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Eppur si Muove, and Yet it Moves':
Patchy (Phoretic) Swimmers

A. Aubret, S. Ramananarivo, J. Palacci?

Department of Physics, University of California, San Diego

Abstract

Advances in colloidal synthesis allow for the design of particles with controlled
patches. This article reviews routes towards colloidal locomotion, where energy
is consumed and converted into motion, and its implementation with active
patchy particles. A special emphasis is given to phoretic swimmers, where the
self-propulsion originates from an interfacial phenomenon, raising experimental
challenges and opening up opportunities for particles with controlled anisotropic
surface chemistry and novel behaviors.

Keywords: Interfacial Transport, Phoresis, Patchy, Active Colloids.

1. Introduction

This review article focuses on active patchy colloids, here defined, as self-
propelling particles a.k.a. swimmers. Self-propulsion comes at a cost: particles
need to harvest free energy from their environment and convert it into me-
chanical work. The emergent phenomena, originating from the non-equilibrium
nature of the system, are a pivotal issue of the Active Matter field [II, 2] but
will not be discussed here. For example, collections of active particles can form
clusters [3| 4], ”living crystals” [5] or flocks [6] and confined vortices [7]. The

advancement of a "thermodynamics” and unified framework for those systems

1Phrase attributed to Galileo Galilei, commenting on his trial and abjuration. The historic
accuracy of the quotation is questionable.
2Corresponding Author: palacci@ucsd.edu

Preprint submitted to Elsevier May 22, 2017



20

25

30

35

in an ongoing work [8, [9]. It notably unveiled a Motility-Induced Phase Sepa-
ration (MISP), arising from the persistence of the particles, colliding heads-on
and driven by the rotational diffusion of the propulsion [10] 11, 12} 13 [I4] [15].
Some equilibrium concepts have been extended: active pressure [16], 17, [18] [19],
or surface tension [20], but experiments remain unfortunately scarce [21], 22].

This article is not intended as an exhaustive review of the swimmers, as avail-
able in [23] 24] 25| 26] 27]. It is aimed at the colloidal scientist willing to get a
better grasp on active colloids, and an insider view on this large body of work.
It surveys the different experimental strategies to build self-propelled colloids
and focuses on phoretic engines. Our presentation presents a brief description
of interfacial transport through a qualitative description of electro-osmosis and
broadens the conclusions to the phenomenon of diffusio-phoresis or migration
in a solute gradient. We point towards recent results showing that, in prac-
tice, model-systems are more complex than originally thought. We conclude by

discussing the opportunities offered by patchy phoretic particles.

2. Self-propelled Colloids

2.1. Swimming at the microscale

Autonomous microswimmers experience low Reynolds number dynamics or
”dynamics in a very viscous fluid”, following Stokes equation, which is time-
independent [28, 29]. As stated by Purcell in his seminal paper [28], ”time
doesn’t matter, the pattern of motion is the same, whether slow or fast, whether
forward or backward in time”, and propulsion from a reciprocal stroke, akin
to an opening and closing hinge, is precludedﬂ Propulsion can be achieved
from non-reciprocal patterns of motion, e.g. wave propagation in an oscillating
artificial flagella [30, BI] or corkscrew motion of actuated magnetic structures
[32, B3] 34] 35]. Such systems are macroscopically actuated and the direction of

propulsion is set by an external operator. Alternatively, autonomous systems,

3In a Newtownian fluid
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akin to bacteria in Nature, embed a propulsive machinery and propel along
a direction set internally. The collective arrangement and the emergence of
large scale coherent motion is a key question in non-equilibrium systems and
makes artificial swimmers an adequate probe to explore the driving principles
of dissipative systems. An effective route toward propulsion at small scale,
taking advantage of the miniaturization, is to harness interfacial phenomena.
Phoretic effects, by which a field gradient sets colloidal particles into motion,
thus appear as a relevant vessel for micro-propulsion. Swimmers propelled by
non-interfacial phenomena such as bubbles [36], 37, B8], [39, 40], acoustic waves
[41] or ultrasounds [42, 43] or in complex fluids [44] [45] 406, 47, 48], [49] 50, 51] are
current topics of research but will not be discussed in this review. An overview

of available swimmers is presented on [Fig.1].

