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Abstract

A unified framework for the Chevalley and equitable presentation of Uq(sl2) is introduced. It is given in 
terms of a system of Freidel-Maillet type equations satisfied by a pair of quantum K-operators K± , whose 
entries are expressed in terms of either Chevalley or equitable generators. The Hopf algebra structure is 
reconsidered in light of this unified framework, and interwining relations for each pair of K± are obtained. 
A K-operator solving a spectral parameter dependent Freidel-Maillet type equation is also considered. Dif-
ferent specializations of this K-operator are shown to admit a decomposition in terms of K± of Chevalley or 
equitable type. Explicit examples of K-matrices without/with spectral parameter are derived by specializing 
the K-operators previously obtained.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Faddeev-Reshetikhin-Takhtajan (FRT) presentation of quantum algebras [18,19] has 
played a central role in the development of integrable quantum field theory and statistical me-
chanics, providing a powerful framework for studying the properties of the system under con-
sideration (spectrum, scattering data, correlation functions,...). For any quantum algebra Uq(g), 
given a R-matrix satisfying the Yang-Baxter equation

R12R13R23 = R23R13R12 , (1.1)
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where the standard notation Rij ∈ End(Vi ⊗ Vj ) is used, a FRT type presentation gives a matrix 
realization of Uq(g) of the following form. It consists of a pair of quantum L-operators with 
entries (L±

i,j )1≤i,j≤n ∈ Uq(g) obeying a system of exchange relations called the Yang-Baxter 
algebra. The defining relations can be written as

L±
i,iL

∓
i,i = 1 , RL±

1 L
±
2 = L±

2 L
±
1 R , RL+

1 L
−
2 = L−

2 L
+
1 R , (1.2)

where the shorthand notation L1 = L ⊗I, L2 = I⊗L is used. The extension of (1.2) to any affine 
Kac-Moody algebra Uq(ĝ) has been extensively studied, starting from [57,13], until the recent 
achievements [35,36,45]. In this case, the corresponding Yang-Baxter equation (1.1) depends 
on an indeterminate u, called the spectral parameter in the mathematical physics literature. In 
this latter context, corresponding L-operators and R-matrix solutions are the key ingredients for 
the construction of transfer matrices that provide generating functions for mutually commuting 
quantities in quantum integrable systems. Furthermore, powerful standard techniques such as the 
Bethe ansatz and separation of variables essentially depend on the presentation (1.2). For a recent 
review, see e.g. [61]. Solutions of (1.1) also arise in the context of knot theory and quotients of 
the braid group, see e.g. [11, Chapter 15].

In all these works, it is important to point out that besides the presentation (1.2), the quan-
tum algebra Uq(g) always arises in the so-called Chevalley (or Drinfeld-Jimbo) presentation 
with generators {Ei, Fi, K

±1
i , i = 1, ..., n} [34,14]. However, in recent years a different presen-

tation for Uq(g) has been introduced, called equitable, with generators {X±1
i , Yi, Zi, i = 1, ..., n}

[30,63]. Since [30], the equitable presentation of Uq(sl2) has been studied from various perspec-
tives: algebra [65,68,25,20,48], combinatorics and representation theory [1,50,24,27,31,8,66,73,
53,67,58,70] for instance. Also, note that irreducible finite dimensional representations have been 
studied in details in [30,64]. In addition, let us mention that the subalgebra generated by {Y, Z}
of the equitable Uq(sl2) is isomorphic to the non-homogeneous Borel subalgebra considered in 
[46,72,47]. Importantly, contrary to the Chevalley presentation which fits with the FRT frame-
work, up to now a similar set up for the equitable presentation has remained unknown.

In this paper, a unified framework for the Chevalley and equitable presentation of Uq(sl2)

is proposed. The basic data consists of two R-matrices R, R(0), and a pair of K-operators with 
(K±

i,j )1≤i,j≤2 ∈ Uq(sl2) - written in terms of the Chevalley or equitable generators - satisfying 

a system of Freidel-Maillet type equations1 [21]. In both Chevalley and equitable cases, the 
defining relations of Uq(sl2) can be written in the form (see Theorem 3.5):

(K±
1,1)

±1(K±
1,1)

∓1 = 1 , RK±
1 R(0)K±

2 = K±
2 R(0)K±

1 R ,

RK+
1 R(0)K−

2 = K−
2 R(0)K+

1 R .
(1.3)

This matrix realization is called a presentation of Freidel-Maillet type.2 The Hopf algebra struc-
ture is investigated in light of this presentation, and an interpretation of K-operators as inter-
twiners of certain Uq(sl2)-modules is discussed. Also, it is found that the simplest example of 

1 See also [52,3,42]. Note that equations of the form (1.3) arise naturally in the context of braided Yang-Baxter algebras. 
See e.g. [54].

2 The family of algebras introduced by L. Freidel and J-M. Maillet [21] generalizes the concept of Yang-Baxter [18,19]
and reflection algebras [60]. They are of the general form [21, eq. (14)]

RK1R′K2 =K2R′′K1R′′′ (1.4)

where R, R′, R′′, R′′′ are non-trivial and subject to certain relations.
2
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non-homogeneous Borel subalgebra of Uq(sl2) considered in [46,72,47] fits in this framework. 
Some consequences for the spectral parameter dependent Freidel-Maillet equation (4.12) and 
corresponding K-operator solutions are studied.

The text is organized as follows. Section 2 collects the basic material for our purpose. The 
quantum algebra Uq(gl2) is recalled, as well as the Chevalley and equitable presentations of 
Uq(sl2). Section 3 is devoted to the Freidel-Maillet type presentation of Uq(sl2). It is naturally 
suggested from a detailed analysis of K-operator solutions built from Uq(gl2) L-operators in-
troduced at the beginning of the same section. The Hopf algebra structure is discussed, and a 
set of intertwining relations satisfied by the K-operators are obtained. A Freidel-Maillet type 
presentation for the non-homogeneous Borel subalgebra of Uq(sl2) follows. In Section 4, the 
K-operator (4.11) solution of the spectral parameter dependent Freidel-Maillet equation (4.12)
recently obtained in [6] is considered in light of (1.3). This K-operator characterizes a quotient 
of the alternating presentation for Uq(ŝl2) introduced in [69]. It is shown that the class of so-
lutions generated from K± follow from specializations to Uq(sl2) of this K-operator. For the 
simplest irreducible finite dimensional representations in the Chevalley or equitable presentation 
of Uq(sl2), explicit examples of spectral parameter dependent K-matrices are obtained. They 
satisfy a Freidel-Maillet equation of the form:

R12K13R
(0)
12 K23 = K23R

(0)
12 K13R12 , (1.5)

and naturally generate quantum integrable models associated with Uq(sl2). For the Chevalley 
case, some examples have already been studied in the literature, see e.g. [26,43,23,49].

