optimal control problems, the cost is split into a final cost ϕ : Pc(R

d) → R and
a distributed running cost L : [0, T ] × Pc(R

d) × U → R. Observe that in (P), the state variable µ(·)
is modelled as a curve of compactly supported measures. This comes from the fact that the afore-
described applications of multi-agent systems usually involve compactly supported initial data, and
that classical stability estimates (see e.g. Theorem 2.11 below) ensure that curves of measure solving
non-local continuity equations starting from compactly supported data remain compactly supported
at all subsequent times.

Optimal control problems in Wasserstein spaces of the form (P) have been extensively studied in
the past few years, mostly in the absence of final-point or running constraints. The first contributions
on this topic [26, 27, 28] were concerned with the rigorous convergence of discrete multi-agent optimal
controls towards their infinite-dimensional counterparts (see also the more recent contributions [19,
26]), which provides a constructive way of recovering the existence of optimal trajectories. In parallel
to these investigations, several attempts were made at deriving necessary optimality conditions for
mean-field optimal control problems. The first result of this kind was proposed in [9], where the
authors proved a generalisation of the celebrated Pontryagin Maximum Principle (“PMP” in the
sequel) for a multi-scale version of (P). Therein, a family of open-loop controls acts on a finite-
dimensional subset of leaders, which allows to recover a PMP in Wasserstein spaces by passing to the
limit in the finite-dimensional maximum principles as the number of agents goes to infinity. The first
general derivation of the PMP for problem (P) was obtained by the first author in [12], and is based
on a careful adaptation of the strategy of needle-variations to the abstract geometric structure of
Wasserstein spaces. This result was further extended in [10] to problems with general final-point and
running state constraints. In the latter contribution, the proof strategy combines a finite-dimensional
non-smooth multipliers rule and outer-approximations of optimal trajectories by countable families of
curves generated using needle-variations. We also mention the earlier work [45] in which the author
independently derived an alternative version of the maximum principle for a very particular instance
of problem (P). This result was subsequently extended in the recent paper [46], in which a full PMP
in the spirit of [12] is derived for unconstrained impulsive control problems, by means of discrete
approximations combined with Ekeland’s principle. We likewise point out that a completely different
approach to Pontryagin optimality conditions for mean-field optimal control problems – formulated in
terms of McKean-Vlasov dynamics and stochastic differential equations – was independently developed
in [17] (see also the recent monograph [18, Vol.I Chapter 6]).
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In this manuscript, we revisit the necessary optimality conditions for problem (P) by proposing
a geometric proof of the maximum principle (see Theorem 4.4 and Theorem 4.9 below). The latter
is based on a general methodology which was first developed by the second author in [29] for Mayer
problems, and that can be summarised as follows. When the running cost L(·, ·, ·) is equal to zero,
the generalised Fermat rule states that the directional derivatives of the final cost ϕ(·) taken at
points of local minimum are non-negative when evaluated along directions that are tangent to the
set of admissible trajectories. Usually, due to the non-linearity of the dynamics, it is not possible to
exhaustively describe the set of all such tangents. However in order to derive the PMP, it is sufficient
to identify subsets of tangent directions which are informative enough. As it can be expected from
the classical theory of optimisation, the set of trajectories of the linearised control system satisfying
linearised constraints are tangent to the set of all admissible trajectories, provided some additional
constraint qualifications are satisfied. While classical linearisation methods for control systems usually
involve derivatives of the dynamics with respect to both state and control, these latter only describe
a small subset of tangent directions and lead to the so-called weak maximum principle. On the
other hand, replacing the control system by a relaxed differential inclusion does not change the set
of tangents to its trajectories, even though it drastically enlarges the dynamics itself (since the right-
hand side becomes the convex hull of the admissible velocities of the original control system). Then,
linearisations of this “larger” set of dynamics obtained by taking adequate derivatives of the resulting
set-valued velocity mapping allow to describe richer subsets of tangents. Note next that the Fermat
rule also implies that the set of curves which are tangent to admissible trajectories has an empty
intersection with the the set of all directions in which the cost is strictly decreasing. At this point,
one can recover an explicit dual description of this fact in the form of an inequality by applying a
separation theorem. The final step in this procedure is then to introduce a suitably chosen costate
variable satisfying the adjoint dynamics, which is such that the maximisation condition of the PMP
holds for almost-every time. Besides, it is well known that Bolza problems can be equivalently written
in Mayer form – i.e. with L = 0 in (P) –, which means that the approach we just described is also
valid for optimal control problems with non-trivial running costs. When the final-point constraints are
described by families of functional inequalities and the set of tangents to the latter has empty interior,
it follows that the abnormal version of the PMP holds true, i.e. the adjoint state does not depend on
the cost of the problem. On the other hand when the tangent set to the final-point constraints has
non-empty interior and when the constraints are qualified in some sense, then the normal version of
the PMP holds true, and the investigation of optimal curves is greatly simplified.

The approach that we described in the previous paragraph is general enough to continue with
second- (and higher-) order optimality conditions, by taking second-order linearisations of control
systems and constraints, as well as second-order derivatives of the costs, even in the presence of
additional running state constraints. Another interesting feature of this strategy is that it allows to
precisely discriminate between the normal and abnormal versions of the PMP, which is generically not
true for proofs relying on outer-approximations of optimal trajectories. This general methodology has
been successfully applied to optimal control problems formulated on very broad classes of dynamics,
including e.g. classical ODEs in finite-dimensional spaces [29], semi-linear evolution equations in
general Banach spaces [30, 32] and stochastic differential equations [36]. In addition to its holistic
nature, this procedure also presents the advantage of being readily transposable to the study of second-
order necessary optimality conditions for optimal control problems, see e.g. [31, 33, 34] and references
therein. We point more specifically to the recent publication [35] on this topic, in which an optimal
control problem involving final-point equality and inequality constraint was investigated using metric
inverse mapping theorems on the space of controls.

However, in the context of mean-field optimal control problems written in the general form (P), the
implementation of the afore-described program is much more delicate. Indeed, the space of probability
measures is at best a metric space when endowed with a Wasserstein metric, and a number of tools
and concepts of set-valued and non-smooth analysis need to be carefully adapted to this setting in
order to study necessary optimality conditions. Concerning differential-theoretic aspects, it has been
hinted in the pioneering works [40, 42] and further installed in [5, 49] that the Wasserstein space
(P2(Rd), W2) can be endowed with a pseudo-Riemannian structure. More specifically, the latter
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provides an explicit characterisation of the exponential map and of the corresponding analytical tangent
space TanµP2(Rd) (see Section 2.1 below), and a full theory of first- and second-order differential
calculus has been developed in this framework, see [5, Chapter 10] and [4, 37]. Regarding differential
inclusions, the authors of the present manuscript have recently proposed in [11] a sound generalisation
of these objects for continuity equations formulated in Wasserstein spaces, in keeping with the classical
theory that is described e.g. in [7, Chapter 10]. In particular contrary to other attempts aiming at
generalising differential inclusions in this context (see e.g. [20, 38]), the notion of continuity inclusion
introduced in [11] ensures a one-to-one correspondence between the trajectories of control systems and
the canonically associated set-valued dynamics (see Theorem 2.15 below).

The contributions of this manuscript can be summarised as follows. In Section 3.1, we start
by proposing a new definition of localised subdifferentials and differentiability (see Definition 3.1 and
Definition 3.3 below) for functionals defined over Wasserstein spaces, which are well-suited to the study
of dynamical and variational problems involving compactly supported measures. In Proposition 3.5,
we adapt to this new setting a result already known for absolutely continuous measures in the classical
case (see e.g. [24, Chapter 1, Proposition 4.2]), which asserts that subdifferentials which belong to
TanµP2(Rd) are in fact strong (see Definition 3.1 below). We subsequently derive the expression of
the intrinsic linearised Cauchy problem associated to a non-local continuity equation in Proposition
3.10 of Section 3.2, and study in Theorem 3.12 the variational linearisation of continuity inclusions.
Thereafter in Section 4.1, we apply these differential and set-theoretic concepts to prove a Pontryagin
Maximum Principle for a Mayer version of problem (P) – i.e. without running cost – in Theorem
4.4, where the set of end-point constraints QT is defined by functional inequalities. We also point out
that the proof of this result has been slightly improved compared to earlier implementations of this
program e.g. in [32, 35], as the separation arguments are performed in adequate finite-dimensional
spaces, which circumvents a lot of potential technicalities related to the separation of subsets of
infinite-dimensional vector spaces. A full PMP for the corresponding Bolza problem is then recovered
in Theorem 4.9 of Section 4.2 by means of a standard procedure that directly builds on the PMP for
the Mayer problem.

Before moving on to the core of the manuscript, we would like to make some final remarks.

1. While our methodology would also allow to deal with end-point constraints involving functional
equalities, the corresponding proof strategy relies on a different class of inner-approximations,
combined with technical metric inverse mapping arguments in the spirit of [35]. For the sake of
clarity, we shall present these results separately in a future publication.

2. Even though the constrained PMP derived in [10] incorporates state constraints and takes into
account more general final-point constraints, its proof suffers from the drawbacks of being less
geometrically meaningful and highly technical, while relying on outer-approximations. In this
regard, the approach described in this manuscript is more synthetic, and should allow for the
derivation of the maximum principle in the presence of general constraints (see e.g. [34, 35]).

3. The study of mean-field control problems of the form (P) is also sensible when the admissible
controls u : [0, T ] ×Rd → Rd have a closed-loop structure with respect to the space variable, see
e.g. [10, 12, 16, 44] and [18, 39] in connection with the theory of mean-field games. However in
this case, derivatives with respect to the space variable of the closed-loop controls also appear in
the linearised systems and in the adjoint dynamics of the PMP, which requires more regularity
assumptions and leads to heavier expressions while using the same geometric ideas as in the
open-loop case.

The structure of the article is the following. In Section 2, we expose a list of preliminary notions
of optimal transport theory and set-valued analysis. In particular, we recall some of the recent
results of [11] about continuity inclusions. In Section 3, we present our new definition of localised
subdifferentials along with the intrinsic and variational linearisations of the set-valued counterparts
of continuity equations. In Section 4, we subsequently prove a PMP in Wasserstein spaces, first for a
Mayer problem, and then for a Bolza problem. We finally present in Section 5 examples of functionals
which are locally differentiable in the sense of Section 3, and provide the expressions of their gradients.
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2 Preliminaries

In this section, we recall several notions pertaining to optimal transport theory, set-valued analysis
and continuity inclusions in Wasserstein spaces, all of which will be needed to state and prove the
main results of Section 3 and Section 4.

2.1 Analysis in measures spaces and optimal transport

We recollect here some preliminary tools of analysis in measure spaces and optimal transport theory,
for which we refer the reader to the monographs [3] and [5, 48, 49] respectively.

Given two complete separable metric spaces (S , dS ) and (T , dT ), we denote by Ω the closure
of a subset Ω ⊂ S and by ∂Ω its topological boundary. A mapping φ : S → T is said to be
bounded if for some (and thus all) τ0 ∈ T , it holds that sups∈S dT (φ(s), τ0) < +∞. We will use the
notation C0(S , T ) (resp. C0

b (S , T )) for the space of continuous (resp. continuous and bounded)
functions from S into T , as well as AC([0, T ], S ) for the space of absolutely continuous curves from
[0, T ] ⊂ R+ into S . In the sequel, Lip(φ(·) ; Ω) stands for the Lipschitz constant of a map φ : S → T

over Ω ⊂ S . Given a separable Banach space (X, ‖·‖X ) and p ∈ [1, +∞), we denote by Lp([0, T ], X)
the Banach space of p-integrable maps from [0, T ] ⊂ R+ into X in the sense of Bochner (see e.g. [25]),
where [0, T ] is endowed with the standard one-dimensional Lebesgue measure L 1.

Let P(Rd) be the space of Borel probability measures defined over Rd endowed with the narrow
topology, that is the topology induced by the weak-∗ convergence of measures defined by

µn ⇀∗

n→+∞
µ if and only if

∫

Rd
φ(x)dµn(x) −→

n→+∞

∫

Rd
φ(x)dµ(x) for every φ ∈ C0

b (Rd,R). (2)

Given p ∈ [1, +∞), we define the momentum of order p of an element µ ∈ P(Rd) by

Mp(µ) :=

(∫

Rd
|x|pdµ(x)

)1/p

,

as well as its support as the closed subset of Rd

supp(µ) :=
{

x ∈ R
d s.t. µ(Nx) > 0 for every neighbourhood Nx of x

}

.

We will henceforth denote by Pp(Rd) and Pc(R
d) the subsets of Borel probability measures with

finite momentum of order p and compact support respectively. In what follows, we will frequently use
the R-fattening of the support of a measure µ ∈ Pc(R

d), defined by

Bµ(R) :=
⋃

x ∈ supp(µ)

B(x, R), (3)

where B(x, R) ⊂ Rd denotes the closed ball of center x ∈ Rd with radius R > 0.

Definition 2.1 (Pushforward of a measure and transport plans). Given a Borel map f : Rd → Rd

and an element µ ∈ P(Rd), the pushforward f#µ ∈ P(Rd) of µ through f(·) is defined as

f#µ(B) := µ(f−1(B)),

for any Borel set B ⊂ Rd. Given two elements µ, ν ∈ P(Rd), the set Γ(µ, ν) of transport plans
between µ and ν is defined as the subset of all γ ∈ P(R2d) such that π1

#γ = µ and π2
#γ = ν, where

the maps π1, π2 : Rd × Rd → Rd stand for the projection operations onto the first and second factors.

We recall below the definition and some of the known properties of the Wasserstein spaces of
optimal transport theory (see e.g. [5, 48, 49]).
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Definition 2.2 (Wasserstein spaces). Given p ∈ [1, +∞) and µ, ν ∈ Pp(Rd), the Wasserstein distance
of order p between µ and ν is defined by

Wp(µ, ν) := min
γ∈Γ(µ,ν)

(∫

R2d
|x − y|pdγ(x, y)

)1/p

,

and we denote by Γo(µ, ν) the set of optimal transport plans for which this minimum is attained. The
Wasserstein space of order p is then defined as the metric space (Pp(Rd), Wp) of probability measures
with finite momentum of order p endowed with the Wp-distance.

It is a well-known fact in optimal transport theory that the sets Γo(µ, ν) are non-empty for every
p ∈ [1, +∞) and any µ, ν ∈ Pp(Rd). This is a direct consequence of the narrow closedness of Γ(µ, ν),
together with the coercivity of the map

γ ∈ Pp(R2d) 7→
∫

R2d
|x − y|pdγ(x, y) ∈ R+.

Moreover, the space (Pp(Rd), Wp) is a complete separable metric space, and the topology induced by
the Wasserstein distance metrises the narrow topology (2) restricted to Pp(Rd), in the sense that

Wp(µn, µ) −→
n→+∞

0 if and only if











µn ⇀∗

n→+∞
µ,

∫

Rd
|x|pdµn(x) −→

n→+∞

∫

Rd
|x|pdµ(x),

for every sequence (µn) ⊂ Pp(Rd) and µ ∈ Pp(Rd). In the sequel, we will frequently consider the
(non-complete) metric space (Pc(R

d), Wp) of compactly supported measures, seen as a subset of the
Wasserstein space (Pp(Rd), Wp), where p ∈ [1, +∞) will depend on the context.