2.2. Individual Dynamics of Autonomous Swimmers

In the simple case of particles moving in 2D on a substrate, swimmers per-
form a persistent random walk. The direction of self-propulsion decorrelates
over a typical persistence time 7,. Particles exhibit a ballistic motion for ¢t < 7,
and an effective diffusive behavior for ¢ > 7, [Fig.2A]. The expression of the 2D
Mean Square Displacement (MSD) from the projection of a 3D motion is given

by [52, 53] [Fig.2B]:

V2r2 2At —2At
I e (1)
Tp

AL?(At) = 4Dy At +

where Dy is the diffusion coefficient of the particle at equilibrium. The dynam-
ics is analogous to the dynamics of a Brownian particle predicted by a Langevin
model, with the persistence time replacing the inertial time scale (~ns). Ro-
tational and translational dynamics are often decoupled in the experiment,
T, ~ Tr o« R3, where T is the equilibrium rotational time and R, the ra-
dius of the particle [53, 54, [5, 55]. The rotational diffusion can be extracted
from the MSD, but the uncertainty on the determination from the non-linear fit
is often broad. Direct measurement of the rotational dynamics could be alter-

natively implemented following recent microscopy developments, e.g. confocal
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imaging [56] or differential dynamic microscopy (DDM), originally developed
for translational diffusion [57], then bacterial motility [58] and recently adapted

to probe rotational dynamics [59].

3. Basics of Interfacial Transport

In fluid dynamics, surfaces are often considered as boundary conditions for
the fluid domain without taking into account the nanoscopic structure of the
layer at the solid/liquid interface. In this section, we introduce physical phe-
nomena demonstrating the impact of this nanometric layer at large scale. The
thermodynamic force arising from an interfacial gradient of a field O can either
drive a fluid under motion with respect to a wall by osmosis, or reciprocally move
a particle by phoresis. The field O can be an electric potential ®, the tempera-
ture T, or a solute concentration c, in the cases of respectively, electrophoresis,

thermophoresis, and diffusiophoresis.

3.1. Electro-osmosis for Dummies®

In this section, we discuss the phenomenon of electro-osmosis, i.e. the in-
terfacial flow resulting from the application of an electric field. More detailed
derivations and discussions on electrokinetic effects can be found in [60 611 62

63].

A solid surface immersed in an aqueous solution spontaneously gets charged.
We consider a negative charge as in the case of silica in water (SIOH=SiO~+H™).
Cations are attracted to the charged surface and anions repelled, leading to the
formation of a screening double layer of ions [Fig.3A]. In the Debye-Huckel limit
of weak potentialaﬂ the electric potential , ®(z), decays exponentially from the
wall , ®(z) = Ce*/*P where )\52 = 2¢%po/ekpT, A\p is the Debye length, € is

4We assumed a Gouy-Chapman mean field approximation, which neglects the fluctuations
of potential, considering only the mean value of the charge distribution, and we neglected the

ions-ions and ions-solvent interactions.
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the permittivity of the considered medium, kg is the Boltzmann constant, ¢ the
charge of the cation and py the bulk concentration of ionsﬂ

The total charge density is approximated by:

750 if z< Mg

An electric field Fe, is applied along the solid surface [Fig.3A]. The system
S =[surface+Debye-Huckel layer+bulk solution] is neutral and so that the total
electric force acting on S is Zerﬂ F.= fs pEdV=0.
The total charge density follows the Poisson-Boltzmann equation, A® = —p/e,
leading to (/A% ~ —p/e, where the (-potential is the potential drop in the
Debye layer. The ions in the double layer undergo a net volume force f = pE
and move. The velocity within the layer determines the velocity field outside
the layer V., = V,,e,. Since Ap is nanometric, we rewrite the force as a surface
stress: op ~ pApE ~ —%E. This is the driving power of the motion [Fig.3A].
It is balanced by the viscous stress resulting from the velocity gradient in the

double layer, |Z| op ~ %Veo, leading to the electro-osmotic velocity:

V.o~ —CE 2)

Ui

This result was first derived by Smoluchovski [64].