Let us briefly comment on some perspectives and related subjects. Besides potential applica-
tions to quantum integrable systems, it is expected that the presentation of Freidel-Maillet type 
for Uq(sl2) (1.3) generalizes to any higher rank Lie algebra, thus providing a unified framework 
for the Chevalley and equitable presentation of Uq(g). Also, let us point out that the equitable pre-
sentation of Uq(ŝl2) is known [32]. So, it is natural to ask for the corresponding Freidel-Maillet 
type presentation of Uq(ŝl2). This is closely related with the subject of [6,7]. Note that the present 
work is also motivated by the theory of quantum symmetric pairs (see e.g. [44,51,38,10,47]), 
reflection algebras [60,42,16,37,40,9,55,39,2], the q-Onsager algebra [62,5] and its alternating 
central extension, see [71] and references therein. As a last comment, for a Hopf algebra re-
call that the quasi-cocommutativity property is characterized by the universal R-matrix and the 
concept of quasi-triangularity [14]. In view of the results of subsection 3.4 it seems desirable to 
investigate the universal K-matrix of equitable type associated with a universal version of (1.5), 
and clarify its interpretation with respect to Uq(sl2)-modules. Some of these problems will be 
considered elsewhere.

Notation 1.1. Let K denote an algebraically closed field of characteristic 0. K(q) denotes the 
field of rational functions in an indeterminate q . The q-commutator 

[
X, Y

]
q

= qXY − q−1YX

is introduced. We denote [X, Y ] = [X, Y ]q=1. We also denote the q-number [n]q = (qn −
q−n)/(q − q−1).

2. The quantum algebras Uq(gl2) and Uq(sl2)

In this section, we recall the definitions and basic properties of the Chevalley presentations of 
Uq(gl2) and Uq(sl2), as well as the equitable presentation of Uq(sl2) recently introduced in [30]. 
For each presentation, the comultiplication, counit and antipode that ensure the Hopf algebra 
3
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structure are given. Central elements are also displayed. For further discussion, irreducible finite 
dimensional representations [11,30,64] are recalled.

2.1. The Chevalley presentation of Uq(gl2)

We refer the reader to [34].

Definition 2.1. Uq(gl2) is the unital associative K(q)-algebra with Chevalley generators 
E, F, K±1

1 , K±1
2 satisfying the following relations:

KiK
−1
i = K−1

i Ki = 1 , i = 1,2 , (2.1)

KiKj = KjKi , (2.2)

K1EK−1
1 = qE, K1FK−1

1 = q−1F , (2.3)

K2EK−1
2 = q−1E, K2FK−1

2 = qF , (2.4)

[
E,F

] = K1K
−1
2 − K−1

1 K2

q − q−1 . (2.5)

In the text, the multiplication and unit map of Uq(gl2) will be denoted μ : Uq(gl2) ⊗
Uq(gl2) → Uq(gl2) and η : K → Uq(gl2), respectively.

The quantum algebra Uq(gl2) is endowed with the following Hopf algebra structure. As a 
coalgebra, it is equipped with the comultiplication � : Uq(gl2) → Uq(gl2) ⊗ Uq(gl2) such that

�(E) = E ⊗ 1 + K1K
−1
2 ⊗ E , �(F) = F ⊗ K−1

1 K2 + 1 ⊗ F ,

�(Ki) = Ki ⊗ Ki , (2.6)

and the counit ε : Uq(gl2) → K such that

ε(E) = 0 , ε(F ) = 0 , ε(Ki) = 1 . (2.7)

As a Hopf algebra, in addition it is equipped with the antipode S : Uq(gl2) → Uq(gl2) such that

S(E) = −K−1
1 K2E , S(F ) = −FK1K

−1
2 , S(Ki) = K−1

i . (2.8)

The center of Uq(gl2) is generated by two central elements, given by:

�1,c = K1K2 , (2.9)

�2,c = q−1K1K
−1
2 + qK−1

1 K2

(q − q−1)2 + EF = qK1K
−1
2 + q−1K−1

1 K2

(q − q−1)2 + FE. (2.10)

2.2. The Chevalley and equitable presentations of Uq(sl2)

Two different presentations of the quantum algebra Uq(sl2) in terms of generators and rela-
tions have been introduced in the literature. The Chevalley presentation of Uq(sl2) is first recalled 
[41,59]. For the notations, see e.g. [33, p. 9].

Definition 2.2. Uq(sl2) is the unital associative K(q)-algebra with Chevalley generators 
E, F, K, K−1 satisfying the following relations:
4
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KK−1 = K−1K = 1, (2.11)

KEK−1 = q2E, KFK−1 = q−2F, (2.12)[
E,F

] = K − K−1

q − q−1 . (2.13)

The quantum algebra Uq(sl2) has the following Hopf algebra structure. The comultiplication 
� : Uq(sl2) → Uq(sl2) ⊗ Uq(sl2) is such that

�(E) = E ⊗ 1 + K ⊗ E , �(F) = F ⊗ K−1 + 1 ⊗ F , �(K) = K ⊗ K , (2.14)

The counit ε : Uq(sl2) → K(q) is such that

ε(E) = 0 , ε(F ) = 0 , ε(K) = 1 (2.15)

and the antipode S : Uq(sl2) → Uq(sl2) is such that

S(E) = −K−1E , S(F ) = −FK , S(K) = K−1 . (2.16)

Also, note the automorphism:

θ : E ↔ F , K ↔ K−1 . (2.17)

The central element of Uq(sl2) is the so-called Casimir operator, given by:

�c = q−1K + qK−1

(q − q−1)2 + EF = qK + q−1K−1

(q − q−1)2 + FE. (2.18)

Note that in the Chevalley presentation, Uq(sl2) is the quotient of Uq(gl2) by the relation 
K1K2 = 1 (see (2.9)). It is generated by

E , F , K = K1K
−1
2 , K−1 = K−1

1 K2 . (2.19)

In further sections, we will consider examples of irreducible finite dimensional representations 
of Uq(sl2). For the Chevalley presentation, see e.g. [11]. Choose K = C. Define the vector space 
V (s) of dimension 2s + 1 with basis {v0, ..., v2s}. In this basis, the Chevalley generators act as 
matrices with non-vanishing entries (i, j), 0 ≤ i, j ≤ 2s, such that

(ρV (s) (K))i,i = q2s−2i , (ρV (s) (E))i−1,i = [2s − i + 1]q , (ρV (s) (F ))i,i−1 = [i]q .

For instance, for the spin −1/2 representation of Uq(sl2) one has:

ρV (1/2) (K) =
(

q 0
0 q−1

)
, ρV (1/2) (E) =

(
0 1
0 0

)
,

ρV (1/2) (F ) =
(

0 0
1 0

)
.

(2.20)

More recently, the equitable presentation of the quantum algebra Uq(sl2) has been introduced.

Theorem 2.3. [30, Theorem 2.1] The algebra Uq(sl2) is isomorphic to the unital associative 
K(q)-algebra with equitable generators X, X−1, Y , Z satisfying the following relations:

XX−1 = X−1X = 1 , (2.21)

qXY − q−1YX

−1 = 1 ,
qYZ − q−1ZY

−1 = 1 ,
qZX − q−1XZ

−1 = 1 . (2.22)

q − q q − q q − q

5
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The isomorphism with the Chevalley presentation of Definition 2.2 is given by:

φ : X±1 → K±1 , Y → K−1 + (q − q−1)F ,

Z → K−1 − q(q − q−1)K−1E .
(2.23)

Using the automorphism θ , one gets another isomorphism:

X±1 → K∓1 , Y → K + (q − q−1)E , Z → K − q(q − q−1)KF . (2.24)

Note that the above isomorphisms can be generalized combining automorphisms of the Chevalley 
presentation of Uq(sl2). For instance [30, Lemma 2.3]:

E → aEK	 , F → a−1K−	F , K → K , (2.25)

for any integer 	 and a ∈ K.
The Hopf algebra structure is ensured by the comultiplication � such that

�(X) = X ⊗ X , �(Y ) = (Y − 1) ⊗ X−1 + 1 ⊗ Y ,

�(Z) = (Z − 1) ⊗ X−1 + 1 ⊗ Z .
(2.26)

The counit ε is such that:

ε(X) = 1 , ε(Y ) = 1 , ε(Z) = 1 (2.27)

and the antipode S is such that:

S(X) = X−1 , S(Y ) = 1 + X − YX , S(Z) = 1 + X − ZX . (2.28)

Note that the subalgebra B generated by {Y, Z} gives an example of non-homogeneous Borel 
subalgebra, see [47, Example 3.6]. There is no analog of B in sl2 (specialization q → 1). As can 
be seen from (2.26), B is a right coideal subalgebra of Uq(sl2): �(B) ⊂ B ⊗ Uq(sl2). On this 
subject, see [29,46,72,47].

