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INTRODUCTION

E-commerce has emerged as a major means for selling and buying products in recent years. To increase market shares, e-commerce companies have to deliver goods to customers more quickly at lower costs. This requires effective inventory management in their distribution systems. As one of e-commerce giants in the world, Alibaba is trying to improve its inventory management in order to obtain competitive edges over other e-commerce companies. the simplex algorithm. [START_REF] Ivanov | Optimal distribution (re) planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics[END_REF] studied a multi-period and multi-commodity distribution planning problem for a multi-stage supply chain with deterministic and dynamic demand. A linear programming (LP) model is formulated for the problem and transformed into a maximum flow problem by excluding demand constraints from the LP model. [START_REF] Qiu | Optimal production, replenishment, delivery, routing and inventory management policies for products with perishable inventory[END_REF] studied a production-inventory-routing problem with perishable products and presented a branch-and-cut algorithm for solving its MIP model. Different from these works, we study an inventory replenishment planning problem with stochastic demands rather than deterministic demands. According to [START_REF] Guastaroba | Intermediate facilities in freight transportation planning: a survey[END_REF] and [START_REF] Alnaggar | Distribution planning with random demand and recourse in a transshipment network[END_REF], considering uncertainty in distribution planning for distribution networks with intermediate facilities received very little attention in the literature.

Stochastic distribution planning is based on a stochastic model. For a multi-echelon distribution system, most papers investigated inventory management of so-called onewarehouse multi-retailers systems with only one product involved [START_REF] De Kok | A typology and literature review on stochastic multi-echelon inventory models[END_REF]. For a general N-echelon distribution system that delivers goods to customers directly or via cross-docking centers, [START_REF] Verrijdt | Distribution planning for a divergent N-echelon network without intermediate stocks under service restrictions[END_REF] studied a periodic review inventory policy for the system without batch size and capacity constraint. It is assumed that only final stocks (stocks at the lowest echelon) in the system hold inventory, whereas intermediate stocks are pure distribution centers that allocate incoming goods immediately to downstream stocks. They applied a service level approach which aims to achieve predetermined target service levels for the final stocks. In their study, the intermediate stocks can be interpreted as crossdocking centers. The same authors proposed two adjusted methods which can be used to improve the service performance considerably in certain situations [START_REF] Verrijdt | Distribution planning for a divergent depotless two-echelon network under service constraints[END_REF]. [START_REF] Kılıç | A two-stage stochastic mixed-integer programming approach to physical distribution network design[END_REF] considered a two-echelon distribution network with distribution centers and wholesalers and proposed a two-stage stochastic mixed integer programming approach with the first stage selecting the location of each distribution center and the second stage determining the transportation and inventory decisions. [START_REF] Alnaggar | Distribution planning with random demand and recourse in a transshipment network[END_REF] considered a distribution planning problem in which multiple suppliers deliver goods to multiple customers with stochastic demands via an intermedidate consolidation center. They formulated a two-stage stochastic programming model with recourse for the problem and applied sample average approximation to solve the problem. There are also papers studying inventory repenishment planning in serial and assembly systems. For example, [START_REF] Fattahi | Investigating replenishment policies for centralised and decentralised supply chains using stochastic programming approach[END_REF] studied a multi-period inventory system with one retailer and one manufacturer and proposed mixed-integer linear programming (MILP) models based on two-stage stochastic programming and scenario approximation. [START_REF] Avci | A multi-objective simulation-based optimization approach for inventory replenishment problem with premium freights in convergent supply chains[END_REF] studied a three echelon convergent inventory system with a customer, a manufacturer and a number of suppliers and proposed a decomposition-based multi-objective differential evolution algorithm to minimize total holding cost, inbound and outbound premium freight ratios simultaneously. Different from all previously reviewed papers, we study inventory replenishment in a distribution system, where multiple products are involved rather than a single product, and all stocks are allowed to hold inventory. Moreover, we consider order fulfilment via transhipment and adopt a profit maximization approach rather than a service level approach.