3.2. Electro-phoretic motion of a colloidal particle

We consider the effect of an electric field on a charged colloid of radius R. In
the thin Debye layer limit R > Ap, the curvature is negligible, and the problem
is akin to the electroosmotic flow induced by the tangential electric field, as
discussed in the previous section. The particle electrophoretically migrates in

the direction opposite to the electro-osmotic flow. Solving the phoretic velocity

5For a centimolar aqueous solution of a monovalent salt, A\p ~ 3nm.
SSwimming bacteria are an other example of propulsion at zero net force as the drag

balances the thrust, and forms, to lowest order, a force dipole.
"We consider non-slip boundary conditions at the wall
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requires the resolution of the Stokes flow with the appropriate boundary condi-
tions (zero flow at infinity and electro-osmotic slip on the particle surface). It

gives, for an homogeneous particle of arbitrary shape, with Ap < R, [65]:

Vep = éE =—-Vgo
Ui

3.8. Diffusio-osmosis, Diffusio-phoresis
Neutral Diffusio-osmosis

We extend our understanding of interfacial transport to the phenomenon
of diffusio-osmosis: the interfacial flow induced by a concentration gradient of
solute. The phenomenon was first reported by Derjaguin in 1947 [66], then by
Prieve and coworkers [67), 68]. It converts the energy stored in solute gradients
into mechanical energy and motion. It is a rather subtle phenomenon, relevant
in the variety of natural and artificial situations with concentration gradients,
e.g. evaporation, mixing, imposed gradients or asymmetric reactions... In this
review, we mainly focus on the results important for the design of active patchy
particles, details and examples of diffusio- transport are discussed in [60} 69} [70].
A solid substrate is immersed in a solute solution of bulk concentration c¢g. The
solute interacts with the substrate through a potential U(z) with typical range
A, e.g. A = Ap, the Debye length, for electrostatics. At thermal equilibrium,
the distribution of (non-interacting) solute particles is given by the Boltzmann
distribution, ¢(z) = coef%. Provided a macroscopic profile ¢o(z), one can
rewrite ¢(z, z) = ¢ (x)e_%. The resulting unbalanced osmotic pressure in the
interaction layer A is the driving force of the diffusio-osmotic flow [FIG.3B]. It

is balanced by the viscous stress and leads to the diffusio-osmotic flow [60, [71] :

_ dC() - dCQ
Vpo = ~(kpT/n)TL—"ex = ipo— ex (3)

where I' = fooo dz[e=U()/ksT _ 1] measures the excess of solute induced by

the presence of a solid wall || L = I'=! [ dzz[e~V(2)/*5T — 1] is the range of

8T < 0 for depletion of solute and T' > 0 for solid-solute attraction



120

interaction, and upo the diffusio-osmotic mobility. This description for neutral

species is called chemio-osmosis.

Diffusio-osmosis of charged species
In the case of charged species, an additional electrophoretic contribution
needs to be accounted for. In an electrolyte gradient, an electric field E’ is

generated to maintain a zero electrical current:
je = —(=@)D_Veo — qD4Veo + (—q)cop Y E + qeop”E'

with ¢ > 0 the electrical charge of the catiorﬂ D4, the thermal diffusivity of
the cations (respectively anions) and p¥, the electrical mobility of the cations

(respectively anions). The fluctuation-dissipation theorem relates the electrical

mobility and diffusivity :u¥ = i‘;DTi [65]. At zero current, E' = 8 %V log(co),

Dy—D_

where the factor 8 = I

is ion specific. The charged surface sets an electro-

osmotic flow in the self-induced electric field E’:

kgT
= — S = g g4
n nq

The diffusio-osmotic velocity for charged species becomes:
VDO = 7DD0V10g Co

with
eC kT e kgT
Dpo =gty € (koo 2)
n q 2 q

where the first term is the self-induced electrophoretic contribution and the
second term is the complete expression for chemio-osmosis [60]. In practice,

the chemio-osmotic contribution is often negligible H As in electrophoresis, a

9For the sake of simplicity, we assume that anions and cations have the same absolute

charge.
10Comparing LiCl and KCI electrolytes, in controlled microfluidic gradients, the diffusio-

phoretic mobility of latex or silica particles in KCI1 concentration gradients, Sxco; ~ 0, was
reported only ~ 10% of the diffusio-phoretic mobility in LiCl gradients, for which 3 is larger
72l [73) [74].
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colloid migrates diffusiophoretically in an solute gradient, with Vpp = =V po.

Important features of phoresis for the design of active colloids summarize:

e The flow relies on interaction of a solute species with the solid substrate,

e.g. electrostatics for the electrophoresis.

e The interaction range is nanometric. The osmotic velocity appears, macro-

scopically, as an apparent slip velocity.

e The velocity is independent of geometry of homogenous particles of size

R, provided R > A. Phoresis is robust to downsizing.