In the equitable presentation of Uq(sl2), the central element is given by:

�e = qX + q−1Y + qZ − qXYZ. (2.29)

Several equivalent expressions can be derived using (2.22). Note that using the inverse of (2.23), 
one finds �c → �e/(q − q−1)2.

For the equitable presentation, irreducible finite dimensional representations have been stud-
ied in details in [30,64]. Adapting the notations of [64] (see Theorem 10.12), choose K = C
and consider the vector space V (s). Among the twelve known bases, choose the one denoted 
{u0, ..., u2s} of type ‘[y]col’ in [64, Theorem 10.12]. In this basis, the equitable generators act as 
matrices with non-vanishing entries (i, j), 0 ≤ i, j ≤ 2s such that

(ρV (s) (X))i,i = q2s−2i ,

(ρV (s) (Y ))i,i = q2i−2s , (ρV (s) (Y ))i,i−1 = q2s − q2i−2−2s ,

(ρV (s) (Z))i,i = q2i−2s , (ρV (s) (Z))i−1,i = q−2s − q2i−2s .

For instance, for the spin −1/2 representation of Uq(sl2) one has:

ρV (1/2) (X) =
(

q 0
0 q−1

)
, ρV (1/2) (Y ) =

(
q−1 0

q − q−1 q

)
,

ρV (1/2) (Z) =
(

q−1 q−1 − q

0 q

)
.

(2.30)
6
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3. Freidel-Maillet type presentations for Uq(sl2)

In this section, we construct quantum K-operators that satisfy a system of Freidel-Maillet 
equations associated with Uq(gl2). Then, a presentation of Freidel-Maillet type for Uq(sl2) in 
terms of K-operators of Chevalley or equitable type is proposed. The comultiplication, counit 
and antipode of Uq(sl2) are identified, and central elements are given. In particular, the non-
homogeneous Borel subalgebra of Uq(sl2) fits in this framework. A set of intertwining relations 
satisfied by the K-operators is obtained. Some basic examples of constant K-matrices of Cheval-
ley and equitable type are also displayed.

As a preliminary, we first recall the well-known FRT presentation of Uq(gl2) that will be used 
to construct a one-parameter family of K-operators whose entries are in a subalgebra of Uq(gl2).

3.1. The FRT presentation of Uq(gl2)

We refer the reader to [18,19,13] for details. Define the quantum R-matrix

R =

⎛
⎜⎜⎝

q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q

⎞
⎟⎟⎠ (3.1)

with deformation parameter q . It is known that R satisfies the quantum Yang-Baxter equation 
(1.1) in the space V1 ⊗ V2 ⊗ V3. In addition, R satisfies R − PR−1P = (q − q−1)P , where P
is the permutation operator P(v1 ⊗ v2) = v2 ⊗ v1, v1, v2 ∈ C2. Note that R−1 = Rq↔q−1 and 
Rt1t2 = PRP = R21. Recall the notation L1 = L ⊗ I, L2 = I ⊗L.

Theorem 3.1. [19,13] Uq(gl2) admits a presentation of FRT type. Define the quantum L-
operators with entries L±

i,j , i, j = 1, 2:

L+ =
(

K1 (q − q−1)K1F

0 K2

)
, L− =

(
K−1

1 0
−(q − q−1)EK−1

1 K−1
2

)
. (3.2)

The defining relations are given in a matrix form as follows:

L+
i,iL

−
i,i = L−

i,iL
+
i,i = 1 , (3.3)

RL±
1 L

±
2 = L±

2 L
±
1 R , (3.4)

RL+
1 L

−
2 = L−

2 L
+
1 R . (3.5)

From (3.4), (3.5), one shows:

R−1
21 L±

1 L
±
2 = L±

2 L
±
1 R−1

21 , R−1
21 L−

1 L
+
2 = L+

2 L
−
1 R−1

21 . (3.6)

Remark 3.2. The inverse L-operators are given by:

(L+)−1 =
(

K−1
1 −(q − q−1)FK−1

2
0 K−1

2

)
,

(L−)−1 =
(

K1 0
(q − q−1)K E K

)
.

(3.7)
2 2

7
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The relations satisfied by the inverse L-operators are easily derived from (3.4)-(3.5), see [13, 
Proposition 2.1]. For instance,

R21(L±)−1
1 (L±)−1

2 = (L±)−1
2 (L±)−1

1 R21 , (3.8)

R21(L−)−1
1 (L+)−1

2 = (L+)−1
2 (L−)−1

1 R21 . (3.9)

In the FRT presentation of Theorem 3.1, the Hopf algebra structure of Uq(gl2) is character-
ized as follows. The corresponding expressions for the comultiplication (2.6), counit (2.7) and 
antipode (2.8) are defined by3

�(L±) = (L±)[1](L±)[2] , ε(L±) = I , S(L±) = (L±)−1 , (3.10)

where I denotes the 2 × 2 identity matrix. Note that due to the comultiplication rule, the last 
expressions easily follow from the defining property of the antipode μ ◦ (id ⊗ S) ◦� = μ ◦ (S ⊗
id) ◦ � = η ◦ ε, which gives L±S(L±) = S(L±)L± = I.

Central elements of Uq(gl2) are derived from the following quantum determinants. Define 
U = PR − q(I⊗ I) which satisfies the Hecke braid relation U12U23U12 = U12 and U2 = −(q +
q−1)U . As usual, below ‘tr12’ stands for the trace over V1 ⊗ V2. One has:

det(1)
q = tr12(U12L+

1 L
+
2 ) = −(q + q−1)�1,c , (3.11)

det(2)
q = tr12(U12L+

1 L
−
2 ) = −(q − q−1)2�2,c , (3.12)

with (2.9), (2.10).
For further discussion, let us introduce U ′

q(sl2) the extension of the Chevalley presentation of 
Uq(sl2) by the elements K±1/2 [22]. The defining relations of U ′

q(sl2) are given by (2.1)-(2.5)
with the substitution

K1 → K1/2 , K2 → K−1/2 . (3.13)

A FRT presentation for U ′
q(sl2) is obtained as a corollary of Theorem 3.1: it is defined as the 

quotient of (3.3)-(3.5) by det(L±) = 1. See e.g. [13,22] for details. The corresponding quantum 
L-operators are given by (3.2) with (3.13).