Since our inventory replenishment planning model is a single period model, we also review previous studies on single period inventory models. [START_REF] Chung | A single-period inventory placement problem for a supply chain with the expected profit objective[END_REF] considered a single-period and single-product inventory placement problem for an N-stage supply chain facing a stochastic demand with the objective of maximizing an expected profit. Inventory replenishment decisions are made before the occurrence of demand. The sales gross profit, salvage value, ordering, shipping, processing, and lost sales costs are linear and fixed costs at each stage are considered. They developed an effective branch and bound algorithm for the problem. [START_REF] Qin | The newsvendor problem: Review and directions for future research[END_REF] reviewed different variants of news-vendor models with different features of customer demand, supplier costs, and buyer's risk profile. Later, [START_REF] Chung | A single-period inventory placement problem for a supply system with the satisficing objective[END_REF] studied the same problem with the objective of maximizing the probability of achieving a target profit level. They proved the existence of optimal inventory decisions with at most three stages holding inventory. They proposed an O(N 3 ) algorithm for the problem. The well known news-vendor model is also a single-period inventory planning model (Khouja, 1999, Ye and[START_REF] Ye | Price-setting newsvendor with strategic consumers[END_REF], whose objective is to find the order quantity which maximizes the expected profit of a single stock over a single period facing a stochastic demand. [START_REF] Herbon | Replenishing an inventory system permitting lost sales under Poisson demand and short lead times: Explicit performance and an efficient algorithm[END_REF] studied a continuous-review inventory model with Poisson demand and lost sales and controlled by the (Q, r) policy. He proposed an algorithm with polynomial-time complexity to search for the optimal paramters of the policy. The performance of the proposed model was compared with that of an adjusted newsvendor model. We also formulate our inventory replenishment planning problem as a single period model but we consider a much more complex two-echelon distribution system rather than a single stock.

There are also few papers studying multi-period models for inventory management and replenishment planning. However, most of the models deal with a single stock. [START_REF] Zhang | Single and multi-period optimal inventory control models with risk-averse constraints[END_REF] proposed some convex stochastic programming models for multi-period inventory control problems with stochastic demand of a seasonal fashion product. Their models minimize expected losses subject to risk aversion constraints. A sample average approximation method was used to solve the models.

In addition, multi-channel order fulfilment was usually studied in multi-channel retailing, where the sales of products are realized through more than one channel. These channels may include physical stores, e-commerce stores, and online marketplaces. [START_REF] Agatz | E-fulfillment and multichannel distribution-A review[END_REF] provided an overview of planning tasks and quantitative models for e-fulfillment in a multi-channel retailing environment. According to this overview, some inventory management issues for e-fulfillment can be addressed by inventory rationing models. Most of those models consider two customer segments with different profit margins and different service time requirements. [START_REF] Hübner | Operations management in multi-channel retailing: an exploratory study[END_REF] also provided an overview of operations management issues in multi-channel retailing. According to their overview, studies on inventory management in multi-channel retailing were mainly focused on inventory polices, allocation policies, and inventory pooling effects. [START_REF] Bailey | Internet book retailing and supply chain management: An analytical study of inventory location speculation and postponement[END_REF] proposed an inventory model for an internet book retailer who serves demand either from its own inventory or by drop-shipping. They developed analytic expressions for the optimal order quantities of two fulfillment options under fixed plus linear cycle costs and showed that it might make sense to use both fulfillment options simultaneously. [START_REF] Ishfaq | Profitability of online order fulfillment in multi-channel retailing[END_REF] developed a non-linear mixed-integer profit maximization model for online order fulfillment of multi-channel retailers, where an online order can be fulfilled by a distribution center, a direct-to-customer fulfillment center, a vendor facility, or a retail store. However, the customer demand (online orders) in the model is represented by a price-dependent, linear and deterministic function. Our study is different from the above mentioned studies on inventory management for multi-channel order fulfilment in four aspects. Firstly, we consider three fulfilment options including order fulfilment via transshipment which was never considered in those studies. Secondly, we consider multiple products with storage space limitation at each FDC rather than a single product without storage space limitation. Thirdly, we consider both inventory replenishment planning before a promotion and order fulfilment during the promotion. Finally, compared with the work of [START_REF] Ishfaq | Profitability of online order fulfillment in multi-channel retailing[END_REF], although we also propose a non-linear profit maximization model, the customer demands in the distribution system we study are stochastic rather than deterministic.

To the best of our knowledge, no paper has studied the problem we study. For this new problem, we propose a novel mathematical programming model with nonlinear objective function and an efficient piecewise linear approximation method to optimally solve it. Numerical experiments on instances generated based on data of Alibaba show that the model can lead to a significantly higher expected profit compared with a deterministic planning model.