In the particular case where p = 2, it is known that (P2(Rd), W2) can also be endowed with a
pseudo-Riemannian structure. Given an element µ ∈ P2(Rd), the analytical tangent space to P2(Rd)
at µ is defined in this context as

TanµP2(Rd) :=
{∇ξ(·) s.t. ξ ∈ C∞

c (Rd)
}L2(µ)

.

We point the reader to [5, Chapter 8] for a contextual introduction of this geometric object, as well as
for a thorough analysis of its interplay with absolutely continuous curves of measures and continuity
equations (see also Section 2.3 below).

We end this series of prerequisites by recalling a variant of the disintegration theorem in the context
of optimal transport, for which we refer e.g. to [5, Theorem 5.3.1].

Theorem 2.3 (Disintegration theorem). Given two elements µ, ν ∈ Pp(Rd) and γ ∈ Γ(µ, ν), there
exists a µ-almost uniquely determined family of measures {γx}x∈Rd ⊂ Pp(Rd) called the disintegration
of γ onto its first marginal π1

#γ = µ, such that

∫

R2d
ξ(x, y)dγ(x, y) =

∫

Rd

∫

Rd
ξ(x, y)dγx(y)dµ(x),

for every map ξ ∈ L1(R2d,R; γ).

Reciprocally given µ ∈ Pc(R
d) and a µ-measurable family of measures {γx}x∈Rd ⊂ Pc(R

d), we
shall sometimes write γ :=

∫

Rd γxdµ(x) to denote the unique element of Pc(R
2d) satisfying

∫

R2d
ξ(x, y)dγ(x, y) =

∫

Rd

∫

Rd
ξ(x, y)dγx(y)dµ(x)

for every ξ ∈ C0
b (R2d,R).
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2.2 Elements of set-valued analysis

In this section, we recall several notions and classical results of set-valued and non-smooth analysis,
for which we refer to the comprehensive monographs [6, 7].

Let (S , dS ) be a complete separable metric space and (X, ‖·‖X ) be a separable Banach space.
We denote by BS (s, β) the closed ball of radius β > 0 centred at s ∈ S , and by BX the closed unit
ball in X centred at 0. Given a subset B ⊂ X, we define its closed convex hull co (B) as the closure of

co(B) :=

{

∑N
i=1αibi s.t. N ≥ 1, bi ∈ B, αi ≥ 0 for i ∈ {1, . . . , N} and

∑N
i=1αi = 1

}

⊂ X,

and consider the distance function to B defined as x ∈ X 7→ distX(x ; B) := infb∈B ‖x − b‖X . An
application F : S ⇒ X is called a set-valued map – or a multifunction – from S into X if F(s) ⊂ X
for any s ∈ S , and we denote by D(F) := {s ∈ S s.t. F(s) 6= ∅} its effective domain. A set-valued
map F(·) is said to have closed (resp. convex) images if the sets F(s) are closed (resp. convex) for any
s ∈ D(F). In the following definitions, we recall the concepts of measurability and Lipschitz regularity
for set-valued maps.

Definition 2.4 (Measurable multifunctions). Let (S , Ω, ̟) be a measure space defined over S and
F : S ⇒ X be a set-valued map. Then, F(·) is said to be ̟-measurable if

F−1(O) :=
{

s ∈ S s.t. F(s) ∩ O 6= ∅
}

∈ Ω,

for any open set O ⊂ X.

Definition 2.5 (Lipschitz continuity of multifunctions). A set-valued map F : S ⇒ X is Lipschitz
regular around s ∈ D(F) with constant L > 0 if there exists a neighbourhood Ns ⊂ S of s such that

F(s1) ⊂ F(s2) + L dS (s1, s2)BX ,

for any s1, s2 ∈ Ns.

We end this primer in set-valued analysis by recalling the definition of tangent cone to a closed
convex subset of a Banach space, and provide one of its equivalent characterisations.

Definition 2.6 (Tangent cone to a convex set). Let K ⊂ X be a closed convex set and x ∈ K. The
tangent cone TK(x) to K at x is then defined by

TK(x) :=
⋃

λ>0

λ(K − x).

Moreover, the set TK(x) can be alternatively characterised as

TK(x) =
{

w ∈ X s.t. distX(x + ǫw; K) = o(ǫ) for any ǫ > 0
}

=

{

w ∈ X s.t. for every ǫn −→
n→+∞

0+, there exist wn −→
n→+∞

w such that

x + ǫnwn ∈ K for all n ≥ 1

}

.

(4)

as a consequence e.g. of [7, Proposition 4.2.1].

2.3 Continuity equations and inclusions in Wasserstein spaces

In this section, we recollect notions pertaining to continuity equations and continuity inclusions in
the space of measures. Given a time horizon T > 0, a curve µ : [0, T ] → P(Rd) and a velocity-field
v : [0, T ] × Rd → Rd, we say that (µ(·), v(·)) is a trajectory-velocity pair of the continuity equation

∂tµ(t) + div
(

v(t)µ(t)
)

= 0, (5)
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if the following distributional equality

∫ T

0

∫

Rd

(

∂tξ(t, x) +
〈∇xξ(t, x), v(t, x)

〉

)

dµ(t)(x)dt = 0,

holds for any test function ξ ∈ C∞
c ((0, T ) × Rd). In what follows, we will mainly consider continuity

equations driven by Carathéodory velocity-fields, namely maps such that t ∈ [0, T ] 7→ v(t, x) ∈ Rd is
L 1-measurable for any x ∈ Rd and x ∈ Rd 7→ v(t, x) ∈ Rd is continuous for L 1-almost every t ∈ [0, T ].

In the recent work [11], we introduced a set-valued extension of (5), in the case where the velocity-
field is non-local i.e. when it also depends on the whole measure µ(t) at all times t ∈ [0, T ]. Based on
the identification of non-local velocity-fields

(t, µ, x) ∈ [0, T ] × Pc(R
d) × R

d 7→ v(t, µ, x) ∈ R
d,

with vector-field valued maps

(t, µ) ∈ [0, T ] × Pc(R
d) 7→ v(t, µ, ·) ∈ C0(Rd,Rd),

we proposed the following notion of differential inclusion for continuity equations.

Definition 2.7 (Continuity inclusions in measure spaces). Let V : [0, T ] × Pc(R
d) ⇒ C0(Rd,Rd) be

a set-valued map. We say that a curve of measures µ(·) solves the continuity inclusion

∂tµ(t) ∈ −div
(

V (t, µ(t))µ(t)
)

, (6)

if there exists an L 1-measurable selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)) such that the trajectory-
selection pair (µ(·), v(·)) solves the continuity equation

∂tµ(t) + div
(

v(t)µ(t)
)

= 0, (7)

in the sense of distributions.

In what follows, we introduce technical notions pertaining to compact restrictions of multifunctions
with values in C0(Rd,Rd), and proceed by stating our working assumptions. We will henceforth denote
by ‖·‖1:=‖·‖L1([0,T ],R) the L1-norm of a real-valued functional defined over [0, T ].

Definition 2.8 (Restriction of multifunctions to balls). Given a set-valued map V : [0, T ]×Pc(R
d) ⇒

C0(Rd,Rd) and R > 0, we define its compact restriction to K := B(0, R) by

VK(t, µ) :=
{

v|K ∈ C0(K,Rd) s.t. v ∈ V (t, µ)
}

,

for all (t, µ) ∈ [0, T ] × Pc(R
d). Here, v|K denotes the restriction to K of the map v ∈ C0(Rd,Rd).

Conversely, observe that any function v ∈ C0(K,Rd) can be extended to ṽ ∈ C0(Rd,Rd) by defining
ṽ(x) := v(πK(x)) for all x ∈ Rd, where πK : Rd → K denotes the projection onto K.

We also define the closed convex hull coV (t, µ) of V (t, µ) ⊂ C0(Rd,Rd) as

coV (t, µ) :=
{

v ∈ C0(Rd,Rd) s.t. v|K ∈ coVK(t, µ) for any K := B(0, R) with R > 0
}

, (8)

where the closed convex hull coVK(t, µ) is taken in the Banach space
(

C0(K,Rd), ‖·‖C0(K,Rd)

)

.

Throughout the remainder of this section, we fix a time horizon T > 0 and a real p ∈ [1, +∞).

Hypotheses (DI). For every R > 0, assume that the following holds with K := B(0, R).

(i) For any µ ∈ Pc(R
d), the set-valued map t ∈ [0, T ] ⇒ VK(t, µ) is L 1-measurable with closed

non-empty images in C0(K,Rd).
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(ii) There exists a map m(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈
Pc(R

d), every v ∈ V (t, µ) and all x ∈ Rd, it holds

|v(x)| ≤ m(t)
(

1 + |x| + M1(µ)
)

.

(iii) There exists a map lK(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈
P(K) and every v ∈ V (t, µ), it holds

Lip
(

v(·) ; K
) ≤ lK(t).

(iv) There exists a map LK(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ] and any
µ, ν ∈ P(K), it holds

VK(t, ν) ⊂ VK(t, µ) + LK(t)Wp(µ, ν)BC0(K,Rd).

Remark 2.9 (Non-local continuity equations as a particular case of continuity inclusions). Suppose
that the multifunction V : [0, T ]×Pc(R

d) ⇒ C0(Rd,Rd) is single-valued for all (t, µ) ∈ [0, T ]×Pc(R
d).

Then, solutions of (6) coincide with those of the non-local continuity equation

∂tµ(t) + div
(

v(t, µ(t))µ(t)
)

= 0, (9)

where v(t, µ, x) := V (t, µ)(x) for all (t, µ, x) ∈ [0, T ] × Pc(R
d) × Rd.

In the scenario described in Remark 2.9, hypotheses (DI) become a localised and time-dependent
generalisation of that of [43, Section 1] in the spirit of Carathéodory ODEs. We state these assumptions
separately for the sake of clarity, as they will be frequently used in the sequel.

Hypotheses (CE). For every R > 0, suppose that the following holds with K := B(0, R).

(i) The application t ∈ [0, T ] 7→ v(t, µ, x) ∈ Rd is L 1-measurable for any (µ, x) ∈ Pc(R
d) × Rd.

Moreover, there exists a map m(·) ∈ L1([0, T ],R+) such that

|v(t, µ, x)| ≤ m(t)
(

1 + |x| + M1(µ)
)

,

for L 1-almost every t ∈ [0, T ] and any (µ, x) ∈ Pc(R
d) × Rd.

(ii) There exist two maps lK(·), LK(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any
µ, ν ∈ P(K) and all x, y ∈ K, it holds

∣

∣v(t, µ, x) − v(t, µ, y)
∣

∣ ≤ lK(t)|x − y| and
∣

∣v(t, µ, x) − v(t, ν, x)
∣

∣ ≤ LK(t)Wp(µ, ν).

Remark 2.10 (Local variant of hypotheses (CE)). In the sequel, we say that a Carathéodory vector-
field w : [0, T ] × Rd → Rd which is independent from µ(·) satisfies hypotheses (CE) if it is sub-linear
and locally Lipschitz with respect to the space variable, with constants m(·), lK(·) ∈ L1([0, T ],R+).

In what follows, we recall structural results for continuity inclusions in Wasserstein spaces which
were derived in [11]. From now on, we suppose that V : [0, T ] × Pc(R

d) ⇒ C0(Rd,Rd) is a set-valued
map satisfying hypotheses (DI), and consider Pc(R

d) as a subset of the metric space (Pp(Rd), Wp).

Theorem 2.11 (Existence and estimates on solutions of continuity inclusions). For every µ0 ∈
Pc(R

d), there exists a curve of measures µ(·) ∈ AC([0, T ], Pc(Rd)) solution of the continuity in-
clusion (6) such that µ(0) = µ0. Moreover if µ0 ∈ P(B(0, r)) for some r > 0, then there exist Rr > 0
and mr(·) ∈ L1([0, T ],R+) depending only on the magnitudes of r, ‖m(·)‖1 such that

supp(µ(t)) ⊂ B(0, Rr) and Wp(µ(t), µ(s)) ≤
∫ t

s
mr(τ)dτ, (10)

for every solution µ(·) of (6) and all times 0 ≤ s ≤ t ≤ T .
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In the following corollary, we state elementary consequences of Theorem 2.11 in the case where
V (·, ·) is single-valued. We present this result separately for the sake of clarity, as we shall frequently
use this variant in the sequel. Its last statement follows e.g. from [5, Chapter 8] and [43].

Corollary 2.12 (Non-local continuity equations). In Theorem 2.11 suppose that V : [0, T ]×Pc(R
d) ⇒

C0(Rd,Rd) is single-valued, and let µ0 ∈ P(B(0, r)) for some r > 0. Then the non-local velocity-field
v : [0, T ] × Pc(R

d) × Rd → Rd defined for all (t, µ, x) ∈ [0, T ] × Pc(R
d) × Rd by

v(t, µ, x) := V (t, µ)(x),

satisfies hypotheses (CE), and the non-local Cauchy problem (9) admits a unique solution µ(·) ∈
AC([0, T ], Pc(Rd)). Moreover, the curve µ(·) satisfies the estimates of (10) and can be represented as

µ(t) = Φ(0,t)[µ
0](·)#µ0, (11)

for all times t ∈ [0, T ]. Here, (Φ(s,t)[µ(s)](·))s,t∈[0,T ] denotes the family of non-local flows defined by

Φ(s,t)[µ(s)](x) = x +

∫ t

s
v
(

σ, µ(σ), Φ(s,σ)[µ(s)](x)
)

dσ, (12)

for all times s, t ∈ [0, T ] and any x ∈ Rd.

We end this section by recalling three of the main results of [11], which are generalisations to the
setting of continuity inclusions in Wasserstein spaces of Filippov’s estimates, the Relaxation theorem,
and the one-to-one correspondence between control systems and continuity inclusions.

Theorem 2.13 (Filippov’s theorem). Let ν(·) ∈ AC([0, T ], P(Kν )) be a solution of (5) generated by
a Carathéodory velocity-field w : [0, T ]×Rd → Rd with Kν := B(0, Rν) for some Rν > 0. Furthermore,
suppose that the mismatch function ην : [0, T ] → R+ defined by

ην(t) := distC0(Kν ,Rd)

(

w|Kν
(t); VKν (t, ν(t))

)

,

is Lebesgue integrable over [0, T ]. Then for any µ0 ∈ P(B(0, r)) with r > 0, there exists a solution
µ(·) ∈ AC([0, T ], Pc(Rd)) of the continuity inclusion (6) such that for all times t ∈ [0, T ], it holds

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ0, ν(0)) +

∫ t

0
ην(s)ds

)

,

where Cp > 0 is a constant which depends only on the magnitudes of p, r, Rν , T and ‖m(·)‖1.