3.2. K-operators and Uq(gl2)

Explicit examples of ‘dressed’ solutions of Freidel-Maillet type equations can be constructed 
using the FRT presentation of Uq(gl2) given in Theorem 3.1. The analysis below is done by 
analogy with [60, Proposition 2], so we only sketch the main steps of the proofs. Consider the 
R-matrix (3.1) and introduce the diagonal matrix:

R(0) = diag(1, q−1, q−1,1) . (3.14)

Consider the Freidel-Maillet equations:

R (K ⊗ I) R(0) (I ⊗K) = (I ⊗K) R(0) (K ⊗ I) R , (3.15)

R (K ⊗ I) R(0) (I ⊗K′) = (I ⊗K′) R(0) (K ⊗ I) R . (3.16)

For the following analysis, we need the ‘reduced’ quantum Lax operators:

3 ((T )[1](T ′)[2])ij = ∑2
k=1(T )ik ⊗ (T ′)kj [60].
8
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L0,+ = diag(K1,K2) , L̄0,− = diag(K−1
2 ,K−1

1 ) (3.17)

and the elementary K-matrices

K0,α =
(

1 0
α 1

)
, (3.18)

where the scalar α ∈ K is introduced. Combining (3.2), (3.17) and (3.18), ‘dressed’ K-operators 
satisfying the system (3.15),(3.16), are easily obtained.

Lemma 3.3. For any α ∈K, the K-operators

K+,α = L̄0,−K0,αL+ and K−,α = L0,+K0,αL− (3.19)

satisfy the Freidel-Maillet equations:
(i) (3.15) for K → K+,α or K → K−,α;
(ii) (3.16) for K → K+,α and K′ →K−,α .

Proof. Consider (i). Assume there exists a matrix K0, two quantum Lax operators L, L0 and a 
R-matrix R′ such that the following relations hold:

R K0
1 R′ K0

2 = K0
2 R′ K0

1 R , (3.20)

RL1L2 = L2L1R , (3.21)

R(L0)1(L0)2 = (L0)2(L0)1R , (3.22)

(L0)1R
′L2 = L2R

′(L0)1 , (3.23)

L1R
′(L0)2 = (L0)2R

′L1 (3.24)

and [
K0

i ,Lj

] = 0 ,
[
K0

i , (L0)j
] = 0 , i �= j . (3.25)

Recall (3.2), (3.17), (3.18). For the choices

R′ = R(0) , L → L+ , L0 → L̄0,− and K0 →K0,α , (3.26)

one finds that all above relations are satisfied. Adapting [60, Proposition 2], using those relations 
one finds L̄0,−K0,αL+ satisfies (3.15). For the choices

R′ = R(0) , L → L− , L0 → L0,+ and K0 →K0,α , (3.27)

one finds L0,+K0,αL− also satisfies (3.15). This completes the proof of (i).
To show (ii), it is sufficient to check that the basic equations (3.20)-(3.24) and (3.25) hold for 

the substitutions R′ = R(0) and

(L0)1 → (L̄0,−)1 and (L0)2 → (L0,+)2 . � (3.28)

Explicitly, the K-operators (3.19) read

K+,α =
(

K1K
−1
2 (q − q−1)K1K

−1
2 F

α K2K
−1
1 + α(q − q−1)F

)
and

K−,α =
(

1 0
αK K−1 − q(q − q−1)K K−1E 1

)
.

(3.29)
2 1 2 1

9
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Note that although the K-operators are built from Uq(gl2), it is seen from the explicit form (3.29)
that their entries belong to the subalgebra generated by (2.19).

To prepare the analysis in the next subsection, let us first observe that more general ‘dressed’ 
solutions of (3.15) and (3.16) can be easily derived by induction. The proof of the following 
Lemma4 can be done similarly to Lemma 3.3, thus we skip it.

Lemma 3.4. The assertions (i), (ii), in Lemma 3.3 hold for the substitution

K+,α → K̄+,α = (L̄0,−)[2](K+,α)[1](L+)[2] ,

K−,α → K̄−,α = (L0,+)[2](K−,α)[1](L−)[2] .
(3.30)

Explicitly, the entries of the K-operators read as follows:

(K̄+,α)1,1 = K1K
−1
2 ⊗ K1K

−1
2 ,

(K̄+,α)2,2 =
(
K2K

−1
1 + α(q − q−1)F − α

)
⊗ K2K

−1
1

+ 1 ⊗
(
αK2K

−1
1 + α(q − q−1)F

)
,

(K̄+,α)1,2 = K1K
−1
2 ⊗ (q − q−1)K1K

−1
2 F + (q − q−1)K1K

−1
2 F ⊗ 1 ,

(K̄+,α)2,1 = α(1 ⊗ 1)

and

(K̄−,α)1,1 = ((K̄−,α))2,2 = 1 ⊗ 1 ,

(K̄−,α)1,2 = 0 ,

(K̄−,α)2,1 =
(
α(K2K

−1
1 − 1) − q(q − q−1)K2K

−1
1 E

)
⊗ K2K

−1
1

+ 1 ⊗
(
αK2K

−1
1 − q(q − q−1)K2K

−1
1 E

)
.

The action of Hopf algebra homomorphisms �, ε and antiautomorphism S of Uq(gl2) on the 
K-operators is finally considered. Acting with (2.6) (resp. (2.7)) on the K-operators in (3.29), one 
compares the resulting expressions with the entries (K̃±,α)i,j (resp. (K0,α)i,j with (3.18)). One 
concludes:

�(K+,α) = (L̄0,−)[2](K+,α)[1](L+)[2] ,

�(K−,α) = (L0,+)[2](K−,α)[1](L−)[2] ,
(3.31)

ε(K±,α) = K0,α (3.32)

Furthermore, using (2.8) one checks the compatibility property:

μ ◦ (id ⊗ S) ◦ �(K±,α) = μ ◦ (S ⊗ id) ◦ �(K±,α) = η ◦ ε(K±,α) . (3.33)

4 The notation ((T )[2](T ′)[1](T ′′)[2])ij = ∑2
k,	=1(T ′)k	 ⊗ (T )ik(T ′′)	j is used.
10
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3.3. Freidel-Maillet type presentations of Uq(sl2)

Consider the restriction in Uq(sl2) of the one-parameter family of K-operators (3.29), using 
(2.19). They are denoted (K±,α)|Uq(sl2). For the specialization α = 0, the entries of (K±,0)|Uq(sl2)

are expressed in terms of the Chevalley generators E, F, K±1. For α = 1, applying φ−1 with 
(2.23) the entries are expressed in terms of the equitable generators X±1, Y, Z. Accordingly, 
introduce the notation:

K±
c ≡ (K±,0)|Uq(sl2) and K±

e ≡ φ−1((K±,1)|Uq(sl2)) . (3.34)

By Lemma 3.3, they satisfy the Freidel-Maillet equations (3.15), (3.16). Furthermore:

Theorem 3.5. Uq(sl2) admits a presentation of Freidel-Maillet type. The defining relations are 
given in a matrix form by:

K±
1,1(K

±
1,1)

−1 = (K±
1,1)

−1K±
1,1 = 1 , (3.35)

R (K± ⊗ I) R(0) (I ⊗K±) = (I ⊗K±) R(0) (K± ⊗ I) R , (3.36)

R (K+ ⊗ I) R(0) (I ⊗K−) = (I ⊗K−) R(0) (K+ ⊗ I) R , (3.37)

where K± ≡ K±
c or K± ≡ K±

e is a square matrix with entries K±
i,j , i, j = 1, 2, such that

K+
c =

(
K (q − q−1)KF

0 K−1

)
, K−

c =
(

1 0
−q(q − q−1)K−1E 1

)
(3.38)

and

K+
e =

(
X XY − 1
1 Y

)
, K−

e =
(

1 0
Z 1

)
. (3.39)

We call K±
c and K±

e the Chevalley and equitable K-operators of Uq(sl2), respectively.