4. Active Patchy Particles

4.1. Self-propelled Nanorods

A natural avenue for self-propelled particles is the design of particles with
fore-aft asymmetry and using phoretic phenomena. A pioneering realization
is the making of gold-platinum bimetallic nanorods immersed in a solution of
hydrogen peroxide HyOo [75, [76] [77), [78]. The nanorods are typically 2um in
length and 200nm in diameter [Fig.1D] and propel with a velocity V' ~ 15um/s.
They exhibit a persistent random walk, though more subtle dynamics due to
the curvature of the nanorods have been reported [79]. The system constitutes
a short-circuited battery, with a platinum anode and a gold cathode. The addi-
tion of an insulating section between the electrodes suppresses the propulsion.
The electrochemical decomposition of HoO5 results in a gradient in proton con-
centration, associated to a self-induced electric field pointing from Pt to Au. It
sets into motion the positive double layer surrounding the negatively charged
nanorod, exhibiting a self-electrophoretic propulsion with the platinum heading
[Fig.1E]. Details on reaction-induced charge auto-electrophoresis can be found
in [80, [81]. The non-equilibrium electric field is not screened by the static dou-
ble layer and results in long-range interactions between pairs of nanorods [82] or
tripartite Au-Pt-Au rods which assemble into stable rotors [83]. It also accounts

for the surprising increase of the propulsion velocity of nanorods in confining
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channels [84].

Numerous modifications have been performed on the original gold-platinum de-
sign. For example, the addition of magnetic segments allow to steer them ex-
ternally [76], [R5, [86]. Different combinations of metals (Pt, Pd, Ni, Au, Ru,
and Rh) modify the difference of mixed potential between the electrodes and
result in changes in speed and direction of propulsion [87]. The addition of
Carbon NanoTubes (CNT) within the platinum segment enhances the electron-
transfer and leads to speeds up ~ 100um/s. Similarly, the addition of hydrazine
to the solution enhances the decomposition of hydrogen peroxide and lead to
speed ~ 200um/s [88]. A contrario, the addition of salt reduces the speed of
the nanorods (unless it is silver salt, which deposits on the gold segment and
increases the mixed potential difference between the electrodes) [89]. The phe-
nomenon can be qualitatively understood since the driving stress (the motion of
the double layer due to the auto-induced electric field) scales as the Debye length
AD, 0p x Ap, and the viscous dissipation as the shear rate o, % leading to

a propulsion velocity V oc A% o 1/pg, decaying with the salt concentration py.

4.2. Autophoretic swimmers

An alternate design is the Janus colloid, where only one side of the particle
is active [90] @1]. Such particles are typically synthesized by sputtering of a

material (Au, Pt, C...) on a monolayer of homogeneous spheres [Fig. 1F,G].

4.2.1. Diffusio-phoretic swimmers
Platinum-dielectric Janus, a model system?

Diffusio-phoretic swimmmers exhibit catalytic patches on dielectric particles
[0, @1]. They self-propel, in the auto-induced concentration gradient, with ve-
locity V}, oc 45, which depends on (i) «, the reaction rate of the reaction on the
catalytic site, (ii) u, the diffusio-phoretic mobility of the particle in the concen-
tration gradient of the considered specie [See Eq. and (iii) D, the diffusion
coefficient of the chemical in the medium [90} [0I]. The prefactor depends on

the geometry of the patches on the particle. (i) and (ii) are surface properties of
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the particle, while (iii) depends on the medium. In this simple phoretic picture,
the propulsion velocity is independent of the particle size. However, the concen-
tration gradient is set by the particle itself, which can lead to size dependence
of the velocity. The velocity of Pt-PS janus particles exhibits size-dependence,
Vp, x 1/R, for radii in the range [250nm — 5pm]. This can be simply under-
stood in the diffusion limited regime, where the concentration of fuel at the
active patch is 0 and the bulk concentration Cy, on the inert side, leading to
Vo = uVC x ,u% [92]. The relationship between the geometry and the speed

for self-phoretic Janus particles was recently discussed in [93].