Theorem 2.14 (Relaxation theorem). Let µ0 ∈ Pc(R
d) and µ(·) ∈ AC([0, T ], Pc(Rd)) be a solution

of the relaxed continuity inclusion







∂tµ(t) ∈ −div
(

coV (t, µ(t))µ(t)
)

,

µ(0) = µ0,

where coV (t, µ(t)) denotes the closed convex hull of V (t, µ(t)) ⊂ C0(Rd,Rd) defined as in (8). Then
for any δ > 0, there exists a solution µδ(·) ∈ AC([0, T ], Pc(Rd)) of the continuity inclusion







∂tµδ(t) ∈ −div
(

V (t, µδ(t))µδ(t)
)

,

µδ(0) = µ0,

such that
Wp(µ(t), µδ(t)) ≤ δ,

for all times t ∈ [0, T ].
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Theorem 2.15 (Correspondence between control systems and continuity inclusions). Let (U, dU ) be
a compact metric space and v : [0, T ] × Pc(R

d) × U × Rd → Rd be a controlled non-local velocity-
field such that (t, µ, x) 7→ v(t, µ, u, x) ∈ Rd satisfies hypotheses (CE) for every u ∈ U with constants
m(·), lk(·), LK(·) ∈ L1([0, T ],R+) independent of u ∈ U , and also u ∈ U 7→ v(t, µ, u, x) ∈ Rd is
continuous for L 1-almost every t ∈ [0, T ] and any (µ, x) ∈ Pc(R

d) × Rd. Moreover, define the
set-valued map V : [0, T ] × Pc(R

d) ⇒ C0(Rd,Rd) by

V (t, µ) :=
{

v ∈ C0(Rd,Rd) s.t. v(·) = v(t, µ, u, ·) for some u ∈ U
}

,

for all (t, µ) ∈ [0, T ] × Pc(R
d).

Then, V (·, ·) satisfies hypotheses (DI), and a curve of measures µ(·) is a solution of the continuity
inclusion (6) if and only if it solves the controlled non-local continuity equation

∂tµ(t) + div
(

v(t, µ(t), u(t))µ(t)
)

= 0,

for some L 1-measurable selection t ∈ [0, T ] 7→ u(t) ∈ U .

3 Differential calculus and linearised dynamics in Pc(R
d)

In this section, we investigate novel differential calculus tools for functionals and dynamical systems
defined over Pc(R

d) seen as a subset of (P2(Rd), W2). In Section 3.1, we introduce a localised notion of
P2(Rd)-differentiability for compactly supported measures, and prove a new chain rule formula along
arbitrary transport plans. In Section 3.2, we derive the general expression for the linearised Cauchy
problem associated to a non-local continuity equation, and focus on the particular case in which the
velocity perturbations are tangent to the set of admissible velocities of a continuity inclusion.

3.1 Localised theory of Wasserstein calculus

In this section, we study the properties of a new notion of localised subdifferential defined in the spirit
of [5, 37] for extended real-valued functionals φ : P2(Rd) → R ∪ {±∞} such that Pc(R

d) ⊂ D(φ) :=
{µ ∈ P2(Rd) s.t. φ(µ) 6= ±∞}. In the sequel, we will use the condensed notation φ : Pc(R

d) → R to
refer to any such functional.

Definition 3.1 (Localised sub and superdifferential). Let φ : Pc(R
d) → R and µ ∈ Pc(R

d). We say
that a map ξ ∈ L2(Rd,Rd; µ) belongs to the localised subdifferential ∂−

locφ(µ) of φ(·) at µ provided that

φ(ν) − φ(µ) ≥ inf
γ∈Γo(µ,ν)

∫

R2d
〈ξ(x), y − x〉dγ(x, y) + oR(W2(µ, ν)), (13)

for every R > 0 and any ν ∈ P(Bµ(R)), with Bµ(R) being defined as in (3). Furthermore, we say
that a map ξ ∈ L2(Rd,Rd; µ) belongs to the strong localised subdifferential ∂−

S,locφ(µ) if it satisfies

φ(ν) − φ(µ) ≥
∫

R2d
〈ξ(x), y − x〉dµ(x, y) + oR(W2,µ(µ, ν)), (14)

for every R > 0, any ν ∈ P(Bµ(R)) and each µ ∈ Γ(µ, ν), where we introduced the notation

W2,µ(µ, ν) =

(∫

R2d
|x − y|2dµ(x, y)

)1/2

. (15)

Analogously, we say that ξ ∈ L2(Rd,Rd; µ) belongs to the localised superdifferential ∂+
locφ(µ) of φ(·) at

µ if (−ξ) ∈ ∂−
loc(−φ)(µ), with a similar definition for strong localised superdifferentials.

Remark 3.2 (On the difference between (13) and (14)). In line with the theory of subdifferential
calculus on manifolds, localised subdifferentials are defined via their action on optimal displacement
directions. As illustrated first in [40] (see also [5, Chapter 7]), such optimal directions are given by
displacement interpolations of optimal plans, which leads to the geometric definition (13).
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On the other hand, defining localised subdifferentials via their action on any transport direction as
in (14) produces a class of subdgradients that is much smaller, and which does not enjoy several of the
desirable features of classical subdifferentials (such as being weakly closed, see e.g. [5, Remark 10.3.2]).
Yet, strong subdifferentials are extremely useful in practice as they allow to differentiate functionals
along directions that are not necessarily optimal. This property is of crucial interest in control theory,
as the corresponding classes of admissible variations usually belong to this category.

By a direct adaptation of the proofs of [37, Section 3] with finite radii R > 0, it can be shown that
∂−

locφ(µ) ∩ ∂+
locφ(µ) contains at most one element, which also belongs to TanµP2(Rd). This motivates

the following definition of local differentiability for functionals defined over Pc(R
d).

Definition 3.3 (Locally differentiable functional). A functional φ : Pc(R
d) → R is locally differen-

tiable at µ ∈ Pc(R
d) if there exists a map ∇φ(µ) ∈ TanµP2(Rd) – called the Wasserstein gradient

of φ(·) at µ –, such that ∂−
locφ(µ) ∩ ∂+

locφ(µ) = {∇φ(µ)}. Similarly, we shall say that φ(·) is locally
differentiable over Pc(R

d) if it is locally differentiable at every µ ∈ Pc(R
d).

Remark 3.4 (Uniformity of the gradient). Observe that in Definition 3.3 above, we impose on the
gradient ∇φ(µ) ∈ ∂−

locφ(µ) ∩ ∂+
locφ(µ) to be independent from R > 0. This is due to the fact that

∇φ(µ) is an element of TanµP2(Rd) – thus defined µ-almost everywhere over Rd –, so that it should
not depend on the fattening parameter of the support of ν ∈ P(Bµ(R)). The latter is solely used to
control the small-o of the W2-distance in (13), as illustrated in Proposition 5.1 below.

We provide examples of locally differentiable functionals in Section 5. In the next proposition, we
prove that localised subdifferentials which belong to the analytical tangent space TanµP2(Rd) are in
fact strong localised subdifferentials. The proof of this result is inspired from that of [24, Chapter
1, Proposition 4.2], where a similar property is established for classical subdifferentials and measures
µ ∈ P2(Rd) which are absolutely continuous with respect to the standard Lebesgue measure L d.

Proposition 3.5 (Tangent localised subdifferentials are strong). Let φ : Pc(R
d) → R and µ ∈ Pc(R

d)
be such that ∂−

locφ(µ) 6= ∅. Then

∂−
locφ(µ) ∩ TanµP2(Rd) ⊂ ∂−

S,locφ(µ),

i.e. any localised subdifferential which belongs to the analytical tangent space TanµP2(Rd) is also a
strong localised subdifferential.

Proof. By contradiction, suppose that there exists ξ ∈ ∂−
locφ(µ) ∩ TanµP2(Rd) which is not a strong

localised subdifferential. Then for some R > 0 and δ > 0, we can find a sequence of measures (µn) ⊂
P(Bµ(R)) which converges towards µ in the W2-metric along with a sequence of plans (µn) ⊂ Γ(µ, µn)
such that for any n ≥ 1 large enough, it holds

φ(µn) − φ(µ) −
∫

R2d
〈ξ(x), y − x〉dµn(x, y) ≤ −δǫn, (16)

where ǫn := W2,µn
(µ, µn) is given by (15) and satisfies ǫn → 0+ as n → +∞. Choose γn ∈ Γo(µ, µn)

for any n ≥ 1, and observe that since ξ ∈ ∂−
locφ(µ), it holds for n ≥ 1 large enough

φ(µn) − φ(µ) −
∫

R2d
〈ξ(x), y − x〉dγn(x, y) ≥ − δ

2ǫn, (17)

where we used the fact that W2(µ, µn) ≤ W2,µn
(µ, µn). By merging (16) and (17), we obtain

∫

R2d

〈

ξ(x), y−x
ǫn

〉

d(γn − µn)(x, y) ≤ − δ
2 . (18)

We now introduce the sequences of rescaled plans (γ̂n) and (µ̂n), defined for all n ≥ 1 by

γ̂n :=
(

π1, π2−π1

ǫn

)

#
γn and µ̂n :=

(

π1, π2−π1

ǫn

)

#
µn,
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so that (18) can be rewritten as

∫

R2d
〈ξ(x), r〉d(γ̂n − µ̂n)(x, r) ≤ − δ

2 . (19)

We claim that both sequences (γ̂n) and (µ̂n) have uniformly bounded second order momentum. Indeed

sup
n≥1

M2
2(γ̂n) = sup

n≥1

∫

R2d

(

|r|2 + |x|2
)

dγ̂n(x, r) = sup
n≥1

∫

R2d

(

∣

∣

x−y
ǫn

∣

∣

2
+ |x|2

)

dγn(x, y) ≤ 1 + M2
2(µ),

and the same estimate also holds for (µ̂n). Whence, (γ̂n) and (µ̂n) are tight (see e.g. [5, Remark
5.1.5]), and thus narrowly compact by Prokhorov’s theorem (see e.g. [5, Theorem 5.1.3]). In the sequel,
we denote by γ̂ and µ̂ two of their cluster points that can be reached along the same subsequence.

Our goal now is to pass to the limit as n → +∞ in (19). Let (ξk) ⊂ C∞
c (Rd,Rd) be a sequence

such that ξk → ξ in L2(Rd,Rd; µ) as k → +∞, and observe that

∫

R2d
〈ξk(x), r〉dγ̂n(x, r) ≤

∫

R2d
〈ξ(x), r〉dγ̂n(x, r) +

(∫

Rd
|ξ(x) − ξk(x)|2dµ(x)

)1/2(∫

R2d
|r|2dγ̂n(x, r)

)1/2

≤
∫

R2d
〈ξ(x), r〉dγ̂n(x, r)+ ‖ξ − ξk‖L2(µ),

(20)
where we used Cauchy-Schwarz’s inequality and the definition of (γ̂n). Similarly, one also has

∫

R2d
〈ξk(x), r〉dµ̂n(x, r) ≥

∫

R2d
〈ξ(x), r〉dµ̂n(x, r)− ‖ξ − ξk‖L2(µ) (21)

for all n, k ≥ 1. Whence by plugging (20) and (21) into (19), one deduces for all n, k ≥ 1 large enough

∫

R2d
〈ξk(x), r〉d(γ̂n − µ̂n)(x, r) ≤ − δ

4 , (22)

We now claim that given k ≥ 1, the map (x, r) ∈ R2d 7→ |〈ξk(x), r〉| ∈ R+ is uniformly integrable with
respect to both (γ̂n) and (µ̂n). Indeed setting Ck := ‖ξk(·)‖C0(Rd,Rd), it holds

∫

{(x,r) s.t. |〈ξk(x),r〉|≥i}
|〈ξk(x), r〉|dγ̂n(x, r) ≤ Ck

∫

{(x,r) s.t. |r|≥i/Ck}
|r|dγ̂n(x, r), (23)

for every i ≥ 1, while on the other hand it can be checked by definition of (γ̂n) that

i

Ck

∫

{(x,r) s.t. |r|≥i/Ck}
|r|dγ̂n(x, r) ≤

∫

R2d
|r|2dγ̂n(x, r) ≤ 1, (24)

for any n, k, i ≥ 1. Merging (23) and (24), we therefore obtain

∫

{(x,r) s.t. |〈ξk(x),r〉|≥i}
|〈ξk(x), r〉|dγ̂n(x, r) ≤ C2

k

i −→
i→+∞

0,

so that the (x, r) ∈ R2d 7→ |〈ξk(x), r〉| ∈ R+ is uniformly integrable with respect to (γ̂n) for all k ≥ 1.
By repeating the same arguments for (µ̂n) and recalling that the latter map is continuous, we recover

∫

R2d
〈ξk(x), r〉d(γ̂n − µ̂n)(x, r) −→

n→+∞

∫

R2d
〈ξk(x), r〉d(γ̂ − µ̂)(x, r), (25)

for all k ≥ 1 by applying the convergence results of [5, Lemma 5.1.7]. Upon combining (22) and (25)
while letting k → +∞, we can thus conclude

∫

R2d
〈ξ(x), r〉d(γ̂ − µ̂)(x, r) ≤ − δ

4 , (26)

where we used the fact that π1
#γ̂ = π1

#µ̂ = µ as a consequence of classical stability results under
narrow convergence for transport plans (see e.g. [5, Chapter 5]).
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Let us now choose an arbitrary test function ζ ∈ C∞
c (Rd). First, notice that there exists a constant

Cζ > 0 such that the global estimates

{

ζ(y) − ζ(x) ≤ 〈∇ζ(x), y − x〉 + Cζ |x − y|2,

ζ(x) − ζ(y) ≤ 〈∇ζ(x), x − y〉 + Cζ |x − y|2,
(27)

hold for any x, y ∈ Rd. By using the first estimates of (27), we further obtain for any n ≥ 1

∫

R2d
ζ(y)dγn(x, y) ≤

∫

R2d

(

ζ(x) + 〈∇ζ(x), y − x〉
)

dγn(x, y) + CζW 2
2 (µ, µn), (28)

where we used the fact that γn ∈ Γo(µ, µn), while the second estimate of (27) further yields

−
∫

R2d
ζ(y)dµn(x, y) ≤ −

∫

R2d

(

ζ(x) + 〈∇ζ(x), y − x〉
)

dµn(x, y) + CζW 2
2,µn

(µ, µn), (29)

by the definition (15) of W2,µn
(µ, µn). In addition, observe that since γn, µn ∈ Γ(µ, µn), one also has

∫

R2d
ζ(x)d(γn − µn)(x, y) = 0 and

∫

R2d
ζ(y)d(γn − µn)(x, y) = 0, (30)

for all n ≥ 1. Therefore, combining the estimates of (28) and (29) while using (30) and recalling that
W2(µ, µn) ≤ W2,µn

(µ, µn) = ǫn, we obtain

0 ≤
∫

R2d
〈∇ζ(x), y − x〉d(γn − µn)(x, y) + 2Cζǫ2

n.

By dividing both sides of the previous inequality by ǫn > 0, considering again the sequences of rescaled
plans (γ̂n) and (µ̂n) and letting n → +∞ along an adequate subsequence, we finally recover

0 ≤
∫

R2d
〈∇ζ(x), r〉d(γ̂ − µ̂)(x, r), (31)

for any ζ ∈ C∞
c (Rd). Since ξ ∈ TanµP2(Rd), there exists a sequence (ζn) ⊂ C∞

c (Rd) such that
∇ζn → ξ in L2(Rd,Rd; µ) as n → +∞, which leads to a contradiction between (26) and (31).

By combining Definition 3.3 and Proposition 3.5, we obtain a general chain rule along arbitrary
transport plans for locally differentiable functionals.

