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Abstract

In this paper, we report on a vertically scaled
AIN/GaN HEMT technology. The comparison between
a 3 nmand 4 nm barrier thickness shows both superior
performances and robustness for the thinner barrier
layer, which is attributed to the reduced mechanical
strain into the heterostructure. The impact of the gate-
to-drain distance (Lep) on the RF performances has
been studied at 40 GHz. Pulsed mode large signal
characteristics reveal an outstanding combination of
power added efficiency (PAE) of 72% with a saturated
output power density (Pout) > 3.5 W/mm at Vos = 20V
with Lep=0.5 pm. Furthermore, short term RF
reliability assessment demonstrates a promising
robustness.

Introduction

Recent improvements in GaN HEMT devices
enabled the demonstration of a variety of next generation
millimetre-wave applications owing to its material
properties. Nevertheless, future applications operating at
high frequency such as 5G need compact systems, for
which the PAE is a critical parameter. Indeed, a high
PAE is mandatory in order to reduce the power
dissipation, which is a current major challenge for next
generation of compact solid-state power amplifiers. We
have already demonstrated attractive efficiencies in the
mm-wave range using AIN/GaN HEMTs on SiC
substrate [1]. In this work, a comparison of device
performances of two HEMT structures using 3 nm and 4
nm AIN barrier thickness is reported with the aim of
pushing the PAE limit of mm-wave GaN-based HEMTs.

Experimental

The heterostructures have been grown by metal
organic chemical vapour deposition (MOCVD) on 4-
inch SiC substrates. They consist in an AIN nucleation
layer, a carbon-doped GaN buffer layer followed by a
100 nm undoped GaN channel. Two different AIN
barrier thickness of 3 nm and 4 nm have been used in
order to study the impact on the device performances.
Finally, a 10 nm thick in-situ SisN4 was deposited for
both structures. More process details can be found in [1].

Results and discussion

The transfer characteristics have been swept from
Vps = 2V to 20V with a compliance fixed at 150 mA/mm
in order to evaluate the electron confinement. For the 3
nm AIN/GaN devices, an excellent electron confinement
has been demonstrated, reflected by a DIBL as low as 14
mV/mm. However, the 4 nm AIN/GaN devices show
rather poor electron confinement with a much higher
DIBL of 55 mV/mm.

Large signal performances have been performed at
40 GHz for 2x50 um transistors with Lg = 110 nm and
Leo = 1.5 pm. Fig. 1 shows the pulsed power
performances at Vps = 20V of a 4 nm AIN/GaN HEMT.
A peak PAE of 60% associated to a Poyr of 3.2 W/mm
has been obtained with PAE matching. However, a
strong degradation of the drain leakage current is
observed after the load-pull measurements at Vps = 20V
as shown in Fig. 2.

For the 3 nm AIN/GaN HEMTS, various Lgp designs
have been used. For Lep= 0.5 um, a record PAE of 72%
with a Pout 0of 3.5 W/mm has been achieved in pulsed
mode (Fig. 3). As expected, the PAE decreases with
larger Lep due to the increase of the gate-to-drain access
resistance. For Lep = 1.5 pm and 2.5 pm, while
delivering comparable Pout, a PAE of 66% and 65%
have been obtained, respectively as shown in Fig. 5 and
7. In contrast to the 4 nm, the 3 nm AIN/GaN HEMTSs
show no degradation of drain current leakage current
after load-pull measurements (see Fig. 6).

Short-term large signal reliability assessment has
been carried-out with various drain voltage as a function
of temperature. 2x50 pum transistors with a Lgp of 1.5 pm
and L of 110 nm have been monitored during 24 hours
under large signal conditions at 40 GHz and at peak PAE.
The 4 nm AIN/GaN HEMTs show a strong degradation
at Vps = 12V and above. On the other hand, the 3 nm
AIN/GaN HEMTs show no degradation of RF
performances and leakage current up to Vps = 30V. This
is attributed to the lower defect density into the thinner
barrier layer (closer to the critical thickness) subsequent
to the reduced mechanical strain.

Conclusions

In this work, we performed a comparison between
two AIN/GaN HEMT structures on 4-inch SiC substrate
using a 3 nm and 4 nm barrier thickness. The 4 nm
AIN/GaN structure shows a poor device robustness with
a strong degradation short term reliability assessment.
On the other hand, the 3 nm AIN/GaN structure shows
an outstanding RF performances at 40 GHz while
demonstrating a promising device robustness. This result
has been obtained on several tenths of devices, which
confirm the excellent yield and uniformity.
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Figure 1. Pulsed power performances of a 4 nm AIN/GaN HEMT
2x50 pm with Lg = 110 nm and Lgp = 1.5 um at Vps = 20V

Figure 2. Transfer characteristic before and after load-pull
measurements at Vps= 20V

Figure 3. Pulsed power performances of a 3 nm AIN/GaN HEMT
2x50 um with Lg = 110 nm and Lgp = 0.5 pm at Vps = 20V

Figure 5. Pulsed power performances of a 3 nm AIN/GaN HEMT
2x50 um with Lg = 110 nm and Lgp = 1.5 pm at Vps = 20V
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Figure 7. Pulsed power performances of a 3 nm AIN/GaN HEMT
2x50 um with Lg = 110 nm and Lgp = 2.5 pm at Vps = 20V
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Figure 4. Transfer characteristics before and after load-
pull measurements at Vps = 20V
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Figure 6. Transfer characteristics before and after load-
pull measurements at Vps = 20V