Diffusio-phoretic swimmers were first obtained by sputtering a nanometric
platinum cap on polystyrene spheres [Fig.1F] and immersed in hydrogen per-
oxide (typically 0.1 — 10%) [52]. Platinum is a catalyst for the decomposition
of hydrogen peroxide, 2H;05 = 2H50 + O2 and the particle creates a concen-
tration gradient. The velocity follows a Michaelin-Menten behavior with the
concentration of fuel, suggesting a two-step process where hydrogen peroxide
first forms a complex on platinum before breaking down in water and oxygen
[52]. The particles propel at speeds up to ~ 10 — 15um/s.

This system was initially considered a model system for the study of active
colloids. The particles are conveniently synthesized: platinum can be sput-
tered on a wide range of commercially available dielectric, e.g. polystyrene or
silica colloids. The yield is often limited by the intrinsic 2D nature of the pro-
cess. Novel approaches have since been proposed to scale up the synthesis [94].
The chemical decomposition of hydrogen peroxide, 2H,05 = 2H50 + Os, only
involves neutral species, which presumably simplifies the dependence of the self-
propulsion on surface chemistry, such as the ¢ potential of the colloid or the pH
of the solution. Along this line, neutral diffusio-phoresis was shown to provide
an explanation for the observed reorientation of propelling Pt/dielectric Janus,
with their hemisphere perpendicular to the substrate surface [95] [96].

However, subsequent results hint that charged species are involved and that

neutral diffusio-phoresis alone can not account for. The swimming velocity is

10
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strongly reduced by the presence of salt (and ionic impurities) and the direc-
tion of swimming is reversed in correlation with a change or ¢ potential of the
particle [97, [08]). Similarly the addition of cationic surfactant CTAB allows the
direction of self-propulsion to be changed. The strong effects of pH-neutral salts
would suggest ionic self-diffusiophoresis as an alternative mechanism of propul-
sion of the Pt-dielectric Janus particles but would require unrealistic potential
for the colloids, ¢ ~ 30V, to account for observed velocitieﬂ [06]. However, a
mechanism of self-electrophoresis, akin to the self-propulsion of the nanorods, is
compatible with the experimental data. The phenomenon is argued to emerge
from different spatial areas involving oxidations and reductions on the cap and
akin to the short-circuited battery [96] or the thickness-dependent reaction rate
of the decomposition, larger at the pole than at the equator, leading to a flux
of protons [99]. Further work is required to better understand this seemingly
simple system, since even the direction of propulsion was reported to depend on

the thickness of the platinum cap [96]!

Light-activated Diffusiophoretic Swimmers

Light-activated swimmers provide a convenient class of systems, where the
propulsion is switched on and off externally. Light can be modulated spatially
and temporally or with different wavelengths [I00], offering routes towards com-
plexity without experimental complications, and providing a fast switch to re-
turn to equilibrium, thanks to the fast diffusion of molecular species (< 1ms for
1pm).
Catalytic swimmers, where the platinum is replaced by a photocatalytic mate-
rial activated by light, were subsequently proposed. Hematite, (FeaOg3) [101],
partially embedded in a dielectric material and immersed in hydrogen peroxide
(pH=6.5) self-propels in 3D under blue illumination. So does titania (TiO,,
anatase phase), under illumination by UVA (390nm) [I00]. We infer that semi-

11Indeed, diffusiophoretic velocities measured in microfluidics experiments were also signif-

icantly lower V' ~ 1 — 2um/s [72] [73], [T4)

11
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conductors, illuminated above their bandgap, generate electron-holes pairs, and
act as photocatalyst for the decomposition of HyO5. Alternatively, Janus tita-
nia particles exposed to UV, use water splitting to propel in an bio-compatible
fuel [37].

An elegant example of light-activated propelled particles is provided by Janus
silica-gold particles immersed in a critical binary mixture of water and -2,6-
lutidine. Under illumination, the gold cap heats up above the critical tempera-
ture and induces the demixing of the binary mixture. The particle subsequently
propels in the established gradient and exhibits a persistent random walk with
the velocity set by the local light intensity [54]. Interestingly, the direction of
propulsion is reversed by hydrophobically-functionalizing the gold cap, stressing

the role of controlled patches to harness propulsion.

4.2.2. Thermophoretic Swimmers

Thermophoretic swimmers generate a thermal gradient resulting in ther-
mophoretic propulsion [I02]. For example, the gold cap of Janus gold-dielectric
spheres heats up under under irradiation (40mW, 1064nm), setting a temper-
ature gradient of ~ 2K, leading to velocities of 10um/s [I03]. Similarly, ther-
mophoretic propulsion was reported for silica particles partially covered with a
magnetic material and exposed to an AC field. The hysteretic response of the

magnetic material heats up of the cap, leading to self-propulsion in water [104].