Proof. Eq. (3.35) is equivalent to (2.11) or (2.21). Insert (3.38) or (3.39) into (3.35)-(3.37). It is 
checked that the resulting system of equations is equivalent to the remaining relations given in 
Definition 2.2 or Theorem 2.3. �

Note that (3.36), (3.37) imply

R−1
21 (K± ⊗ I) R(0) (I ⊗K±) = (I ⊗K+) R(0) (K− ⊗ I) R−1

21 , (3.40)

R−1
21 (K− ⊗ I) R(0) (I ⊗K+) = (I ⊗K+) R(0) (K− ⊗ I) R−1

21 . (3.41)

Remark 3.6. The inverse K-operators are given by:

(K+
c )−1 =

(
K−1 −(q − q−1)FK

0 K

)
,

(K−
c )−1 =

(
1 0

q−1(q − q−1)EK−1 1

) (3.42)

and

(K+
e )−1 =

(
Y 1 − YX

−1 X

)
, (K−

e )−1 =
(

1 0
−Z 1

)
. (3.43)
11
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By analogy with (3.8), (3.9), other examples of Freidel-Maillet equations can be derived from 
(3.36)-(3.37).

Proposition 3.7. The following relations hold:

R21(K±)−1
1 (R(0))−1(K±)−1

2 = (K±)−1
2 (R(0))−1(K±)−1

1 R21 , (3.44)

R21(K−)−1
1 (R(0))−1(K+)−1

2 = (K+)−1
2 (R(0))−1(K−)−1

1 R21 . (3.45)

Note that the Chevalley K-operators have a triangular structure, contrary to one of the two 
equitable K-operators.

The Freidel-Maillet type presentation of Theorem 3.5 is not unique. For instance, the relation 
(2.21) is not necessary to show (3.36), (3.37), given the K-operators (3.39): only the relations 
(2.22) are needed. Because these latter relations remain unchanged by the rotation r : X → Y , 
Y → Z, Z → X, other expressions for K-operators obtained from (3.39) can be considered as 
well. For instance, denote r(K+

e ) ≡ KB and r(K−
e ) ≡ KX . It follows:

Remark 3.8. A Freidel-Maillet type presentation of Uq(sl2) is given by:

(Ka)2,1(Ka)
−1
2,1 = (Ka)

−1
2,1(Ka)2,1 = 1 , (3.46)

R (Ka ⊗ I) R(0) (I ⊗Ka) = (I ⊗Ka) R(0) (Ka ⊗ I) R for a = X,B, (3.47)

R (KB ⊗ I) R(0) (I ⊗KX) = (I ⊗KX) R(0) (KB ⊗ I) R , (3.48)

where KB, KX are square matrices such that

KB =
(

Y YZ − 1
1 Z

)
, KX =

(
1 0
X 1

)
. (3.49)

As mentioned in the introduction, the subalgebra B generated by {Y, Z} in the equitable 
presentation of Uq(sl2) provides the simplest example of non-homogeneous Borel subalgebras 
[46,72,47]. This is seen from a direct comparison between (2.23) and [47, Example 3.6]. Accord-
ing to previous remark, B is isomorphic to the Freidel-Maillet algebra:

R (KB ⊗ I) R(0) (I ⊗KB) = (I ⊗KB) R(0) (KB ⊗ I) R . (3.50)

Another Freidel-Maillet type presentation is obtained by modifying the R-matrix R(0):

Remark 3.9. A Freidel-Maillet type presentation of Uq(sl2) is obtained from (3.35)-(3.37) with 
the substitution R(0) → (R(0))−1, K±

1,1 → K±
2,2 and the Chevalley and equitable K-operators 

given, respectively, by:

K+
c →

(
1 (q − q−1)F

0 1

)
, K−

c →
(

K−1 0
−q(q − q−1)KE K

)
(3.51)

and

K+
e →

(
1 Y

0 1

)
, K−

e →
(

Z 1
XZ − 1 X

)
. (3.52)

For the FRT presentation of U ′
q(sl2) introduced at the end of Subsection 3.1, the Hopf algebra 

structure is characterized by a comultiplication, counit and antipode that follow from the restric-
tion of (3.10) to U ′ (sl2). A characterization of the Hopf algebra structure of Uq(sl2) is obtained 
q

12
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by combining the Freidel-Maillet type presentation of Theorem 3.5 and the FRT presentation 
of U ′

q(sl2) extended by the ‘reduced’ L-operators (3.17). The comultiplication (2.14) or (2.26)
and the counit (2.15), (2.27) are obtained as follows. Denote by M|Uq(sl2) the restriction of the 
operator M to Uq(sl2).

Proposition 3.10. The comultiplication � : Uq(sl2) → Uq(sl2) ⊗ Uq(sl2) is such that

�(K+
c ) =

(
(L̄0,−)[2](K+

c )[1](L+)[2]
)

|Uq(sl2)[2] ,

�(K−
c ) =

(
(L0,+)[2](K−

c )[1](L−)[2]
)

|Uq(sl2)[2] ,

(3.53)

�(K+
e ) =

(
id ⊗ φ−1) ◦ (L̄0,−)[2](K+

e )[1](L+)[2]
)

|Uq(sl2)[2] ,

�(K−
e ) = (id ⊗ φ−1) ◦

(
(L0,+)[2](K−

e )[1](L−)[2]
)

|Uq(sl2)[2] .

(3.54)

The counit ε : Uq(sl2) → K is such that

ε(K±
c ) = K0,0 and ε(K±

e ) = K0,1 (3.55)

with (3.18).

Proof. Firstly, we show that (3.53), (3.54) are equivalent to the comultiplication rules (2.14), 
(2.26). For the specialization α = 0, one takes the restriction of (3.31) to Uq(sl2) ⊗ Uq(sl2) and 
uses (3.34). For the specialization α = 1, in addition one acts on the restriction of (3.31) with 
φ−1 ⊗ φ−1. Secondly, (3.55) produces the counit rules (2.15), (2.27): this follows from (3.32)
and (3.34). �

In addition, the compatibility property satisfied by the antipode S : Uq(sl2) → Uq(sl2) holds:

μ ◦ (id ⊗ S) ◦ �(K±) = μ ◦ (S ⊗ id) ◦ �(K±) = η ◦ ε(K±) for K ≡ Kc or Ke.