Proposition 3.6 (Chain rule along arbitrary transport plans). Let φ : Pc(R
d) → R, µ ∈ Pc(R

d)
and suppose that φ(·) is locally differentiable at µ. Then for every R > 0 and ν ∈ P(Bµ(R)), it holds

φ(ν) = φ(µ) +

∫

R2d
〈∇φ(µ)(x), y − x〉dµ(x, y) + oR(W2,µ(µ, ν)), (32)

for any µ ∈ Γ(µ, ν). Conversely, if there exists a map ∇φ(µ) ∈ TanµP2(Rd) such that for every
R > 0 and ν ∈ P(Bµ(R)) the first-order expansion (32) holds along any optimal plan µ ∈ Γo(µ, ν),
then φ(·) is locally differentiable at µ in the sense of Definition 3.3.

Proof. By Definition 3.3, we have that ∇φ(µ) ∈ ∂−
locφ(µ) ∩ ∂+

locφ(µ) ∩ TanµP2(Rd). Whence by
Proposition 3.5, it further holds that ∇φ(µ) ∈ ∂−

S,locφ(µ)∩ ∂+
S,locφ(µ), so that (32) is satisfied for every

ν ∈ P(Bµ(R)) and any µ ∈ Γ(µ, ν). Conversely, let ν ∈ P(Bµ(R)) for some R > 0, and observe that
for every optimal transport plan µ ∈ Γo(µ, ν), it holds

∫

R2d
〈∇φ(µ)(x), y − x〉dµ(x, y) ≥ inf

γ∈Γo(µ,ν)

∫

R2d
〈∇φ(µ), y − x〉dγ(x, y),

so that (32) directly yields that ∇φ(µ) ∈ ∂−
locφ(µ) since W2,µ(µ, ν) = W2(µ, ν) when µ ∈ Γo(µ, ν) and

both R > 0 and ν ∈ P(Bµ(R)) are arbitrary. Similarly, one can show that ∇φ(µ) ∈ ∂+
locφ(µ). Hence,

∇φ(µ) ∈ ∂−
locφ(µ) ∩ ∂+

locφ(µ) ∩ TanµP2(Rd), and the functional φ(·) is locally differentiable at µ in the
sense of Definition 3.3.
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Corollary 3.7 (Chain rule along perturbations in L∞(Rd,Rd; µ)). Let φ : Pc(R
d) → R, µ ∈ Pc(R

d)
and suppose that φ(·) is locally differentiable at µ. Then for every F ∈ L∞(Rd,Rd; µ), it holds

φ
(

(Id + ǫF)#µ
)

= φ(µ) + ǫ

∫

Rd
〈∇φ(µ)(x),F(x)〉dµ(x) + oRF

(ǫ),

for all ǫ ∈ [−1, 1], where RF :=‖F‖L∞(µ).

Proof. Observe first that for every F ∈ L∞(Rd,Rd; µ), the measures (Id+ǫF)#µ have compact support
in BRF

(µ) for all ǫ ∈ [−1, 1]. By applying Proposition 3.6 with the transport plan µǫ := (Id, Id+ǫF)#µ,
we therefore obtain

φ
(

(Id + ǫF)#µ
)

= φ(µ) +

∫

R2d
〈∇φ(µ)(x), y − x〉dµǫ(x, y) + oRF

(

W2,µǫ
(µ, (Id + ǫF)#µ)

)

= φ(µ) + ǫ

∫

Rd
〈∇φ(µ)(x),F(x)〉dµ(x) + oRF

(ǫ),

where we used the fact that W2,µǫ
(µ, (Id + ǫF)#µ) = ǫ ‖F‖L2(µ) as a direct consequence of (15).

We end this section by adapting the notion of local differentiability to vector-valued maps.

Definition 3.8 (Local differentiability of vector-valued maps). For m ≥ 1, a map φ : Pc(R
d) → Rm is

said to be locally differentiable at µ ∈ Pc(R
d) if its components {φi(·)}1≤i≤m are locally differentiable.

Remark 3.9 (Chainrule for vector-valued maps). When m = d and φ : Pc(R
d) → Rd is locally

differentiable at µ ∈ Pc(R
d), we can apply Proposition 3.6 componentwisely to obtain

φ(ν) = φ(µ) +

∫

R2d
Dµφ(µ)(x)(y − x)dµ(x, y) + oR(W2,µ(µ, ν)), (33)

for every ν ∈ P(Bµ(R)) with R > 0, where Dµφ(µ)(·) := (∇φi(µ)(·))1≤i≤d is the matrix-valued
map which rows are the Wasserstein gradients of the components {φi(·)}1≤i≤d. Similarly, by applying
componentwisely the statements of Corollary 3.7, it also holds

φ((Id + ǫF)#µ) = φ(µ) + ǫ

∫

Rd
Dµφ(µ)(x)F(x)dµ(x) + oRF

(ǫ), (34)

for all ǫ ∈ [−1, 1] and any F ∈ L∞(Rd,Rd; µ).

3.2 Linearisations of non-local continuity equations

In this section, we derive the expression of the canonical linearised Cauchy problem associated to a
non-local continuity equation with smooth driving velocity-field. In what follows we fix p ∈ [1, +∞)
and for any compact set K ⊂ Rd, we shall consider P(K) as a subset of the metric space (Pp(Rd), Wp).
We henceforth focus our attention on the Cauchy problem

{

∂tµ(t) + div
(

v(t, µ(t))µ(t)
)

= 0,

µ(0) = µ0 ∈ Pc(R
d),

(35)

driven by a non-local velocity-field v : [0, T ]×Pc(R
d)×Rd 7→ Rd satisfying the following assumptions.

Hypotheses (H). For every R > 0, assume that the following holds with K := B(0, R).

(i) The non-local velocity field v : [0, T ] × Pc(R
d) × Rd → Rd satisfies hypotheses (CE).

(ii) For L 1-almost every t ∈ [0, T ] and any µ ∈ Pc(R
d), the map x ∈ Rd 7→ v(t, µ, x) ∈ Rd is Fréchet

differentiable, and the application (µ, x) ∈ P(K) × K 7→ Dxv(t, µ, x) ∈ Rd×d is continuous.

(iii) For L 1-almost every t ∈ [0, T ] and any x ∈ Rd, the map µ ∈ Pc(R
d) 7→ v(t, µ, x) ∈ Rd is locally

differentiable in the sense of Definition 3.8, and the application (µ, x, y) ∈ P(K) × K × K 7→
Dµv(t, µ, x)(y) ∈ Rd×d is continuous.
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In the following proposition, we derive a general first-order linearisation formula for solutions of
(35). Similar techniques were applied in [10, 12] in the particular case of perturbations induced by
needle variations (see e.g. [47]).

Proposition 3.10 (Linearisation of non-local continuity equations). Let µ0 ∈ P(B(0, r)) for some
r > 0, v : [0, T ] × Pc(R

d) × Rd → Rd be a non-local velocity-field satisfying hypotheses (H), and
µ(·) ∈ AC([0, T ], P(K)) be the corresponding solution of (35) where K := B(0, Rr) is given by (10).
Let F0 ∈ C0(Rd,Rd), w : [0, T ]×Rd → Rd be a Carathéodory vector-field satisfying (CE) and consider
the perturbed Cauchy problems







∂tµǫ(t) + div
(

(

v(t, µǫ(t)) + ǫw(t)
)

µǫ(t)
)

= 0,

µǫ(0) = (Id + ǫF0)#µ0.
(36)

for ǫ ∈ [−1, 1].
Then, there exists a family of maps (Gǫ(·, ·)) ⊂ C0([0, T ] × K,Rd) such that for every ǫ ∈ [−1, 1],

the solution µǫ(·) ∈ AC([0, T ], Pc(Rd)) of (36) can be expressed explicitly as

µǫ(t) = Gǫ(t, ·)#µ(t), (37)

for all times t ∈ [0, T ]. Moreover, the application ǫ ∈ [−1, 1] 7→ Gǫ(t, ·) ∈ C0(K,Rd) admits a Taylor
expansion at ǫ = 0, of the form

Gǫ(t, ·) = Id + ǫF
(

t, Φ(t,0)[µ(t)](·)
)

+ ot(ǫ), (38)

where supt∈[0,T ] ‖ot(ǫ)‖C0(K,Rd) = o(ǫ) and F ∈ C0([0, T ] × K,Rd) is the unique solution of the lin-
earised non-local Cauchy problem























∂tF(t, x) = Dxv
(

t, µ(t), Φ(0,t)[µ
0](x)

)

F(t, x) + w
(

t, Φ(0,t)[µ
0](x)

)

+

∫

Rd
Dµv

(

t, µ(t), Φ(0,t)[µ
0](x)

)

(

Φ(0,t)[µ
0](y)

)

F(t, y)dµ0(y),

F(0, x) = F0(x).

(39)

Proof. First, remark that for any ǫ ∈ [−1, 1], the non-local velocity-field vǫ : [0, T ]×Pc(R
d)×Rd → Rd

defined for any (t, µ, x) ∈ [0, T ] × Pc(R
d) × Rd by

vǫ(t, µ, x) := v(t, µ, x) + ǫw(t, x), (40)

satisfies hypotheses (CE). Whence, denoting µ0
ǫ := (Id + ǫF0)#µ0, there exists by Corollary 2.12 a

unique curve of measures µǫ(·) solution of (36) which can be represented as

µǫ(t) = Φǫ
(0,t)[µ

0
ǫ ](·)#µ0

ǫ , (41)

where (Φǫ
(0,t)[µ

0
ǫ ](·))t∈[0,T ] stands for the non-local flow generated by vǫ : [0, T ] × Pc(R

d) × Rd → Rd

starting from µ0
ǫ , defined as in (12). For the sake of readability, we shall use the condensed notations

Φ(s,t)(x) := Φ(s,t)[µ(s)](x) and Φǫ
(s,t)(x) := Φǫ

(s,t)[µǫ(s)](x),

throughout the remainder of the proof. Recalling that µ0
ǫ = (Id + ǫF0)#µ0 and that the curve µ(·)

also admits the flow representation (11), the expression in (41) can be rewritten as

µǫ(t) =
(

Φǫ
(0,t) ◦ (Id + ǫF0) ◦ Φ(t,0)(·)

)

#µ(t), (42)

for all times t ∈ [0, T ], where “◦” is the standard composition operation between functions. Hence,
(37) holds with the family of maps (Gǫ(·, ·)) defined by

Gǫ : (t, x) ∈ [0, T ] × K 7→ Φǫ
(0,t) ◦ (Id + ǫF0) ◦ Φ(t,0)(x), (43)
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for every ǫ ∈ [−1, 1]. Our goal now is to establish the first-order expansion of (38).
By adapting the argument of [12, Proposition 5] to the case of non-local velocity-fields satisfying

the localised differentiability assumptions (H)-(ii) and (H)-(iii), it can be shown that the map

ǫ ∈ [−1, 1] 7→ Φǫ
(0,·)(·) ∈ C0([0, T ] × K ′,Rd),

is Fréchet differentiable at ǫ = 0, where K ′ := B(0, R′
r) and R′

r > 0 are such that (Id + ǫF0)(K) ⊂ K ′

for all ǫ ∈ [−1, 1]. Denoting by Ψ ∈ C0([0, T ] × K ′,Rd) the corresponding Fréchet derivative, one has

Φǫ
(0,t)(y) = Φ(0,t)(y) + ǫΨ(t, y) + ot,y(ǫ), (44)

for any (t, y) ∈ [0, T ] × K ′, where sup(t,y)∈[0,T ]×K ′ |ot,y(ǫ)| = o(ǫ). Under hypotheses (H)-(i) and
(H)-(ii), it is a standard result in the theory of Carathéodory ODEs (see e.g. [14, Theorem 2.3.2])
that the flow map x ∈ Rd 7→ Φ(0,t)(x) ∈ Rd is Fréchet-differentiable with

Φ(0,t)(x + ǫh) = Φ(0,t)(x) + ǫDxΦ(0,t)(x)h + ot,x,h(ǫ), (45)

for all times t ∈ [0, T ] and any x, h ∈ Rd, where

sup
(t,x,h)∈[0,T ]×K×B(0,r′)

|ot,x,h(ǫ)| = or′(ǫ),

for every r′ > 0. By merging (44) and (45), we obtain for all (t, x) ∈ [0, T ] × K that

Φǫ
(0,t)

(

x + ǫF0(x)
)

= Φ(0,t)(x) + ǫDxΦ(0,t)(x)F0(x) + ǫΨ(t, x) + ot,x(ǫ), (46)

where sup(t,x)∈[0,T ]×K |ot,x(ǫ)| = o(ǫ). We now define the map F ∈ C0([0, T ] × K,Rd) by

F(t, x) := DxΦ(0,t)(x)F0(x) + Ψ(t, x), (47)

for any (t, x) ∈ [0, T ]×K. By merging (43) and (46), we obtain that ǫ ∈ [−1, 1] 7→ Gǫ(t, ·) ∈ C0(K,Rd)
satisfies for all times t ∈ [0, T ] the following Taylor expansion at ǫ = 0

Gǫ(t, ·) = Id + ǫF
(

t, Φ(t,0)(·)
)

+ ot(ǫ), (48)

where supt∈[0,T ] ‖ot(ǫ)‖C0(K,Rd) = o(ǫ) for every ǫ ∈ [−1, 1].