5. Other types of Swimmers

Patchy swimmers

Silica spheres coated with metals and covered with a thin SiO5 protective
layer (so that their surface properties are uniform) are immersed in deionized
water and sedimented near a bottom substrate. Subject to an A.C. electric field
perpendicular to the bottom substrate, the particles self-propel, isotropically,
along the plane. The propulsion is due to the different polarizability of the two
hemispheres exhibiting an asymmetric Induced Charge ElectroPhoresis (ICEP)

12
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leading to the propulsion of the particle with the dielectric heading [105] [106].
The propulsion of metallodielectric particles by ICEP was previously reported
in [I07] but the nifty use of an electric field perpendicular to the substrate plane
made possible to obtain Janus swimmers with isotropic propulsion, though in-
trinsically planar. The system exhibits different collective behaviors tuning the
interaction between particles thanks to the control of the amplitude and fre-
quency of the A.C. electric field [I0§].

Catalytic locomotion of Au/Ru core-shell nanowires was recently reported in
the presence of hydrogen peroxide. Unlike conventional bimetallic nanowires,
experimental observations pointed toward a propulsion from combined self-

diffusiophoresis and electroomosis in the oxygen gradient [109].

Isotropic Swimmers

In this section, we briefly review examples of isotropic particles, which
nonetheless propel. The propulsion, a priori counter-intuitive, relies on a spon-
taneous symmetry-breaking mechanism.
The first example is provided by insulating spheres immersed in a conducting
fluid. When an electric field E is applied above a critical amplitude, the par-
ticles start rotating at constant speed around a random direction transverse to
E, this is the Quincke effect [110, 111]. Sitting near the bottom substrate, the
particles start rolling at velocity ~ mm/s [6].
Spontaneous autophoretic motion of isotropic particles has also been proposed
theoretically. In a nutshell, a stagnant particle consuming fuel generates an
isotropic concentration cloud. A random fluctuation moves the particle to one
side, steepening the gradient on this side, possibly providing a route for sponta-
neous symmetry breaking. It was shown that this nonlinear interplay between
surface osmotic flows (velocity U) and solute advection (diffusion D) can pro-
duce spontaneous and self-sustained motion of isotropic particles of radii R. It
needs to distort the chemical cloud to amplify the fluctuation, i.e. Pe = % >3

[112]. This condition is difficult to realize experimentally with colloidal particles

Pe ~ 30pum/sx3pum

103 m2/s "~ 0.1 but can be achieved with larger droplets [I13] and sug-

13
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gests an interesting pathway to motility. The vicinity of an impermeable wall
can, alternatively, break the symmetry and induce propulsion of active isotropic

colloids [I14] or guide self-propelled Janus particles [I15] 95].

6. Remarks and Perspectives

Around diffusiophoresis, perspective and open questions

This section stresses important features and questions raised by diffusio-
phoretic mechanisms, with possible impact and ramifications in natural and
artificial situations. Interesting phenomena emerge when the interaction length
of diffusiophoresis (or Debye length if the interaction is electrostatic), compares
with the typical size of the system: the conductivity in a pore is larger than
bulk conductivity when the Debye length becomes larger than the pore radius
[116]. Similarly, the diffusiophoretic mobility becomes size dependence when
the radius of a colloid compares with the interaction range [I17].
Harnessing the subtlety of diffusiophoresis allows to sort particles by size in
dead-end channels using solute gradients or super-imposition of salt gradients,
at fixed total ionic strength [IT7], [T18] or design long-range, surface-specific in-
teractions in suspensions [I19] or exclusion zone near certain walls [120].
The diffusiophoretic velocity is proportional to the gradient of the logarithm of
ions, Vpp = DppV logcy. This can lead to the focusing of colloidal suspensions
colloids [I17, [72], T21] and raises the question of the sensitivity of diffusiophoretic
migration for vanishingly small ionic concentrations, in particular in the ultra
dilute-limit, where the inter-ions distance compares with the colloid radius.
The potential relevance of diffusiophoresis (and phoretic transport) within the
context of complex fluids is an open question: it has been predicted that dif-
fusiophoresis of a rigid sphere in a Carreau fluid differs significantly from the
Newtonian case [122] and reported that colloidal particles oscillate at the con-

striction of a microchannel under electrophoresis in a viscoelastic fluid [123].