(3.56)

It follows from the restriction of (3.33) to Uq(sl2). Note that contrary to the FRT presentation 
with (3.10), the comultiplication rules (3.53), (3.54) have no group-like structure. So, the an-
tipode of a Chevalley or equitable K-operator (i.e. S(K±

c ) and S(K±
e )) computed using (2.16), 

(2.28), doesn’t take a simple form in terms of L and K-operators.
To conclude this subsection, let us mention that the central element of Uq(sl2) given by (2.18)

or equivalently (2.29) can be derived from the Freidel-Maillet quantum determinant analog of 
(3.12). Namely,

detFM
q = tr12(U12K+

1 R(0)K−
2 ) = −q−1(q − q−1)2�c = −q−1�e . (3.57)

Note that the central element can be alternatively derived from the so-called quantum trace [17, 
p. 46] with (3.51), (3.52):

trq(K+(K−)−1) = tr(DK+(K−)−1) = (q − q−1)2�c = �e with

D = diag(q, q−1) . (3.58)
13
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3.4. K-operators of Uq(sl2) as intertwiners

The quasi-cocommutativity property of Uq(sl2) according to the Chevalley presentation is 
characterized by the universal R-matrix R ∈ Uq(sl2) ⊗ Uq(sl2) [14]. With respect to the comul-
tiplication � and opposite comultiplication �′ = σ ◦�, σ(x ⊗y) = y ⊗x, R is the isomorphism 
such that �(x) =R�′(x)R−1 for x ∈ E, F, K±1. It implies that the L-operators of U ′

q(sl2) sat-
isfy the intertwining relations (see e.g. [15]):

(ρV (1/2) × id)�(x)L±|U ′
q (sl2) = L±|U ′

q (sl2)(ρV (1/2) ⊗ id)�′(x) for any

x ∈ K±1/2,E,F , (3.59)

as can be easily checked using (2.14), (3.2) with (3.13) and (2.20). In particular, R-matrices 
that solve the Yang-Baxter equation (1.1) can be derived from R12 = (ρ1 ⊗ ρ2)(R), where ρi :
Uq(sl2) → End(Vi ).

By analogy, it is expected that K-operators of Uq(sl2) satisfy certain intertwining relations. 
Assume there exists a map δ̃ : Uq(sl2) → Uq(sl2) ⊗ Uq(sl2) such that:

(ρV (1/2) ⊗ id)δ̃(K±1) =
(

q±1K±1 0
0 q∓1K±1

)
, (3.60)

(ρV (1/2) ⊗ id)δ̃(E) =
(

q2E K

0 q−2E

)
,

(ρV (1/2) ⊗ id)δ̃(F ) =
(

q−1F 0
K−2 qF

)
,

(3.61)

for the Chevalley presentation, and

(ρV (1/2) ⊗ id)δ̃(X) =
(

qX 0
q − q−1 q−1X

)
,

(ρV (1/2) ⊗ id)δ̃(X−1) =
(

q−1X−1 0
−(q − q−1)X−2 qX−1

)
,

(3.62)

(ρV (1/2) ⊗ id)δ̃(Y ) =
(

q−1Y 0
0 qY

)
,

(ρV (1/2) ⊗ id)δ̃(Z) =
(

qZ q−1 − q

0 q−1Z

)
,

(3.63)

for the equitable presentation. By straightforward calculations, it is found that the defining 
relations of Uq(sl2) hold for the substitution x → (ρV (1/2) ⊗ id)δ̃(x) ∈ End(C2) ⊗ Uq(sl2). Fur-
thermore, one finds that the following intertwining relations are satisfied by the K-operators 
(3.38), (3.39):

(ρV (1/2) ⊗ id)δ̃(x)K±
c = K±

c (ρV (1/2) ⊗ id)�′(x) for x ∈ K±1,E,F , (3.64)

and

(ρV (1/2) ⊗ id)δ̃(x)K±
e = K±

e (ρV (1/2) ⊗ id)�′(x) for x ∈ X±1, Y,Z , (3.65)

where (2.20), (2.30) are used.
The above results suggest to introduce a universal K-matrix for Uq(sl2), characterizing the 

relation between Uq(sl2)-modules associated with �′ and δ̃. From this perspective, the universal 
14
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K-matrix K ∈ Uq(sl2) ⊗ Uq(sl2) would be an invertible element such that δ̃(x) = K�′(x)K−1

for all x ∈ Uq(sl2). For the Chevalley presentation, this problem is solved via the embed-
ding Uq(sl2) ↪→ U ′

q(sl2). Indeed, observe that K± = (ρV (1/2) ⊗ id)(F)L±|U ′
q (sl2) where F =

q(H⊗H)/2 is a Drinfeld twist [14,56] such that K ≡ qH . Then, K± are obtained by specializing 
K, where K gives an example of ‘modified’ universal R-matrix [54, Proposition 3.7]. It is eas-
ily checked that the map δ̃ with (3.60), (3.61), follows from the twisted comultiplication. For 
the equitable case, finding the universal K-matrix is an open problem that will be considered 
elsewhere. In any case, for finite dimensional tensor product representations K-matrices satisfy-
ing the Freidel-Maillet equation (1.5) would follow from the universal K-matrix. Examples of 
K-matrices are given in the next subsection.

To conclude this subsection, let us mention that similar results hold for the non-homogeneous 
Borel subalgebra B with defining relations (3.50) and K-operator KB in (3.49). Assume there are 
two maps δ̃B , δ′

B : B → Uq(sl2) ⊗B such that:

(ρV (1/2) ⊗ id)δ′
B(Y ) =

(
qY 0
0 q−1Y

)
, (ρV (1/2) ⊗ id)δ′

B(Z) =
(

q−1Z 0
q − q−1 qZ

)
,

(ρV (1/2) ⊗ id)δ̃B(Y ) =
(

qY 0
q − q−1 q−1Y

)
, (ρV (1/2) ⊗ id)δ̃B(Z) =

(
q−1Z 0

0 qZ

)
.

It is straightforward to check that the image of the defining relation qYZ − q−1ZY = q − q−1

by above maps holds. Furthermore, the following intertwining relations are obtained:

(ρV (1/2) ⊗ id)δ̃B(x)KB = KB(ρV (1/2) ⊗ id)δ′
B(x) for x ∈ Y,Z . (3.66)

This suggests to investigate the universal version of (3.50) and its solutions from the approach 
based on the universal analog of the intertwining relations above.

3.5. Constant K-matrices of Uq(sl2)

It is well-known that the simplest (non-trivial) constant solutions of the Yang-Baxter equation 
(1.1) can be derived from (3.2) by taking the fundamental representation of U ′

q(sl2). Using (2.20)
one gets

R = q1/2ρV (1/2) (L+|U ′
q (sl2)) and R−1

21 = q−1/2ρV (1/2) (L−|U ′
q (sl2)) . (3.67)

By analogy, the simplest non-trivial examples of constant K-matrices of Uq(sl2) satisfying the 
Freidel-Maillet equation

R12K13R
(0)
12 K23 = K23R

(0)
12 K13R12 (3.68)

are derived from (3.38), (3.39) and (3.49). For the one-dimensional (spin s = 0) representation, 
the images of the Chevalley K-operators are trivial. However, the image of the equitable K-
operators (3.39) or (3.49) is not, given by:

ρV (0) (K±
e ) = ρV (0) (KX) = ρV (0) (KB) =

(
1 0
1 1

)
. (3.69)

For the spin s = 1/2 representation, for the Chevalley case using (2.20) one gets ρV (1/2) (K+
c ) =

R(0)R and ρV (1/2) (K−
c ) = qR(0)R−1

21 . In this case, the K-matrices K±
c are just examples of con-

stant solutions to braided Yang-Baxter equations. For the equitable case, from (2.30) one gets
15
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ρV (1/2) (K+
e ) =

⎛
⎜⎜⎝

q 0 0 0
0 q−1 q−1(q − q−1) 0
1 0 q−1 0
0 1 q − q−1 q

⎞
⎟⎟⎠ ,

ρV (1/2) (K−
e ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

q−1 −(q − q−1) 1 0
0 q 0 1

⎞
⎟⎟⎠

(3.70)

and

ρV (1/2) (KB) =

⎛
⎜⎜⎝

q−1 0 q−2 − 1 q−2 − 1
q − q−1 q 1 − q−2 1 − q−2

1 0 q−1 q−1 − q

0 1 0 q

⎞
⎟⎟⎠ ,

ρV (1/2) (KX) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
q 0 1 0
0 q−1 0 1

⎞
⎟⎟⎠ .