We now prove that the map F ∈ C0([0, T ] × K,Rd) defined in (47) is the unique solution of the
linearised Cauchy problem (39). First, recall that by classical results on differentials of flow maps (see
e.g. [14, Theorem 2.3.2]), the application t ∈ [0, T ] 7→ DxΦ(0,t)(x)F0(x) ∈ Rd is the unique solution of

DxΦ(0,t)(x)F0(x) = F0(x) +

∫ t

0
Dxv

(

s, µ(s), Φ(0,s)(x)
)(

DxΦ(0,s)(x)F0(x)
)

ds, (49)

for any x ∈ K. By (44), it further holds

v
(

s, µǫ(s), Φǫ
(0,s)(x)

)

= v
(

s, µǫ(s), Φ(0,s)(x) + ǫΨ(s, x) + os,x(ǫ)
)

= v
(

s, µǫ(s), Φ(0,s)(x)
)

+ ǫDxv
(

s, µǫ(s), Φ(0,s)(x)
)

Ψ(s, x) + os,x(ǫ)

= v
(

s, µǫ(s), Φ(0,s)(x)
)

+ ǫDxv
(

s, µ(s), Φ(0,s)(x)
)

Ψ(s, x) + os,x(ǫ),

(50)

for L 1-almost every s ∈ [0, T ] and any (ǫ, x) ∈ [−1, 1] × K ′, with

∫ T

0
sup
x∈K ′

|os,x(ǫ)|ds = o(ǫ),
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and where we also used that ν ∈ P(K ′) 7→ Dxv(s, ν, Φ(0,s)(x)) is continuous by (H)-(ii). Using
(H)-(iii), we can in turn apply the vector-valued chain rule of Remark 3.9 together with (42), (43)
and (48) to obtain

v
(

s, µǫ(s), Φ(0,s)(x)
)

= v

(

s,
(

Id + ǫF(s, Φ(s,0)(·)) + os(ǫ)
)

#µ(s), Φ(0,s)(x)

)

= v
(

s, µ(s), Φ(0,s)(x)
)

+ ǫ

∫

Rd
Dµv

(

s, µ(s), Φ(0,s)(x)
)

(y)F
(

s, Φ(s,0)(y)
)

dµ(s)(y) + os(ǫ)

= v
(

s, µ(s), Φ(0,s)(x)
)

+ ǫ

∫

Rd
Dµv

(

s, µ(s), Φ(0,s)(x)
)

(

Φ(0,s)(y)
)

F(s, y)dµ0(y) + os(ǫ),

(51)

for L 1-almost every s ∈ [0, T ] and all y ∈ K ′. Observe now that for every ǫ ∈ [−1, 1], the family of
perturbed flows (Φǫ

(0,t)(·))t∈[0,T ] can be characterised as the unique solution of the Carathéodory ODE

Φǫ
(0,t)(y) = y +

∫ t

0
vǫ

(

s, Φǫ
(0,s)(·)#µ0

ǫ , Φǫ
(0,s)(y)

)

ds

= y +

∫ t

0

(

v
(

s, µǫ(s), Φǫ
(0,s)(y)

)

+ ǫw
(

s, Φǫ
(0,s)(y)

)

)

ds,

(52)

for any (t, y) ∈ [0, T ] × K ′. Therefore by plugging (44), (50) and (51) into (52), we further obtain

Φ(0,t)(x) + ǫΨ(t, x) = x +

∫ t

0
v
(

s, µ(s), Φ(0,s)(x)
)

ds + ǫ

∫ t

0
Dxv

(

s, µ(s), Φ(0,s)(x)
)

Ψ(s, x)ds

+ ǫ

∫ t

0

∫

Rd
Dµv

(

s, µ(s), Φ(0,s)(x)
)

(

Φ(0,s)(y)
)

F(s, y)dµ0(y)ds

+ ǫ

∫ t

0
w
(

s, Φ(0,s)(x)
)

ds + ot,x(ǫ),

for any (t, x) ∈ [0, T ]×K and all ǫ ∈ [−1, 1], where sup(t,x)∈[0,T ]×K |ot,x(ǫ)| = o(ǫ). By identifying terms
and observing that the flow maps (Φ(0,t)(·))t∈[0,T ] satisfy (12), we recover the ODE characterisation

Ψ(t, x) =

∫ t

0

(

Dxv
(

s, µ(s), Φ(0,s)(x)
)

Ψ(s, x) + w
(

s, Φ(0,s)(x)
)

)

ds

+

∫ t

0

∫

Rd
Dµv

(

s, µ(s), Φ(0,s)(x)
)

(

Φ(0,s)(y)
)

F(s, y)dµ0(y)ds,

(53)

for all (t, x) ∈ [0, T ] × K. Upon combining (49) and (53), we conclude that the map F ∈ C0([0, T ] ×
K,Rd) defined in (47) solves (39). The uniqueness of solutions to this linearised problem can then be
recovered under hypotheses (H) from Grönwall’s Lemma.

In the following theorem, we show that when the velocity perturbation w : [0, T ] × Rd → Rd

belongs to the tangent cone to the admissible velocities of a continuity inclusion of the form (6) with
a convexified right-hand side, there exist solutions of the non-convexified inclusion whose distance to
the measure defined in (37) is infinitesimally small compared to ǫ > 0.

Definition 3.11 (Tangent cones to convex hulls of C0(Rd,Rd)-valued multifunctions). Let V : [0, T ]×
Pc(R

d) ⇒ C0(Rd,Rd) be a set-valued map and v ∈ coV (t, µ) for some t ∈ [0, T ] and µ ∈ Pc(R
d),

where coV (t, µ) is given in the sense of (8). The tangent cone to coV (t, µ) at v is defined by

Tco V (t,µ)(v) :=

{

w ∈ C0(Rd,Rd) s.t. w|K ∈ Tco VK(t,µ)(v|K) for any K := B(0, R) with R > 0

}

,

where Tco VK(t,µ)(v|K) is taken in the Banach space
(

C0(K,Rd), ‖·‖C0(K,Rd)

)

.
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Theorem 3.12 (Variational linearisation). Let µ0 ∈ P(B(0, r)) for some r > 0 and V : [0, T ] ×
Pc(R

d) ⇒ C0(Rd,Rd) be a set-valued map satisfying hypotheses (DI) with p ∈ [1, +∞). Moreover,
let (µ(·), v(·)) be a trajectory-selection pair solution of the inclusion (6), and suppose that for L 1-
almost every t ∈ [0, T ] the following representation

v(t) := v(t, µ(t)) ∈ V (t, µ(t)),

holds with v : [0, T ]×Pc(R
d)×Rd → Rd satisfying hypotheses (H) and v(t, ν) ∈ V (t, ν) for L 1-almost

every t ∈ [0, T ] and any ν ∈ Pc(R
d). Let F0 ∈ C0(Rd,Rd), w : [0, T ] × Rd → Rd be a Carathéodory

vector-field satisfying hypotheses (CE) along with the pointwise inclusions

w(t) ∈ Tco V (t,µ(t))

(

v(t, µ(t))
)

for L
1-almost every t ∈ [0, T ], (54)

and F : [0, T ] × Rd → Rd be the corresponding solution of the linearised Cauchy problem (39).
Then for any ǫ ∈ [0, 1], there exists a solution µ̃ǫ(·) of the continuity inclusion







∂tµ̃ǫ(t) ∈ −div
(

V (t, µ̃ǫ(t))µ̃ǫ(t)
)

,

µ̃ǫ(0) = (Id + ǫF0)#µ0,
(55)

such that
sup

t∈[0,T ]
Wp

(

µ̃ǫ(t),Gǫ(t, ·)#µ(t)
)

= o(ǫ), (56)

where the family of maps (Gǫ(·, ·)) ⊂ C0([0, T ] × Rd,Rd) is given as in Proposition 3.10.

Proof. In the sequel, we shall interchangeably use the notations v(t, µ(t)) and w(t) to denote the
vector-fields defined on Rd or their restrictions to some closed ball K := B(0, R).

First, remark that v : [0, T ]×Pc(Rd)×Rd 7→ Rd satisfies hypotheses (CE) as a direct consequence
of (H)-(i). Hence, by Corollary 2.12, there exists Rr > 0 such that supp(µ(t)) ⊂ K := B(0, Rr) for
all times t ∈ [0, T ]. Furthermore observe that since w(·) satisfies (54), it holds by Definition 2.6 that

distC0(K,Rd)

(

v(t, µ(t)) + ǫw(t); co VK(t, µ(t))
)

= ot(ǫ), (57)

for L 1-almost every t ∈ [0, T ] and all ǫ ∈ [0, 1], where ot(ǫ)/ǫ → 0 as ǫ → 0+. Moreover, one also has

distC0(K,Rd)

(

v(t, µ(t)) + ǫw(t); co VK(t, µ(t))
)

≤ ǫ ‖w(t)‖C0(K,Rd) , (58)

because v(t, µ(t)) ∈ V (t, µ(t)), which implies in particular that the remainder defined in (57) divided
by ǫ > 0 is integrably bounded. In addition, observe that the non-local velocity field

vǫ : (t, µ, x) ∈ [0, T ] × Pc(R
d) × R

d 7→ v(t, µ, x) + ǫw(t, x),

also satisfies hypotheses (CE) for every ǫ ∈ [0, 1] by construction.
Denote by µǫ(·) ∈ AC([0, T ], Pc(Rd)) the unique solution of the perturbed Cauchy problem







∂tµǫ(t) + div
(

(

v(t, µǫ(t)) + ǫw(t)
)

µǫ(t)
)

= 0,

µǫ(0) = (Id + ǫF0)#µ0,
(59)

and let K ′ := B(0, R′
r) be a closed ball such that supp(µǫ(t)) ⊂ K ′ for any (t, ǫ) ∈ [0, T ] × [0, 1]. By

Theorem 2.13 applied to V (·, ·) := {v(·, ·)} together with Corollary 2.12, there exists C > 0 such that

sup
t∈[0,T ]

Wp(µ(t), µǫ(t)) ≤ Cǫ, (60)

for every ǫ ∈ [0, 1]. Since w(·) satisfies (57) and (58), we can apply [7, Theorem 8.1.3] to recover the
existence of a family (wǫ(·)) of L 1-measurable maps such that







‖w(t) − wǫ(t)‖C0(K ′,Rd) −→
ǫ→0+

0 and ‖wǫ(t)‖C0(K ′,Rd) ≤ 2 ‖w(t)‖C0(K ′,Rd) + 1,

v(t, µ(t)) +
√

ǫwǫ(t) ∈ coVK ′(t, µ(t)),
(61)
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for L 1-almost every t ∈ [0, T ] and all ǫ ∈ [0, 1]. By hypothesis (DI)-(iv) together with (60) and [7,
Theorem 8.1.3], one can also find measurable selections t ∈ [0, T ] 7→ vǫ(t) ∈ coVK ′(t, µǫ(t)) such that

∥

∥v(t, µ(t)) +
√

ǫwǫ(t) − vǫ(t)
∥

∥

C0(K ′,Rd) ≤ LK ′(t)Wp(µ(t), µǫ(t)) ≤ LK ′(t)Cǫ, (62)

for L 1-almost every t ∈ [0, T ] and any ǫ ∈ [0, 1]. Moreover observing that the sets coVK ′(t, µǫ(t)) ⊂
C0(K ′,Rd) are convex, it holds

(1 − √
ǫ)v(t, µǫ(t)) +

√
ǫvǫ(t) ∈ coVK ′(t, µǫ(t)),

which along with (62) further yields

(1 − √
ǫ)v(t, µǫ(t)) +

√
ǫ
(

v(t, µ(t)) +
√

ǫwǫ(t)
) ∈ coVK ′(t, µǫ(t)) + LK ′(t)Cǫ3/2

BC0(K ′,Rd), (63)

for L 1-almost every t ∈ [0, T ] and any ǫ ∈ [0, 1]. Recalling that v : [0, T ]×Pc(Rd)×Rd → Rd satisfies
hypotheses (CE), we again have by (60)

‖v(t, µ(t)) − v(t, µǫ(t))‖C0(K ′,Rd) ≤ LK ′(t)Wp(µ(t), µǫ(t)) ≤ LK ′(t)Cǫ,

for L 1-almost every t ∈ [0, T ]. Upon plugging this last estimate into (63), we obtain

v(t, µǫ(t)) + ǫw(t) = (1 − √
ǫ)v(t, µǫ(t)) +

√
ǫ
(

v(t, µǫ(t)) +
√

ǫwǫ(t)
)

+ ǫ
(

w(t) − wǫ(t)
)

∈ coVK ′(t, µǫ(t)) +
(

2LK ′(t)Cǫ3/2 + ǫ ‖w(t) − wǫ(t)‖C0(K ′,Rd)

)

BC0(K ′,Rd).

This together with the properties (61) of the family of maps (wǫ(·)) and the fact that LK ′(·) ∈
L1([0, T ],R+) imply that for every ǫ ∈ [0, 1], the mismatch function

ηǫ : t ∈ [0, T ] 7→ distC0(K ′,Rd)

(

v(t, µǫ(t)) + ǫw(t); co VK ′(t, µǫ(t))
)

, (64)

is integrable and satisfies r(ǫ) :=‖ηǫ(·)‖1= o(ǫ) for all ǫ ∈ [0, 1] by Lebesgue’s dominated convergence
theorem. Whence, we can apply Theorem 2.13 to obtain the existence of a curve µ̃ǫ(·) solution of







∂tµ̃ǫ(t) ∈ −div
(

coV (t, µ̃ǫ(t))µ̃ǫ(t)
)

,

µ̃ǫ(0) = (Id + ǫF0)#µ0,
(65)

such that
sup

t∈[0,T ]
Wp(µ̃ǫ(t), µǫ(t)) = o(ǫ), (66)

for any ǫ ∈ [0, 1]. Moreover by Theorem 2.14 applied with δ := r(ǫ), we can choose the curve µ̃ǫ(·)
satisfying (66) as a solution of (55) instead of (65). Finally, observe that by Proposition 3.10 one can
express µǫ(t) for all t ∈ [0, T ] as

µǫ(t) = Gǫ(t, ·)#µ(t), (67)

where the family of maps (Gǫ(·, ·)) ⊂ C0([0, T ] × K,Rd) satisfies (38). This together with (66) yields

sup
t∈[0,T ]

Wp(µ̃ǫ(t),Gǫ(t, ·)#µ(t)) = o(ǫ),

which concludes the proof of Theorem 3.12.

4 Pontryagin Maximum Principle in Wasserstein spaces

In this section, we apply the differential-theoretic concepts studied in Section 3 to prove a Pontryagin
Maximum Principle (“PMP” in the sequel) for optimal control problems in Wasserstein spaces with
inequality final-point constraints. This result partially improves those of [10, 12] as the strategy is
more concise and allows to discriminate between the normal and abnormal scenarios of the PMP.

To lighten the exposition, we will illustrate the full proof strategy on a Mayer problem in Section
4.1, and we will then prove the PMP for a Bolza problem in Section 4.2 by adapting a standard
procedure which directly builds on the PMP for the Mayer problem.
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4.1 The PMP for constrained Mayer problems in Wasserstein spaces

In this section, we focus our attention on the following constrained Mayer problem

(PMC)



































min
u(·)∈U

[

ϕ(µ(T ))
]

s.t.



















∂tµ(t) + div
(

v(t, µ(t), u(t))µ(t)
)

= 0,

µ(0) = µ0,

µ(T ) ∈ QT ,

where ϕ : Pc(R
d) → R is a given final cost. Here, we fix an initial datum µ0 ∈ Pc(R

d) and a
controlled non-local velocity field v : [0, T ] × Pc(R

d) × U × Rd → Rd. The minimisation in (PMC) is
taken over the set of admissible open-loop controls

U :=
{

u : [0, T ] → U s.t. u(·) is L
1-measurable

}

,

where (U, dU ) is a compact metric space, and we suppose that the set of final-point constraints QT is
defined by a collection of functional inequalities of the form

QT :=
{

µ ∈ P2(Rd) s.t. Ψi(µ) ≤ 0 for all i ∈ {1, . . . , n}
}

,

where Ψi : Pc(R
d) → R for every index i ∈ {1, . . . , n}. From now on, we consider Pc(R

d) as a subset
of the metric space (P1(Rd), W1).

Hypotheses (MCP). For every R > 0, assume that the following holds with K := B(0, R).

(i) For every u ∈ U , the non-local velocity-field (t, µ, x) ∈ [0, T ] × Pc(R
d) ×Rd 7→ v(t, µ, u)(x) ∈ Rd

satisfies hypotheses (H) with p = 1 and constants that are independent of u ∈ U . Moreover,
the map u ∈ U 7→ v(t, µ, u)(x) ∈ Rd is continuous for L 1-almost every t ∈ [0, T ] and any
(µ, x) ∈ Pc(R

d) × Rd.

(ii) The final cost ϕ(·) and the constraint functionals {Ψi(·)}1≤i≤n are Lipschitz continuous in the
W1-metric over P(K) and locally differentiable over Pc(R

d). Moreover, the maps

x ∈ R
d 7→ ∇ϕ(µ)(x) ∈ R

d and x ∈ R
d 7→ ∇Ψi(µ)(x) ∈ R

d,

are continuous for every i ∈ {1, . . . , n}.