14
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Finally, diffusiophoresis could play a role during oil extraction as salty water is
often injected into reservoir to increase oil recovery [124]. The possibility to re-
place salty water in this process by dissolved and dissociating gas, such as carbon
dioxide, has not been explored. Diffusiophoresis offers numerous opportunities
owing to its subtlety and provides uncharted (non-equilibrium) territories to

explore, from oil-extraction to the origin of life [125].

Comments on Active Patchy Swimmers

In this last section, we discuss the challenges and opportunities offered by
phoretic patchy particles. First, it can be difficult to properly describe the
propulsion mechanism of the active particles. They often sit near a surface, a
possible source of osmotic flow, which can contribute to the propulsion. Simi-
larly, tracer particles are often phoretically active, which needs to be accounted
to extract the hydrodynamic flow field [126]. Phenomena altering the surface of
the particles can affect phoresis: surfactants, adsorbing polymers, and surface
chemistry in general. Experiments need to be performed with cleaned solutions
and chambers and in buffer solutions in order to control the surface chemistry.
Roughness (comparable to the interaction length) or hydrodynamic slip can also
have important and non trivial effects on the phoretic effect [127), 128 [71]. In
spite of the conceptual simplicity, interfacial phenomena often intertwine differ-
ent phenomena, e.g. (thermophoresis + diffusiophoresis), or superimpose in a
non-linear fashion, as recently pointed out [II8]. Hydrogen peroxide as a fuel
is a practical concern for biological applicationﬂ which motivated the devel-
opment of self-propelled particles in bio-compatible fuels and ultrasounds or
bubble propelled swimmers [25] 26]. The dependability of phoretic swimmers
on low ionic strength is an intrinsic weakness of the mechanims and limits their

relevance in the bio-engineering context.

This complexity, on the other hand, offers opportunities for a high level of

12FDA recommends its use for sterilization at concentration > 2%

15
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control and novel functionalities. The importance of surface chemistry allows to
tailor the phoretic response of colloids thanks to chemically controlled patches
[129] [130] I31]. Particles with non-uniform surface properties or shapes [132]
133] [134] can be used to design spinners or reconfigurable structures. Semi-
dilute suspensions could potentially be used as active depletants to direct self-
assembly. This would however require non-interacting particles, in contradiction
with the long-range disturbance of the concentration field surrounding phoretic
swimmers and predicted to induce dynamic clusters [I35] and wave patterns
[136]. Additionally, unless nanometric swimmers are used, the small number of
active particles is likely to lead to intermittent attraction, as previously observed
in bacterial suspensions [I137], and qualitatively different from an equilibrium
counterpart of depletion with "hot depletants”. The opportunities offered are
broad and largely untapped, providing a formidable playground where colloidal

scientists, engineers and physicists can meet.

7. Conclusion

In this paper, we showed how phoretic transport is harnessed to design active
patchy particles. The sensitivity of interfacial transport to surface properties
(¢ potential, roughness, pH...) poses experimental challenges but also opens
up opportunities for the colloidal scientist, which successfully control them.
Numerous strategies have already been proposed to design propelled particles
in a variety of fuel, or actuation mechanism. Activity beyond translational
propulsion using patches has been, in large, unexplored. Their use to direct
colloidal self-assembly, such as machines to weave and bread on the microscale

as recently proposed by Goodrich & Brenner [I38], is an uncharted territory.
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Figure 3: Interfacial Transport (A) Electro-osmosis. A solid surface immersed in an aqueous
electrolyte is negatively charged.Cations are attracted to the surface, anions are repelled. They
form a screening double layer of thickness Ap (see main text). An electric field E exerts a force
on the non neutral double layer and sets the layer in motion. The outside layer is neutral
and experiences no net force. The driving force is balanced by viscous dissipation leading
to a constant flow velocity Ve, outside the Debye layer. (B) Diffusio-osmosis, flow under
a concentration gradient Ve(z). The solute is attracted to the substrate, the concentration
gradient Ve(x) induces an unbalanced osmotic pressure (blue arrows) within the interaction
layer I (notations defined in the main text), which drives the fluid in motion. This driving

force is balanced by viscous dissipation and leads to a constant flow velocity V po.
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