(3.71)

As recalled in previous subsection, the constant R-matrices (3.67) can be derived from the uni-
versal R-matrix of Uq(sl2), see e.g. [11, Example 6.4.12]. For the equitable case, it is expected 
that the constant K-matrices above can be derived from a universal K-matrix of equitable type.

4. Spectral parameter dependent K-operators for Uq(sl2)

In this section, we study a class of K-operators that solve the spectral parameter dependent 
Freidel-Maillet equation (4.12) recently revisited5 in [6]. We start from a K-operator (4.11) with 
entries in A ⊗ K[u, u−1], where A is a quotient of the alternating subalgebra of Uq(ŝl2) intro-
duced in [69]. See [6, Section 4] for details. Certain specializations A → Uq(sl2) are considered. 
It is shown that corresponding images of the K-operator admit a decomposition in terms of K±. 
Examples of spectral parameter dependent K-matrices are given.

As a preliminary, let us recall that the FRT presentation associated with U ′
q(sl2) can be 

encoded into a single spectral parameter dependent Yang-Baxter equation [17]. Introduce the 
quantum R-matrix [4]

R(u) =

⎛
⎜⎜⎝

uq − u−1q−1 0 0 0
0 u − u−1 q − q−1 0
0 q − q−1 u − u−1 0
0 0 0 uq − u−1q−1

⎞
⎟⎟⎠ . (4.1)

It is known that R(u) satisfies the (spectral parameter dependent) Yang-Baxter equation in the 
space V1 ⊗ V2 ⊗ V3:

R12(u/v)R13(u)R23(v) = R23(v)R13(u)R12(u/v) ∀u,v . (4.2)

5 For the class of solutions associated with ‘twisted’ Lax operators, (4.12) can be mapped to a braided Yang-Baxter 
equation. See e.g. [43].
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Note that the permutation operator P = R(1)/(q − q−1), and R12(u) = PR12(u)P = R21(u). 
The FRT presentation of U ′

q(sl2) is encoded as

K1/2K−1/2 = K−1/2K1/2 = 1 , (4.3)

R(u/v) (L(u) ⊗ I) (I ⊗L(v)) = (I ⊗L(v)) (L(u) ⊗ I) R(u/v) . (4.4)

Up to automorphisms of U ′
q(sl2), the so-called quantum Lax operator (L(u))i,j ∈ U ′

q(sl2) ⊗
K[u, u−1] reads:

L(u) =
(

uK1/2 − u−1K−1/2 (q − q−1)FK1/2

(q − q−1)K−1/2E uK−1/2 − u−1K1/2

)
. (4.5)

In the form (4.4), a generating function for central elements is given by the quantum determi-
nant detq(L(u)). For instance, for U ′

q(sl2) the Casimir element �c given by (2.18) follows from 
detq(L(u)) = tr12

(
P −

12L1(u)L2(uq)) with P −
12 = (1 − P)/2:

detq(L(u)) = qu2 + q−1u2 − (q − q−1)2�c . (4.6)

Our purpose is now to investigate the simplest spectral parameter dependent K-operator solu-
tions of the Freidel-Maillet type equation (4.12) in light of the results in previous section. To this 
end, we introduce a more general setting.

Consider the R− matrices given by (4.1) and (3.14). Note that R(0) can be viewed as a limiting 
case of (4.1). Introduce the associative algebra A with generators {W0, W1, Z1, Z̃1} such that the 
following relations hold:[

W0,W1
] = k+Z̃1 − k−Z1 , (4.7)[

W0,Z1
]
q

= −k+ε̄+ ,
[
Z̃1,W0

]
q

= −k−ε̄+ , (4.8)[
W1, Z̃1

]
q

= −k−ε̄− ,
[
Z1,W1

]
q

= −k+ε̄− , (4.9)[
Z1, Z̃1

] = (q − q−1)
(
ε̄+W1 − ε̄−W0

)
, (4.10)

where k±, ε̄± are scalars in K(q). Note that the last relation (4.10) can be derived from 
(4.7)-(4.9), or alternatively the first relation (4.7) can be derived from (4.8)-(4.10). Thus, in each 
case the defining relations for A correspond to a subset of (4.7)-(4.10).

Lemma 4.1. The K-operator

K̃g(u) =
⎛
⎝uqW0 − u−1ε̄+ Z1 + k+qu2

(q−q−1)

Z̃1 + k−qu2

(q−q−1)
uqW1 − u−1ε̄−

⎞
⎠ (4.11)

satisfies the spectral parameter dependent Freidel-Maillet equation

R(u/v) (K(u) ⊗ I) R(0) (I ⊗K(v)) = (I ⊗K(v)) R(0) (K(u) ⊗ I) R(u/v) . (4.12)

Proof. Insert (4.11) in (4.12). One extracts the relations independent of u, which are given by 
(4.7)-(4.10). �

Note that (4.12) for the symmetric R-matrix (4.1) can be viewed as a limiting case of a reflec-
tion equation [12,60]. For a Freidel-Maillet equation of the form (4.12), a generating function for 
17
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Table 1
Three specializations A → Uq(sl2).

A ϕc(A) ϕe(A) ϕ′
c(A)

W0 K X E

W1 K−1 Y F

Z1 (q − q−1)FK q−1(YX − 1) −(q − q−1)−1K

Z̃1 (q − q−1)K−1E −Z −(q − q−1)−1K−1

ε̄± 1 1 0
(k+, k−) (0,0) (0, q − q−1) (1,1)

�0 (q − q−1)2 (q − q−1)2 �c(q − q−1)2

�1 �c(q − q−1)2 �e (q − q−1)−2

central elements is given by the so-called Sklyanin quantum determinant �(u). By analogy with 
[60, Proposition 5], one finds

�(u) = tr12
(
P −

12(K(u) ⊗ I) R(0)(I ⊗K(uq))
)

(4.13)

is such that 
[
�(u), (K(v))i,j

] = 0. A detailed proof can be found in [6]. For the K-operator 
K̃g(u), computing the r.h.s. of (4.13) one gets:

�(u) = u2q4�0 − (q − q−1)2q2�1 − k+k−u4q6 + (q − q−1)2ε̄+ε̄−u−2 , (4.14)

where

�0 = 1

2

(
(q − q−1)2(W0W1 +W1W0) − (q2 − q−2)(k+Z̃1 + k−Z1)

)
, (4.15)

�1 = 1

2

(
Z1Z̃1 + Z̃1Z1 + (q + q−1)(ε̄+W1 + ε̄−W0)

)
, (4.16)

are central in A.
Three different specializations ϕc, ϕe, ϕ′

c : A → Uq(sl2) are now considered. In Table 1, the 
corresponding images of W0, W1, Z1, Z̃1, structure constants ε̄±, k± and central elements �0, �1
are displayed. Note that other specializations can be obtained applying r : X → Y , Y → Z, 
Z → X to ϕe(A).