As illustrated in [11] and recalled in Theorem 2.15 above, the set of all trajectories µ(·) satisfying

∂tµ(t) + div
(

v(t, µ(t), u(t))µ(t)
)

= 0 for some u(·) ∈ U , (68)

coincides exactly with the solution set of the continuity inclusion

∂tµ(t) ∈ −div
(

V (t, µ(t))µ(t)
)

, (69)

when the set-valued map V : [0, T ] × Pc(R
d) ⇒ C0(Rd,Rd) is defined by

V (t, µ) :=
{

v ∈ C0(Rd,Rd) s.t. v(·) = v(t, µ, u, ·) for some u ∈ U
}

, (70)

for all (t, µ) ∈ [0, T ] × Pc(R
d).

Definition 4.1 (Admissible pairs and strong local minimisers for (PMC)). We say that (µ(·), u(·)) is
an admissible trajectory-control pair for (PMC) if u(·) ∈ U and µ(·) ∈ AC([0, T ], Pc(Rd)) is a solution
of the controlled non-local continuity equation (68) satisfying µ(0) = µ0 and µ(T ) ∈ QT . Moreover,
an admissible pair (µ∗(·), u∗(·)) is a strong local minimiser for (PMC) if there exists ǫ > 0 such that

ϕ(µ∗(T )) ≤ ϕ(µ(T )),

for every other admissible pair (µ(·), u(·)) which satisfies supt∈[0,T ] W1(µ∗(t), µ(t)) ≤ ǫ.
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Remark 4.2 (Strong local Wp-minimisers). Observe that if µ, ν ∈ P(B(0, R)) for some R > 0, it
holds that W1(µ, ν) ≤ Wp(µ, ν) ≤ (2R)(p−1)/pW1(µ, ν)1/p for every p ∈ [1, +∞). Hence, an admissible
pair is a strong local Wp-minimiser if and only if it is a strong local W1-minimiser.

Remark 4.3 (On the existence of optimal trajectory-control pairs). In [11, Remark 4 and Theo-
rem 7], an existence result is provided for a more general variant of problem (PMC) in the presence
of running and final-point constraints, under a set of hypotheses which are a natural adaptation of
(MCP). The only additional requirement needed to obtain this existence result compared to necessary
optimality conditions is the convexity of the sets of admissible velocities V (t, µ) ⊂ C0(Rd,Rd), which is
instrumental in showing that the solution set of the corresponding inclusion is compact in the topology
of the uniform convergence (see [11, Theorem 6]). We would like to stress that in [11, Theorem 7],
it is also assumed that u ∈ U 7→ v(t, µ, u, x) is Lipschitz continuous. However, this hypothesis is only
needed when the controls are closed-loop, and it follows from our proof therein that the usual continuity
assumption is sufficient when the controls are open-loop, see [11, Remark 5].

Let r > 0 be such that µ0 ∈ P(B(0, r)), and observe that under hypotheses (MCP) the non-local
velocity-fields (t, µ, x) ∈ [0, T ] × Pc(R

d) × Rd 7→ v(t, µ, u, x) satisfy hypotheses (CE) with constants
which are uniform with respect to u ∈ U . Therefore by Theorem 2.11, there exists a radius Rr > 0
depending only on the magnitudes of r, ‖m(·)‖1 such that every admissible pair (µ(·), u(·)) verifies

supp(µ(t)) ⊂ K := B(0, Rr),

for all times t ∈ [0, T ]. In the sequel, we will denote by (Φu∗

(s,t)(·))s,t∈[0,T ] the semigroup of non-local

flows which represent the optimal curve µ∗(·) via (11) and (12).
We are now ready to state and prove our main result, which is a PMP for (PMC). In what follows,

we denote by J2d the symplectic matrix of R2d, i.e.

J2d =

(

0 Id
−Id 0

)

,

and by H : [0, T ] × Pc(R
2d) × U → R the Hamiltonian of the control problem, defined by

H(t, ν, u) =

∫

R2d

〈

r, v(t, π1
#ν, u, x)

〉

dν(x, r), (71)

for all (t, ν, u) ∈ [0, T ] × Pc(R
2d) × U . We also consider the set of active indices at µ∗(T ), given by

I◦(µ∗(T )) :=
{

i ∈ {1, . . . , n} s.t. µ∗(T ) ∈ ∂Qi
T

}

,

where we introduced the sets Qi
T :=

{

µ ∈ P2(Rd) s.t. Ψi(µ) ≤ 0
}

for every i ∈ {1, . . . , n}.

Theorem 4.4 (Pontryagin Maximum Principle for (PMC)). Let (µ∗(·), u∗(·)) ∈ AC([0, T ], Pc(Rd))×U

be a strong local minimiser for (PMC), and suppose that hypotheses (MCP) hold.
Then, there exist R′

r > 0, non-trivial Lagrange multipliers (λ0, λ1, . . . , λn) ∈ {0, 1} × Rn
+ and a

curve of measures ν∗(·) ∈ AC([0, T ], P(K ′ × K ′)) with K ′ := B(0, R′
r) such that the following holds.

(i) The curve ν∗(·) solves the forward-backward Hamiltonian continuity equation






























∂tν
∗(t) + div

(

J2d∇νH(t, ν∗(t), u∗(t))ν∗(t)
)

= 0,

π1
#ν∗(t) = µ∗(t) for all times t ∈ [0, T ],

ν∗(T ) =

(

Id ,
(

− λ0∇ϕ(µ∗(T )) −
n
∑

i=1

λi∇Ψi(µ
∗(T ))

)

)

#
µ∗(T ),

(72)

where the Wasserstein gradient of the Hamiltonian is given explicitly by

∇νH(t, ν∗(t), u∗(t))(x, r)

=







Dxv
(

t, µ∗(t), u∗(t), x
)⊤

r +
∫

R2d Dµv
(

t, µ∗(t), u∗(t), y
)

(x)⊤p dν∗(t)(y, p)

v
(

t, µ∗(t), u∗(t), x
)






,

(73)

for L 1-almost every t ∈ [0, T ] and any (x, r) ∈ R2d.
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(ii) The complementarity slackness conditions

λiΨi(µ
∗(T )) = 0, (74)

hold for every index i ∈ {1, . . . , n}.

(iii) The Pontryagin maximisation condition

H(t, ν∗(t), u∗(t)) = max
u∈U

H(t, ν∗(t), u), (75)

holds for L 1-almost every t ∈ [0, T ].

Moreover, if there exists a map t ∈ [0, T ] 7→ w(t) ∈ Tco V (t,µ∗(t))

(

v(t, µ∗(t), u∗(t)
)

satisfying hypotheses

(CE) such that the corresponding solution F ∈ C0([0, T ] × K,Rd) of (39) with F0 = 0 satisfies

〈∇Ψi(µ
∗(T )),F

(

T, Φu∗

(T,0)(·)
)〉L2(µ∗(T )) < 0,

for every i ∈ I◦(µ∗(T )), then the PMP is normal, i.e. λ0 = 1.

We split the proof of Theorem 4.4 into four steps. In Step 1, we introduce suitable variational
linearisations of the controlled non-local continuity equation inspired by Theorem 3.12. In Step 2,
we focus on the situation in which the end-points of the trajectories of the linearised system do not
satisfy the constraint qualification condition, which leads to the abnormal PMP, i.e. the case λ0 = 0.
In Step 3, we analyse the converse scenario and prove that it corresponds to the normal PMP, i.e. the
case λ0 = 1. Finally in Step 4, we build a state-costate curve ν∗(·) solution of the Hamiltonian flow
(72), along which the maximum principle (75) holds.

Step 1: Variational linearisations along (µ∗(·), u∗(·)). Observe that v(t, µ, u∗(t)) ∈ coV (t, µ)
for L 1-almost every t ∈ [0, T ] and all µ ∈ Pc(R

d), where the set-valued map V : [0, T ] × Pc(R
d) ⇒

C0(Rd,Rd) is given by (70), and satisfies hypotheses (DI) as a consequence of (MCP)-(i). Let now

t ∈ [0, T ] 7→ w(t) ∈ Tco V (t,µ∗(t))

(

v(t, µ∗(t), u∗(t))
)

, (76)

be any L 1-measurable selection satisfying hypotheses (CE), where Tco V (t,µ∗(t))

(

v(t, µ∗(t), u∗(t)
)

is
to be understood for L 1-almost every t ∈ [0, T ] in the sense of Definition 3.11. Since the non-local
velocity-field (t, µ, x) 7→ v(t, µ, u∗(t), x) satisfies hypotheses (H), we can apply Theorem 3.12 to obtain
the existence of a solution µ̃ǫ(·) of (69) with µ̃ǫ(0) = µ0, such that

sup
t∈[0,T ]

W1

(

µ̃ǫ(t),
(

Id + ǫF
(

t, Φu∗

(t,0)(·)
)

+ ot(ǫ)
)

#
µ∗(t)

)

= o(ǫ), (77)

for any ǫ > 0 and all times t ∈ [0, T ], where supt∈[0,T ] ‖ot(ǫ)‖C0(K,Rd) = o(ǫ). Here, the map F ∈
C0([0, T ]×K,Rd) is the unique solution of (39) with F0 = 0 and w(·) satisfying (76) and (CE). From
now on, we will denote by RL

T ⊂ C0(Rd,Rd) the reachable set at time T of (39) with F0 = 0, where
the non-local velocity-field

(t, x) ∈ [0, T ] × R
d 7→ v(t, µ(t), Φ(0,t)[µ

0](x)) ∈ R
d,

is replaced by the controlled non-local vector-field

(t, x) ∈ [0, T ] × R
d 7→ v(t, µ∗(t), u∗(t), Φu∗

(0,t)(x)) ∈ R
d,

namely

RL
T :=

{

GT ∈ C0(Rd,Rd) s.t. GT (·) = F
(

T, Φu∗

(T,0)(·)
)

where F(·, ·) solves (39) with F0 = 0

and w(·) satisfying (76) and hypotheses (CE)

}

.
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Up to relabelling the functionals {Ψi(·)}n
i=1, we can suppose without loss of generality that

I◦(µ∗(T )) = {1, . . . , k} for some k ≤ n, whenever it is non-empty. In addition, observe that if
∇Ψi(µ

∗(T )) = 0 for some i ∈ I◦(µ∗(T )), then the statements of the PMP are verified with λi = 1,
λj = 0 for every j ∈ {0, . . . , n}\{i} and ν∗(t) := µ∗(t)× δ0 for all times t ∈ [0, T ]. In this case, one has

H(t, ν∗(t), u) ≡ 0, ∇νH(t, ν∗(t), u∗(t))(x, r) =

(

0
v(t, µ∗(t), u∗(t), x)

)

and ν∗(T ) = µ∗(T ) × δ0,

for L 1-almost every t ∈ [0, T ], all u ∈ U and ν∗(t)-almost every (x, r) ∈ Rd, and it can then be
checked that the curve ν∗(·) defined above trivially satisfies the statements of Theorem 4.4. Similarly
if ∇ϕ(µ∗(T )) = 0, we can set λ0 = 1 and λi = 0 for all i ∈ {1, . . . , n}, so that the PMP is again satisfied
with ν∗(t) = µ∗(t) × δ0. Hence, there only remains to consider the case in which ∇ϕ(µ∗(T )) 6= 0 and
∇Ψi(µ

∗(T )) 6= 0 for all i ∈ I◦(µ∗(T )).
If I◦(µ∗(T )) 6= ∅, we introduce the non-empty subset of Rk defined by

BT :=

{

(

〈∇Ψ1(µ∗(T )),GT 〉L2(µ∗(T )), . . . , 〈∇Ψk(µ∗(T )),GT 〉L2(µ∗(T ))

)

s.t. GT ∈ RL
T

}

, (78)

which allows to discriminate between the two scenarios corresponding to the abnormal and normal
versions of the maximum principle.

Step 2: Separation without constraint qualification. In this case, we suppose that

BT ∩ (R∗
−)k := BT ∩ (−∞, 0)k = ∅.

Notice that BT is a convex subset of Rk since RL
T ⊂ C0(Rd,Rd) is convex. Because (R∗

−)k is convex
as well, there exists by the separation theorem a non-trivial element p ∈ Rk such that

sup
d∈(R∗

−
)k

〈

p, d
〉 ≤ inf

b∈BT

〈

p, b
〉

. (79)

Remark now that since (R∗
−)k is a cone, the separation inequality (79) necessarily implies

sup
d∈Rk

−

〈p, d 〉 ≤ 0,

which yields that p := (λ1, . . . , λk) ∈ Rk
+. Similarly, one can check that BT is a cone upon remarking

that RT
L ⊂ C0(Rd,Rd) is itself a cone. Thus, (79) also implies

inf
b∈BT

〈

p, b
〉 ≥ 0,

which combined with the definition (78) of BT further yields

k
∑

i=1

λi
〈∇Ψi(µ

∗(T )),GT
〉

L2(µ∗(T ))
≥ 0,

for every element GT ∈ RL
T . This inequality can be in turn rewritten as

〈− PT ,F
(

T, Φu∗

(T,0)(·)
)〉

L2(µ∗(T ))
≤ 0, (80)

for every solution F ∈ C0([0, T ] × K,Rd) of (39) with F0 = 0 and w(·) satisfying (76) and (CE),
where the covector PT ∈ C0(K,Rd) is defined by

PT :=
k
∑

i=1

λi∇Ψi(µ
∗(T )). (81)
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Step 3: Separation with constraint qualification. We now investigate the scenario in which

BT ∩ (R∗
−)k 6= ∅.

In this context, consider the set AT ⊂ Rk+1 defined by

AT :=

{

(

〈∇ϕ(µ∗(T )),GT
〉

L2(µ∗(T ))
,〈∇Ψ1(µ∗(T )),GT 〉L2(µ∗(T )), . . . ,

〈∇Ψk(µ∗(T )),GT 〉L2(µ∗(T ))

)

s.t. GT ∈ RL
T

}

.

In the following lemma, we prove that the set AT defined above is disjoint from (R∗
−)k+1.

