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Abstract  
In this paper, we report on a vertically scaled 

AlN/GaN HEMT technology. The comparison between 

a 3 nm and 4 nm barrier thickness shows both superior 

performances and robustness for the thinner barrier 

layer, which is attributed to the reduced mechanical 

strain into the heterostructure. The impact of the gate-

to-drain distance (LGD) on the RF performances has 

been studied at 40 GHz. Pulsed mode large signal 

characteristics reveal an outstanding combination of 

power added efficiency (PAE) of 72% with a saturated 

output power density (POUT) > 3.5 W/mm at VDS = 20V 

with LGD=0.5 µm. Furthermore, short term RF 

reliability assessment demonstrates a promising 

robustness. 

 

Introduction 
Recent improvements in GaN HEMT devices 

enabled the demonstration of a variety of next generation 

millimetre-wave applications owing to its material 

properties. Nevertheless, future applications operating at 

high frequency such as 5G need compact systems, for 

which the PAE is a critical parameter. Indeed, a high 

PAE is mandatory in order to reduce the power 

dissipation, which is a current major challenge for next 

generation of compact solid-state power amplifiers. We 

have already demonstrated attractive efficiencies in the 

mm-wave range using AlN/GaN HEMTs on SiC 

substrate [1]. In this work, a comparison of device 

performances of two HEMT structures using 3 nm and 4 

nm AlN barrier thickness is reported with the aim of 

pushing the PAE limit of mm-wave GaN-based HEMTs.  

 

Experimental 
The heterostructures have been grown by metal 

organic chemical vapour deposition (MOCVD) on 4-

inch SiC substrates. They consist in an AlN nucleation 

layer, a carbon-doped GaN buffer layer followed by a 

100 nm undoped GaN channel. Two different AlN 

barrier thickness of 3 nm and 4 nm have been used in 

order to study the impact on the device performances. 

Finally, a 10 nm thick in-situ Si3N4 was deposited for 

both structures. More process details can be found in [1].  
 

Results and discussion  
 The transfer characteristics have been swept from 

VDS = 2V to 20V with a compliance fixed at 150 mA/mm 

in order to evaluate the electron confinement. For the 3 

nm AlN/GaN devices, an excellent electron confinement 

has been demonstrated, reflected by a DIBL as low as 14 

mV/mm. However, the 4 nm AlN/GaN devices show 

rather poor electron confinement with a much higher 

DIBL of 55 mV/mm.    

Large signal performances have been performed at 

40 GHz for 2×50 µm transistors with LG = 110 nm and 

LGD = 1.5 µm. Fig. 1 shows the pulsed power 

performances at VDS = 20V of a 4 nm AlN/GaN HEMT. 

A peak PAE of 60% associated to a POUT of 3.2 W/mm 

has been obtained with PAE matching. However, a 

strong degradation of the drain leakage current is 

observed after the load-pull measurements at VDS = 20V 

as shown in Fig. 2.  

For the 3 nm AlN/GaN HEMTs, various LGD designs 

have been used. For LGD = 0.5 µm, a record PAE of 72% 

with a POUT of 3.5 W/mm has been achieved in pulsed 

mode (Fig. 3). As expected, the PAE decreases with 

larger LGD due to the increase of the gate-to-drain access 

resistance. For LGD = 1.5 µm and 2.5 µm, while 

delivering comparable POUT, a PAE of 66% and 65% 

have been obtained, respectively as shown in Fig. 5 and 

7. In contrast to the 4 nm, the 3 nm AlN/GaN HEMTs 

show no degradation of drain current leakage current 

after load-pull measurements (see Fig. 6).  

Short-term large signal reliability assessment has 

been carried-out with various drain voltage as a function 

of temperature. 2×50 µm transistors with a LGD of 1.5 µm 

and LG of 110 nm have been monitored during 24 hours 

under large signal conditions at 40 GHz and at peak PAE. 

The 4 nm AlN/GaN HEMTs show a strong degradation 

at VDS = 12V and above. On the other hand, the 3 nm 

AlN/GaN HEMTs show no degradation of RF 

performances and leakage current up to VDS = 30V. This 

is attributed to the lower defect density into the thinner 

barrier layer (closer to the critical thickness) subsequent 

to the reduced mechanical strain. 

 

Conclusions  
 In this work, we performed a comparison between 

two AlN/GaN HEMT structures on 4-inch SiC substrate 

using a 3 nm and 4 nm barrier thickness. The 4 nm 

AlN/GaN structure shows a poor device robustness with 

a strong degradation short term reliability assessment. 

On the other hand, the 3 nm AlN/GaN structure shows 

an outstanding RF performances at 40 GHz while 

demonstrating a promising device robustness. This result 

has been obtained on several tenths of devices, which 

confirm the excellent yield and uniformity.  
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Figure 1. Pulsed power performances of a 4 nm AlN/GaN HEMT  

2x50 μm with LG = 110 nm and LGD = 1.5 μm at VDS = 20V   
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Figure 3. Pulsed power performances of a 3 nm AlN/GaN HEMT  

2x50 μm with LG = 110 nm and LGD = 0.5 μm at VDS = 20V 
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Figure 5. Pulsed power performances of a 3 nm AlN/GaN HEMT  

2x50 μm with LG = 110 nm and LGD = 1.5 μm at VDS = 20V  
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Figure 7. Pulsed power performances of a 3 nm AlN/GaN HEMT  
2x50 μm with LG = 110 nm and LGD = 2.5 μm at VDS = 20V  
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Figure 2. Transfer characteristic before and after load-pull 

measurements at VDS = 20V 
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Figure 4. Transfer characteristics before and after load-

pull measurements at VDS = 20V 

-6 -4 -2 0 2
1µ

10µ

100µ

1m

10m

100m

1

10

100
 Before Loadpull 

 After Loadpull @VDS = 20V

I D
 (

A
/m

m
)

VGS (V)

LGD = 1.5 µm

@VDS = 10V

 
Figure 6. Transfer characteristics before and after load-

pull measurements at VDS = 20V 

 

 