The K-operator (4.11) is now specialized. From Lemma 4.1, Table 1, it follows:

Kc(u) =
(

uqK − u−1 (q − q−1)FK

(q − q−1)K−1E uqK−1 − u−1

)
(4.17)

or

Ke(u) =
(

uqX − u−1 q−1(YX − 1)

qu2 − Z uqY − u−1

)
(4.18)

satisfy (4.12). Note that contrary to (4.5), in both cases (4.17), (4.18), the entries

(K(u))i,j ∈ Uq(sl2) ⊗K[u,u−1] . (4.19)

Other examples of equitable K-operators with spectral parameter can be obtained applying r
on (4.18). For instance, denote KBX(u) = r(Ke(u)). By cyclicity of (2.22) under the action of r , 
then

KBX(u) =
(

uqY − u−1 q−1(ZY − 1)

qu2 − X uqZ − u−1

)
(4.20)

solves (4.12).
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The isomorphism (2.23) can be derived using the connection between the Freidel-Maillet 
algebra (4.12) and the Yang-Baxter algebra (4.4). Adapting [60, Proposition 2], [21], to the 
Freidel-Maillet type equation (4.12), let K0(u) be a solution of (4.12). Assume there exists a 
pair of quantum Lax operators L(u), L0(u) satisfying the exchange relations:

R(u/v) (L(u) ⊗ I) (I ⊗L(v)) = (I ⊗L(v)) (L(u) ⊗ I) R(u/v) , (4.21)

R(u/v) (L0(u) ⊗ I) (I ⊗L0(v)) = (I ⊗L0(v)) (L0(u) ⊗ I) R(u/v) , (4.22)

R(0) (L0(u) ⊗ I) (I ⊗L(v)) = (I ⊗L(v)) (L0(u) ⊗ I) R(0) ∀u,v . (4.23)

Then, it is easy to show that the ‘dressed’ K-operator defined by

K̃(u) = L0(u)K0(u)L(u) (4.24)

is also a solution of (4.12). For instance, in addition to (4.5) define

L0(u) = diag(uK1/2, uK−1/2) (4.25)

and

Ke→c
0 (u) =

(
u−1 0
q−1 u−1

)
. (4.26)

It is checked that Ke→c
0 (u) satisfies (4.12). Also, by definition (4.21) holds. Then, the relations 

(4.22)-(4.23) follow as limiting cases of (4.21). By previous comments,

Ke(u) → L0(u)Ke→c
0 (u)L(u) (4.27)

relates (4.12) to (4.21)-(4.23). Computing explicitly the r.h.s of (4.27), one finds that the resulting 
expression coincides with the image of (4.18) by the isomorphism (2.23).

4.1. Decomposition of K-operators

The spectral parameter dependent equations (4.3), (4.4), encode the defining relations of the 
FRT presentation of U ′

q(sl2), see [17, p. 44] for details. Introduce the standard non-symmetric 
R-matrix Rns(u):

Rns(u) = uR − u−1R−1
21 . (4.28)

It is related with the symmetric R-matrix (4.1) through the similarity transformation

R12(u/v) = M(u)1M(v)2R
ns
12(u/v)M(v)−1

2 M(u)−1
1 , with

M(u) =
(

u1/2 0
0 u−1/2

)
. (4.29)

Defining Lns(u) = M(u)L(u)M(u)−1 with (4.5), one has the decomposition Lns(u) =
uq1/2L+ − u−1/2q−1/2L−. In terms of the new L-operators, the Yang-Baxter relation reads 
Rns(u/v)Lns

1 (u)Lns
2 (v) = Lns

2 (v)Lns
1 (u)Rns(u/v). Extracting the independent relations in 

R, R−1
21 , L±

1 , L±
2 from the latter, one recovers the FRT presentation of U ′

q(sl2) obtained from 
(3.3)-(3.5).
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A similar statement holds for the Freidel-Maillet equation (4.12) with specialized K-operators 
(4.17) or (4.18). To show that, we apply the same technique.6 For K ∈ {Kc, Ke} with (4.17), 
(4.18), define the new K-operators:

Kns(u) = M(u)K(u)M(u)−1 . (4.30)

It is readily checked that they admit the following simple decomposition:

Kns(u) = uqK+ − u−1K− . (4.31)

By (4.29), they satisfy the Freidel-Maillet equation for the non-symmetric R-matrix:

Rns(u/v)Kns
1 (u)R(0)Kns

2 (v) = Kns
2 (v)R(0)Kns

1 (u)Rns(u/v) . (4.32)

Expanding this equation in u, v, one extracts seven equations. Six coincide with (3.36), (3.37), 
(3.40), (3.41), but recall that (3.40), (3.41), follow from the three equations (3.36), (3.37). The 
remaining equation to show reads

RK−
1 R(0)K+

2 −K+
2 R(0)K−

1 R = R−1
21 K+

1 R(0)K−
2 −K−

2 R(0)K+
1 R−1

21 . (4.33)

Using R − R−1
21 = (q − q−1)P and the Freidel-Maillet equations (3.37), (3.41), by simple com-

putation one finds that this equation is satisfied. Thus, the independent relations are given by 
(3.35)-(3.37). We conclude that the Freidel-Maillet type equation (4.12) encodes the relations 
(3.36), (3.37) of Theorem 3.5.

4.2. K-matrices of Uq(sl2) with spectral parameter

In the context of quantum integrable systems, R and K-matrices are the basic ingredient for 
the construction of mutually commuting quantities. For the class of quantum integrable sys-
tems generated from the Freidel-Maillet algebra of Theorem 3.5, in general for irreducible finite 
dimensional representations of Uq(sl2) the corresponding spectral parameter dependent Freidel-
Maillet equation takes the form:

R12(u/v)K13(u)R
(0)
12 K23(v) = K23(v)R

(0)
12 K13(u)R12(u/v) ∈ End(V1 ⊗ V2 ⊗ V3).

(4.34)

According to the choice of the Chevalley or equitable presentation of Uq(sl2), the simplest ex-
amples of K-matrices of Uq(sl2) with a spectral parameter take a rather different form. For the 
one-dimensional (spin s = 0) representation, the image of (4.18) or (4.20) produces a non-trivial 
solution of (4.34) given by:

ρV (0) (Ke(u)) = ρV (0) (KBX(u)) =
(

uq − u−1 0
u2q − 1 uq − u−1

)
. (4.35)

For the spin s = 1/2 representation, from (4.17), (4.18) using (2.20), (2.30), one gets:

ρV (1/2) (Kc(u)) =

⎛
⎜⎜⎝

uq2 − u−1 0 0 0
0 u − u−1 q(q − q−1) 0
0 q−1(q − q−1) u − u−1 0
0 0 0 uq2 − u−1

⎞
⎟⎟⎠ , (4.36)

6 In the context of non-ultralocal integrable models and braided Yang-Baxter algebras, this technique has been intro-
duced in [28].
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ρV (1/2) (Ke(u)) =

⎛
⎜⎜⎝

uq2 − u−1 0 0 0
0 u − u−1 q − q−1 0

u2q − q−1 q − q−1 u − u−1 0
0 q(u2 − 1) uq(q − q−1) uq2 − u−1

⎞
⎟⎟⎠ . (4.37)

From (4.20), one gets:

ρV (1/2) (KBX(u)) =

⎛
⎜⎜⎝

u − u−1 0 q−1 − q q−1 − q

u(q2 − 1) uq2 − u−1 q − q−1 q − q−1

q(u2 − 1) 0 u − u−1 u(1 − q2)

0 qu2 − q−1 0 uq2 − u−1

⎞
⎟⎟⎠ . (4.38)
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