Lemma 4.5 (Incompatible intersection). Let (µ∗(·), u∗(·)) be a strong local minimiser for (PMC).
Then, it necessarily holds that

AT ∩ (R∗
−)k+1 = ∅. (82)

Proof. Suppose by contradiction that the intersection in (82) is non-empty. Then, there exists w(·)
satisfying (76) and (CE) such that the solution F ∈ C0([0, T ] × K,Rd) of (39) with F0 = 0 verifies

〈∇ϕ(µ∗(T )),F
(

T, Φu∗

(T,0)(·)
)〉

L2(µ∗(T ))
< 0, (83)

and
〈∇Ψi(µ

∗(T )),F
(

T, Φu∗

(T,0)(·)
)〉

L2(µ∗(T ))
< 0, (84)

for every i ∈ {1, . . . , k}. By Step 1, there exists a compact set K ′ ⊂ Rd such that for every ǫ > 0
sufficiently small, there exists a curve µ̃ǫ(·) ∈ AC([0, T ], P(K ′)) solution of (69) which satisfies

sup
t∈[0,T ]

W1

(

µ̃ǫ(t),
(

Id + ǫF
(

t, Φu∗

(t,0)(·)
)

+ ot(ǫ)
)

#
µ∗(t)

)

= o(ǫ),

where supt∈[0,T ] ‖ot(ǫ)‖C0(K ′,Rd) = o(ǫ). Since the solution set of (69) coincides with that of (68), there
exists ũǫ(·) ∈ U such that (µ̃ǫ(·), ũǫ(·)) is a trajectory-control pair for (68). Moreover by hypotheses
(MCP)-(ii), the maps ϕ(·) and {Ψi(·)}1≤i≤n are locally differentiable in the sense of Definition 3.3.
Therefore, it holds as a consequence of Corollary 3.7 together with (83) that

ϕ(µ̃ǫ(T )) = ϕ
(

(

Id + ǫF
(

T, Φu∗

(T,0)(·)
)

+ oT (ǫ)
)

#
µ∗(T )

)

+ o(ǫ)

= ϕ(µ∗(T )) + ǫ
〈∇ϕ(µ∗(T )),F

(

T, Φu∗

(T,0)(·)
)〉

L2(µ∗(T ))
+ oT (ǫ)

< ϕ(µ∗(T )),

(85)

and analogously, by (84),
Ψi(µ̃ǫ(T )) < Ψi(µ

∗(T )), (86)

for every index i ∈ {1, . . . , k} and any ǫ > 0 small enough, where we also used that fact that the maps
ϕ(·) and {Ψi(·)}n

i=1 are Lipschitz continuous over P(K ′) in the W1-metric. Combining (85) and (86)
while observing that Ψi(µ̃ǫ(T )) < 0 as well for i /∈ I◦(µ∗(T )) and ǫ > 0 small enough, we have thus
built an admissible pair (µ̃ǫ(·), ũǫ(·)) for (PMC) that produces a cost strictly smaller than (µ∗(·), u∗(·)),
and which satisfies supt∈[0,T ] W1(µ∗(t), µ̃ǫ(t)) ≤ Cǫ for some constant C > 0 independent of ǫ > 0.
This contradicts our assumption that the pair (µ∗(·), u∗(·)) is a strong local minimiser for (PMC).

As a consequence of Lemma 4.5, the intersection described in (82) is necessarily empty. Since
both sets in the latter are convex, the separation theorem yields the existence of a non-trivial element
p := (λ0, . . . , λk) ∈ Rk+1 such that

sup
d∈(R∗

−
)k+1

〈p, d 〉 ≤ inf
a∈AT

〈p, a〉. (87)
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By repeating the same arguments as in Step 2 above, we again have that (λ0, . . . , λk) ∈ R
k+1
+ . In

this case however, it necessarily holds that λ0 6= 0. Indeed if λ0 = 0, then (87) becomes equivalent
to BT ∩ (R∗

−)k = ∅ because (R∗
−)k is open, which contradicts our standing assumption. Hence up to

renormalising all the multipliers by λ0 > 0, we recover

〈∇ϕ(µ∗(T )),GT
〉

L2(µ∗(T ))
+

k
∑

i=1

λi
〈∇Ψi(µ

∗(T )),GT
〉

L2(µ∗(T ))
≥ 0,

for every GT ∈ RL
T . The latter expression can be equivalently rewritten as

〈− PT ,F
(

T, Φu∗

(T,0)(·)
)〉

L2(µ∗(T ))
≤ 0,

where PT ∈ C0(K,Rd) is given in this context by

PT := ∇ϕ(µ∗(T )) +
k
∑

i=1

λi∇Ψi(µ
∗(T )). (88)

Observe now that if I◦(µ∗(T )) = ∅, we can repeat the same arguments to obtain

〈∇ϕ(µ∗(T )),GT

〉

L2(µ∗(T ))
≥ 0,

for any GT ∈ RL
T , and set PT := ∇ϕ(µ∗(T )).

Step 4: Proof of the PMP. Condensing the results of Step 2 and Step 3 and setting λi = 0 for
all i ∈ {k + 1, . . . , n}, we have built a covector PT ∈ C0(K,Rd) given explicitly by

PT = λ0∇ϕ(µ∗(T )) +
n
∑

i=1

λi∇Ψi(µ
∗(T )), (89)

for some (λ0, λ1, . . . , λn) ∈ {0, 1} × Rn
+ not all equal to 0 and satisfying λiΨi(µ

∗(T )) = 0 for every
i ∈ {1, . . . , n}. Moreover, the covector PT is such that the family of end-point inequalities

∫

Rd

〈− PT (x),F
(

T, Φu∗

(T,0)(x)
)〉

dµ∗(T )(x) ≤ 0, (90)

hold for any solution F ∈ C0([0, T ] × K,Rd) of (39) with F0 = 0 and w(·) satisfying (76) and (CE).
Our goal now is to build a curve ν∗(·) solution of the forward-backward continuity equation



















∂tν
∗(t) + div

(

V(t, ν∗(t))ν∗(t)
)

= 0,

π1
#ν∗(t) = µ∗(t) for all times t ∈ [0, T ],

ν∗(T ) = (Id, −PT )#µ∗(T ),

(91)

where the non-local velocity field V : [0, T ] × Pc(R
2d) × R2d → R2d is defined by

V(t, ν, x, r) :=









v
(

t, π1
#ν, u∗(t), x

)

−Dxv
(

t, π1
#ν, u∗(t), x

)⊤
r −

∫

R2d
Dµv

(

t, π1
#ν, u∗(t), y

)

(x)⊤p dν(y, p)









, (92)

for L 1-almost every t ∈ [0, T ] and any (ν, x, r) ∈ Pc(R
2d) × R2d.

Observe that V(·, ·, ·) does not satisfy hypotheses (CE), so that we cannot directly apply the
existence result of Corollary 2.12 to assert that (91) admits solutions. The following lemma, originally
established in [12], provides an explicit disintegration construction of such solutions by exploiting the
cascaded structure of the system (see also [10]).
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Lemma 4.6 (Definition and existence of solutions to (91)). Let (µ∗(·), u∗(·)) be a strong local min-
imiser for (PMC) and suppose that hypotheses (MCP) hold. For µ∗(T )-almost every x ∈ Rd, denote
by (Ψx

(T,t)(·))t∈[0,T ] the family of backward non-local flows, solutions of



























∂tΨ
x
(T,t)(r) = − Dxv

(

t, µ∗(t), u∗(t), Φu∗

(T,t)(x)
)⊤

Ψx
(T,t)(r)

−
∫

R2d

(

Dµv
(

t, µ∗(t), u∗(t), Φu∗

(T,t)(y)
)

(

Φu∗

(T,t)(x)
)⊤

Ψy
(T,t)(p)

)

d
(

(Id, −PT )#µ∗(T )
)

(y, p),

Ψx
(T,T )(r) = r,

and define the curve of measures σ∗
x(·) ∈ AC([0, T ], Pc(Rd)) as

σ∗
x(t) := Ψx

(T,t)(·)#δ(−PT (x)),

for all times t ∈ [0, T ]. Then, the curve given by ν∗ : t ∈ [0, T ] 7→ (

Φu∗

(T,t) ◦ π1, π2
)

#
ν∗

T (t) with

ν∗
T (t) :=

∫

Rd
σ∗

x(t)dµ∗(T )(x),

is a solution of (91). Moreover, there exist R′
r > 0 and m′

r(·) ∈ L1([0, T ],R+) such that

supp(ν∗(t)) ⊂ K ′ × K ′ and W1(ν∗(t), ν∗(s)) ≤
∫ t

s
m′

r(τ)dτ,

for all times 0 ≤ s ≤ t ≤ T , where K ′ := B(0, R′
r).

Proof. See [10, Lemma 3.7] and [12, Lemma 6].

Applying to the Hamiltonian ν ∈ Pc(R
d) 7→ H(t, ν, u) ∈ R defined in (71) the results of Section 5,

which provide analytical expressions for the gradients of smooth integral functionals, one can check

V(t, ν∗(t), x, r) = J2d∇νH(t, ν∗(t), u∗(t))(x, r),

for L 1-almost every t ∈ [0, T ] and any (x, r) ∈ R2d. Since ν∗(T ) = (Id, −PT )#µ∗(T ) by the construc-
tion detailed in Lemma 4.6 with PT being given by (89), the curve ν∗(·) is a solution of (72). In the
next lemma, we state an auxiliary result which will in turn yield the maximisation condition.

Lemma 4.7 (Derivative of an auxiliary functional). Given w(·) satisfying (76) and (CE), define

H : t ∈ [0, T ] 7→
∫

R2d

〈

r,F
(

t, Φu∗

(t,0)(x)
)〉

dν∗(t)(x, r), (93)

where F ∈ C0([0, T ] × K,Rd) is the corresponding solution of (39) with F0 = 0. Then, H(·) ∈
AC([0, T ],R) and its pointwise derivative is given explicitly by

d
dtH(t) =

∫

R2d
〈r, w(t, x)〉dν∗(t)(x, r), (94)

for L 1-almost every t ∈ [0, T ].

Proof. The proof of this result is a matter of fairly long computations which mimic those already
performed in [10, Lemma 3.9] and [12, Lemma 7].

Observe that by the definition of ν∗(·) given in Lemma 4.6 together with (90), one has

∫

R2d

〈

r,F
(

T, Φu∗

(T,0)(x)
)〉

dν∗(T )(x, r) ≤ 0,

which can in turn be reformulated as
H(T ) ≤ 0, (95)
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with H(·) being given as in (93). Remark now that since H(·) ∈ AC([0, T ],R) and F(0) = F0 = 0 by
construction, it further holds by Lemma 4.7

H(T ) =

∫ T

0

d
dtH(t)dt =

∫ T

0

∫

R2d
〈r, w(t, x)〉dν∗(t)(x, r)dt, (96)

so that upon merging (95) and (96), we obtain

∫ T

0

∫

R2d
〈r, w(t, x)〉dν∗(t)(x, r)dt ≤ 0, (97)

for any w(·) satisfying (76) and (CE).
Let us consider for some given t ∈ [0, T ] and m ≥ 1 the closed subset of controls

Ũm(t) :=
{

u ∈ U s.t. H(t, ν∗(t), u) ≥ H(t, ν∗(t), u∗(t)) + 1
m

}

,

and suppose that the associated L 1-measurable subset Ωm ⊂ [0, T ], defined by

Ωm :=
{

t ∈ [0, T ] s.t. Ũm(t) 6= ∅},

has positive measure for some m ≥ 1. Then by Theorem [7, Theorem 8.2.9], we can find a measurable
selection t ∈ [0, T ] 7→ ũ(t) ∈ U such that ũ(t) ∈ Ũm(t) for L 1-almost every t ∈ Ωm and ũ(t) = u∗(t)
otherwise. Observe next that the map defined by

w̃(t) := v(t, µ∗(t), ũ(t)) − v(t, µ∗(t), u∗(t)),

for all times t ∈ [0, T ] satisfies (76) and hypotheses (CE). Moreover, it is such that

∫ T

0

∫

R2d
〈r, w̃(t, x)〉dν∗(t)(x, r)dt =

∫

Ωm

(

H(t, ν∗(t), ũ(t)) − H(t, ν∗(t), u∗(t))
)

dt ≥ 1
mL

1(Ωm),

which violates (97). Thus, the set Ω := ∪m≥1Ωm ⊂ [0, T ] necessarily has zero measure, which by
definition of the sets Ũm(t) for L 1-almost every t ∈ [0, T ] yields the maximisation condition (75).

Remark 4.8 (On the choice of performing separations on AT and BT ). Usually, geometric proofs
of the PMP and its second-order variants tend to involve separation arguments on sets of trajectories
which are not transposable to the setting of Wasserstein spaces. Thus in Step 2 and Step 3, we
chose to perform separation arguments directly on AT and BT , which are subsets of finite-dimensional
euclidean spaces defined as the images of the reachable set RL

T under the action of the gradients of the
cost and constraint functionals. As illustrated before, this choice allows for a very simple and concise
discrimination between the abnormal and normal scenarios of the PMP.

4.2 Adaptation of the PMP to constrained Bolza problems

In this section, we make use of the results of Section 4.1 to obtain an extension of Theorem 4.4 to the
setting of general constrained Bolza problems of the form

(PBC)







































min
u(·)∈U

[

∫ T

0
L(t, µ(t), u(t))dt + ϕ(µ(T ))

]

s.t.



















∂tµ(t) + div
(

v(t, µ(t), u(t))µ(t)
)

= 0,

µ(0) = µ0,

µ(T ) ∈ QT ,

where L : [0, T ] × Pc(R
d) × U 7→ R is a given running cost which satisfies the following.

Hypotheses (L). For every R > 0, assume that the following holds with K := B(0, R).
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(i) The map t ∈ [0, T ] 7→ L(t, µ, u) is L 1-measurable for any (µ, u) ∈ Pc(R
d) × U . Moreover, there

exists k(·) ∈ L1([0, T ],R+) such that supu∈U |L(t, δ0, u)| ≤ k(t) for L 1-almost every t ∈ [0, T ].

(ii) The map u ∈ U 7→ L(t, µ, u) is continuous for L 1-almost every t ∈ [0, T ] and any µ ∈ Pc(R
d).

(iii) The map µ ∈ Pc(R
d) 7→ L(t, µ, u) is locally differentiable in the sense of Definition 3.3 and the

application x ∈ Rd 7→ ∇µL(t, µ, u)(x) ∈ Rd is continuous for L 1-almost every t ∈ [0, T ] and any
(µ, u) ∈ Pc(R

d) × U . Moreover, there exists a map LK(·) ∈ L1([0, T ],R+) such that

|L(t, µ, u) − L(t, ν, u)| ≤ LK(t)W1(µ, ν),

for every µ, ν ∈ P(K) and any u ∈ U .

In the present context, we say that an admissible pair (µ∗(·), u∗(·)) ∈ AC([0, T ], Pc(Rd)) × U is a
strong local minimiser for (PBC) if there exists ǫ > 0 such that

∫ T

0
L(t, µ∗(t), u∗(t))dt + ϕ(µ∗(T )) ≤

∫ T

0
L(t, µ(t), u(t))dt + ϕ(µ(T )),

for every admissible pair (µ(·), u(·)) which satisfies supt∈[0,T ] W1(µ∗(t), µ(t)) ≤ ǫ.

Theorem 4.9 (Pontryagin Maximum Principe for (PBC)). Let (µ∗(·), u∗(·)) ∈ AC([0, T ], Pc(Rd))×U

be a strong local minimiser for (PBC), and suppose that hypotheses (MCP) and (L) hold.
Then, the conclusions of Theorem 4.4 hold with the Hamiltonian Hλ0

: [0, T ] × Pc(R
2d) × U → R

associated to (PBC), defined by

Hλ0
(t, ν, u) :=

∫

R2d

〈

r, v(t, π1
#ν, u, x)

〉

dν(x, r) − λ0L(t, π1
#ν, u), (98)

for all (t, ν, u) ∈ [0, T ] × Pc(R
2d) × U , which Wasserstein gradient writes

∇νHλ0
(t, ν∗(t), u∗(t))(x, r)

=











Dxv
(

t, µ∗(t), u∗(t), x
)⊤

r +
∫

R2d Dµv
(

t, µ∗(t), u∗(t), y
)

(x)⊤p dν∗(t)(y, p)
−λ0∇µL(t, µ∗(t), u∗(t))(x)

v
(

t, µ∗(t), u∗(t), x
)











,
(99)

for L 1-almost every t ∈ [0, T ] and any (x, r) ∈ R2d.

In what follows, we show how the statements of Theorem 4.9 can be recovered by directly applying
Theorem 4.4 to a suitable augmented Mayer problem. We shall henceforth denote by π

1 : Rd+1 ×
Rd+1 → Rd+1 and π

2 : Rd+1 ×Rd+1 → Rd+1 the projection operators onto the first and second factor.
Given an admissible pair (µ(·), u(·)) for (PBC), let z(·) ∈ AC([0, T ],R) be the curve defined as

z(t) :=

∫ t

0
L(s, µ(s), u(s))ds, (100)

and consider the corresponding augmented state

µ(t) := µ(t) × δz(t),

associated to (PBC), both defined for all times t ∈ [0, T ]. Below given a measure µ ∈ Pc(R
d+1),

we will set µ := (π1, . . . , πd)#µ ∈ Pc(R
d). It is then clear that if (µ∗(·), u∗(·)) is a strong local

minimiser for (PBC), then choosing z∗(·) as in (100) with (µ(·), u(·)) := (µ∗(·), u∗(·)) and defining
µ

∗(t) := µ∗(t) × δz∗(t), the pair (µ∗(·), u∗(·)) is a strong local minimiser for the Mayer problem

(P̂MC)



































min
u(·)∈U

[ϕ̂(µ(T ))] ,

s.t.



















∂tµ(t) + div
(

v̂(t, µ(t), u(t))µ(t)
)

= 0,

µ(0) = µ0 × δ0,

µ(T ) ∈ Q̂T ,
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where we defined

ϕ̂(µ) := ϕ
(

µ
)

+

∫

Rd+1
z dµ(x, z) and v̂(t, µ, u, x, z) :=

(

v(t, µ, u, x)
L(t, µ, u)

)

, (101)

for all (t, µ, u, x, z) ∈ [0, T ] × Pc(R
d+1) × U × Rd+1, along with

Q̂T :=
{

µ ∈ P2(Rd+1) s.t. Ψ̂i(µ) ≤ 0 for every i ∈ {1, . . . , n}
}

,

where Ψ̂i(µ) := Ψi(µ). By applying the results of Section 5, the first-order derivatives of the augmented
dynamics, final cost and constraint maps can be written explicitly as

D(x,z)v̂
(

t, µ, u, x, z
)

=

(

Dxv
(

t, µ, u, x
)

0

)

, Dµv̂(t, µ, u, x, z) =

(

Dµv(t, µ, u, x) 0
∇µL(t, µ, u) 0

)

, (102)

and

∇ϕ̂(µ) =

(

∇ϕ
(

µ
)

1

)

, ∇Ψ̂i(µ) =

(

∇Ψi

(

µ
)

0

)

, (103)

for L 1-almost every t ∈ [0, T ], all (µ, u, x, z) ∈ Pc(R
d+1) × U × Rd+1 and any index i ∈ {1, . . . , n}.

By Corollary 2.12, there exists Rr > 0 such that supp(µ∗(t)) ⊂ K := B(0, Rr) for all times
t ∈ [0, T ] where r > 0 is such that µ0 ∈ P(B(0, r)). Hence, observe that under hypotheses (L)-(iii)
and up to redefining the running cost for L 1-almost every t ∈ [0, T ] and any u ∈ U as

L(t, µ, u) := L(t, (πK)#µ, u),

whenever supp(µ) 6⊆ K, the extended velocity field v̂ : [0, T ] × P(Rd+1) × U × Rd+1 7→ Rd+1 satisfies
hypotheses (H) with p = 1. This together with the definitions of ϕ̂(·) and {Ψ̂i(·)}1≤i≤n implies
that hypotheses (MCP) hold for (P̂MC). Thus by Theorem 4.4, there exist non-trivial multipliers
(λ0, . . . , λn) ∈ {0, 1} × Rn

+ and a curve of measures ν
∗(·) ∈ AC([0, T ], Pc((Rd+1)2) solution of the

forward-backward Hamiltonian continuity equation






























∂tν
∗(t) + div

(

J2(d+1)∇νĤ(t, ν
∗(t), u∗(t))ν∗(t)

)

= 0,

π1
#ν

∗(t) = µ∗(t) × δz∗(t) for all times t ∈ [0, T ],

ν
∗(T ) =

(

Id , −λ0∇ϕ̂(µ∗(T )) −
n
∑

i=1

λi∇Ψ̂i(µ
∗(T ))

)

#
µ

∗(T ),

(104)

such that the complementarity slackness condition

λiΨ̂i(µ
∗(T )) = 0, (105)

holds for every index i ∈ {1, . . . , n}, and the maximisation condition

Ĥ(t, ν
∗(t), u∗(t)) = max

u∈U
Ĥ(t, ν

∗(t), u). (106)

is satisfied for L 1-almost every t ∈ [0, T ]. Here, the augmented Hamiltonian Ĥ : [0, T ]×Pc((R
d+1)2)×

U → R associated to (P̂MC) is defined by

Ĥ(t, ν, u) :=

∫

R2d+2

〈

(r, q), v̂(t, π
1
#ν, u, x, z)

〉

dν(x, z, r, q),

for all (t, ν, u) ∈ [0, T ] × Pc((R
d+1)2) × U .

Observe now that by (101), the augmented Hamiltonian can be further expressed as

Ĥ(t, ν
∗(t), u∗(t)) =

∫

R2d+2

〈

(r, q), v̂(t, π
1
#ν

∗(t), u∗(t), x, z)
〉

dν
∗(t)(x, r, z, q)

=

∫

R2d+2

(

〈r, v(t, µ∗(t), u∗(t), x)〉 + qL(t, µ∗(t), u∗(t))
)

dν
∗(t)(x, z, r, q)

(107)
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which along with (102) allows us to derive the following analytical expression for its gradient

∇νĤ(t, ν
∗(t), u∗(t))(x, z, r, q) =











D(x,z)v̂
(

t, µ
∗(t), u∗(t), x, z

)⊤
(r, q)

+
∫

R2d+2 Dµv̂
(

t, µ
∗(t), u∗(t), x′, z′

)

(x, z)⊤(r′, q′) dν
∗(t)(x′, z′, r′, q′)

v̂
(

t, µ
∗(t), u∗(t), x

)











=





















Dxv
(

t, µ∗(t), u∗(t), x
)⊤

r + q∇µL(t, µ∗(t), u∗(t))(x)
+
∫

R2d Dµv
(

t, µ∗(t), u∗(t), y
)

(x)⊤p dν∗(t)(y, p)
0

v
(

t, µ∗(t), u∗(t), x
)

L(t, µ∗(t), u∗(t))





















.

(108)
It can now be verified straightforwardly as a consequence of (103) that

π2d+2
# ν

∗(T ) = δ(−λ0),

and also that the right-hand side of the dynamics driving this extra covector variable is identically
equal to 0 by plugging (108) into (104). Hence up to a permutation of the coordinates, it is possible
to express the extended state-costate curve ν

∗(·) for all times t ∈ [0, T ] as

ν
∗(t) = ν∗(t) × δ(z∗(t),−λ0), (109)

where ν∗(·) ∈ AC([0, T ], Pc(R2d)). Plugging this last expression into (107) and (108) then yields

Ĥ(t, ν
∗(t), u∗(t)) = Hλ0

(t, ν∗(t), u∗(t)), (110)

and by repeating the same coordinate permutation, we recover the following expression for the gradient

∇νĤ(t, ν
∗(t), u∗(t))(x, z, r, q) =





















Dxv
(

t, µ∗(t), u∗(t), x
)⊤

r − λ0∇µL(t, µ∗(t), u∗(t))(x)
+
∫

R2d Dµv
(

t, µ∗(t), u∗(t), y
)

(x)⊤p dν∗(t)(y, p)
v
(

t, µ∗(t), u∗(t), x
)

L(t, µ∗(t), u∗(t))
0





















,

for L 1-almost every t ∈ [0, T ] and any (x, z, r, q) ∈ supp(ν∗(t)). By applying again the differentiation
results of Proposition 5.1, it can finally be checked that

∇νHλ0
(t, ν∗(t), u∗(t))(x, r) =







Dxv
(

t, µ∗(t), u∗(t), x
)⊤

r − λ0∇µL(t, µ∗(t), u∗(t))(x)
+
∫

R2d Dµv
(

t, µ∗(t), u∗(t), y
)

(x)⊤p dν∗(t)(y, p)
v
(

t, µ∗(t), u∗(t), x
)






,

and the gradient of the augmented Hamiltonian can be rewritten as

∇νĤ(t, ν
∗(t), u∗(t))(x, z, r, q) =







∇νHλ0
(t, ν∗(t), u∗(t))(x, r)

L(t, µ∗(t), u∗(t))
0






. (111)

Thus because ν
∗(·) solves (104) and owing to the decomposition (109) combined with the identity

(111), it follows that ν∗(·) is a solution of (72) driven by gradient of the Hamiltonian defined in (98).
Moreover, the complementarity slackness and maximisation condition can be directly recovered by
using the definition of Ψ̂i(µ

∗(T )) in (105) for the former and plugging (110) into (106) for the latter.
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5 Examples of locally differentiable functionals

In this auxiliary section, we provide two examples of extended real-valued functionals defined over
P2(Rd) which are locally differentiable in the sense of Definition 3.3, and compute their gradients.

Proposition 5.1 (Locally differentiable integral functionals). Let V : Rd → R be a continuously
differentiable mapping. Then the functional

V : µ ∈ Pc(R
d) 7→

∫

Rd
V (x)dµ(x) ∈ R, (112)

is locally differentiable in the sense of Definition 3.3, and its Wasserstein gradient is given by

∇V(µ)(x) = ∇V (x),

for every µ ∈ Pc(R
d) and any x ∈ supp(µ).

Similarly, let L : Rd ×Pc(R
d) → R be such that x ∈ Rd → L(x, µ) is continuously differentiable for

every µ ∈ Pc(R
d) and µ ∈ Pc(R

d) 7→ ∇xL(x, µ) is continuous for every x ∈ Rd. Moreover, suppose
that µ ∈ Pc(R

d) → L(x, µ) is locally differentiable for every x ∈ Rd and that (x, y) ∈ Rd × supp(µ) 7→
∇µL(x, µ)(y) ∈ Rd is continuous for every µ ∈ Pc(R

d). Then, the map

L : µ ∈ Pc(R
d) 7→

∫

Rd
L(x, µ)dµ(x), (113)

is locally differentiable, and its Wasserstein gradient writes

∇L(µ)(x) = ∇xL(x, µ) +

∫

Rd
∇µL(z, µ)(x)dµ(z),

for any µ ∈ Pc(R
d) and x ∈ supp(µ).

Proof. We first prove that the functional V(·) defined in (112) is locally differentiable. Let µ ∈ Pc(R
d),

R > 0 and ν ∈ P(Bµ(R)). For every γ ∈ Γo(µ, ν), it holds

V(ν) − V(µ) =

∫

R2d

(

V (y) − V (x)
)

dγ(x, y)

=

∫

R2d

∫ 1

0
〈∇V

(

x + s(y − x)
)

, y − x〉dsdγ(x, y),

=

∫

R2d
〈∇V (x), y − x〉dγ(x, y) +

∫ 1

0

∫

R2d
〈∇V

(

x + s(y − x)
)− ∇V (x), y − x〉dγ(x, y)ds,

=

∫

R2d
〈∇V (x), y − x〉dγ(x, y) + IR,

(114)
where we used Fubini’s theorem. Our goal is now to prove that IR = oR(W2(µ, ν)). Since we assumed
that ∇V (·) is continuous, we can find for every ǫ > 0 another real η > 0 such that |∇V (x + z) −
∇V (x)| ≤ ǫ

2 for any z ∈ B(0, η). Whence, we can split I into two terms and estimate them as

|IR| ≤
∫ 1

0

∫

|x−y|≤η
|〈∇V

(

x + s(y − x)
)− ∇V (x), y − x〉| dγ(x, y)ds

+

∫ 1

0

∫

|x−y|>η
|〈∇V

(

x + s(y − x)
)− ∇V (x), y − x〉| dγ(x, y)ds

≤ ǫ
2

∫

R2d
|x − y|dγ(x, y) + 2 sup

z∈co Bµ(R)
|∇V (z)| sup

x,y∈Bµ(R)
|x − y|γ

({

(x, y) ∈ R
2d s.t. |x − y| > η

})

≤ ǫ
2

∫

R2d
|x − y|dγ(x, y) + CR

η2

∫

R2d
|x − y|2dγ(x, y)

≤ ǫ
2W2(µ, ν) + CR

η2 W2(µ, ν)2,

for some constant CR > 0 depending only on supp(µ), R > 0 and V (·), and where we used Hölder’s
and Chebyshev’s inequalities together with the fact that γ ∈ Γo(µ, ν). Thus whenever W2(µ, ν) ≤
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η′ := η2ǫ
2CR

, it holds that |IR| ≤ ǫW2(µ, ν) which precisely amounts to saying that IR = oR(W2(µ, ν)).

Since ∇V (·) ∈ TanµP2(Rd), (114) implies by Proposition 3.6 that V(·) is locally differentiable at µ.
Let us now consider the functional L(·) defined in (113). By adapting the same arguments as

above, one has for every γ ∈ Γo(µ, ν)

L(ν) − L(µ) =

∫

R2d

(

L(y, ν) − L(x, µ)
)

dγ(x, y)

=

∫

R2d

(

〈∇xL(x, µ), y − x〉 +
(

L(x, ν) − L(x, µ)
)

)

dγ(x, y) + oR(W2(µ, ν)),
(115)

where we used the fact that 〈∇xL(x, ν), x−y〉 = 〈∇xL(x, µ), x−y〉+o(|x−y|) as W2(µ, ν) → 0. Since
µ ∈ Pc(R

d) 7→ L(x, µ) is locally differentiable for µ-almost every x ∈ Rd, it further holds

L(x, ν) − L(x, µ) =

∫

R2d
〈∇µL(x, µ)(z), w − z〉dγ(z, w) + oR(W2(µ, ν)), (116)

so that by plugging (116) into (115) and applying Fubini’s Theorem, we can derive

L(ν) − L(µ) =

∫

R2d

〈

∇xL(x, µ) +

∫

Rd
∇µL(z, µ)(x)dµ(z), y − x

〉

dγ(x, y) + oR(W2(µ, ν)). (117)

Finally observe that ∇xL(·, µ) ∈ TanµP2(Rd) by definition, and also

∫

Rd
∇µL(z, µ)(·)dµ(z) ∈ TanµP2(Rd),

because ∇µL(z, µ)(·) ∈ TanµP2(Rd) for any z ∈ supp(µ) and

∫

Rd

〈

∫

Rd
∇µL(z, µ)(x)dµ(z), ξ(x)

〉

dµ(x) =

∫

Rd

∫

Rd
〈∇µL(z, µ)(x), ξ(x)〉dµ(x)dµ(z) = 0,

whenever ξ ∈ TanµP2(Rd)⊥, by linearity of the integral and Fubini’s Theorem. Therefore, the identity
(117) implies together with Proposition 3.6 that L(·) is locally differentiable at µ.

Remark 5.2 (Global definition of Wasserstein gradient). In general, the gradient ∇φ(µ) of a func-
tional φ : Pc(R

d) → R at µ ∈ Pc(R
d) is an element of L2(Rd,Rd; µ), and is thus well-defined on

supp(µ). In the particular case where ∇φ(µ) is a continuous map – as in Proposition 5.1 above – , it
is possible to extend it as a continuous function defined over the whole of Rd and not only supp(µ).
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