The rest of this paper is organized as follows. Section 2 describes the studied distribution system and its inventory replenishment planning problem. Section 3 proposes a convex nonlinear programming model for the problem. Section 4 presents a piecewise linearization approximation approach for optimally solving the model. Section 5 discusses the performance evaluation of the model by comparing it with its deterministic counterpart. Section 6 evaluates the performance of the model by numerical experiments on instances generated based on data of Alibaba. Section 7 concludes this paper with remarks for future research.

THE INVENTORY REPLENISHMENT PLANNING PROBLEM

We consider a two-echelon distribution system of Alibaba with one CDC (Central Distribution Center) and multiple FDCs (Front Distribution Centers) as shown in Figure 1. This system is operated in an e-commerce environment, where each stock holds multiple fast moving products. The demand of each product at each FDC in the promotion period is stochastic subject to a known distribution. However, our model proposed below can also be applied to the case where the demand is subject to another probability distribution. In the system, multiple products are jointly replenished at each stock. The inventories of the products at the CDC are supplied by external suppliers, while the inventories of each FDC are jointly replenished from the CDC. Each FDC serves customer orders directly. However, each customer order can be fulfilled from its local FDC, other FDCs via transhipment, or the CDC. That is, customer order fulfilment has three channels. To reduce order fulfilment costs, the distribution system tries to fulfil each customer order by its local FDC first, then by other FDCs via transhipment, and finally by the CDC. In addition, each FDC has a limited storage space as it is located in an urban area, so the storage capacity constraint of each FDC must be considered.

We consider the inventory replenishment planning of the distribution system for the sales in the annual "double 11" promotion period. As this inventory replenishment is made in advance before the promotion period, its planning problem can be approximately formulated as a single-period inventory replenishment planning problem with zero lead time for the inventory replenishment of each stock in the system. In the following, this inventory replenishment is referred to as pre-promotion inventory replenishment.

Before the promotion, each stock holds a certain amount of on-hand inventory of each product. During the pre-promotion inventory replenishment, multiple products are jointly replenished at each stock. During the promotion, customers place orders to buy the products, and each order may be fulfilled by its local FDC, other FDCs, or the CDC with the priority from the highest to the lowest. In case all FDCs and the CDC run out of stock for a product ordered by customers, lost sales for the product occur. At the end of the promotion period, holding costs and lost sales costs are charged in addition to order fulfilment costs and shipping (transportation) costs of the pre-promotion inventory replenishment, where the shipping cost of each replenishment depends on the volume (in m 3 ) of the products replenished and the shipping distance. The sales gross profit of each product in promotion, holding cost of each product per unit in the promotion period at each stock, lost sales cost of each product per unit, and order fulfilment cost of each order fulfilled by each channel, and shipping cost per m 3 and per km are given. The objective of the inventory replenishment planning problem is to maximize the expected total profit of the distribution system gained in the promotion. This decision problem can be formulated as a convex nonlinear programming model to be presented in the next section.

MATHEMATICAL MODEL

In this section, we propose a nonlinear programming model for the studied stochastic optimization problem. Before formulating the model, we first introduce the following notations.

Sets and indices

NFDC: set of all FDCs in the distribution system, NFDC ={1, 2, …, n}, where n is the number of FDCs.

N: set of all stocks in the distribution system, N = {0}NFDC, where 0 denotes the CDC. K: set of all products in the distribution system. i,j: stock index, i,j  N. k: product index, k  K.

Parameters

0 ik I : initial on-hand inventory of product k at stock i at the beginning of the pre-promotion inventory replenishment, i  N, k  K. 

d , 2 , k ik k ik i SF i SF           , k  K.   0 k fx ,   0 k
Fx : probability density function and distribution function of

k d , k  K.
k p : Sales gross profit of product k, which is the difference between the sales revenue and the sales costs (excluding logistics costs) for each unit of the product sold, k  K. 1 k fc : order fulfilment cost of product k for each unit fulfilled by other FDCs, k  K. It is assumed that the cost for fulfilling a customer order by another FDC does not depend on the FDC involved. 1 k fc can reasonably approximate the real order fulfilment cost if it is interpreted as the average order fulfilment cost of product k by other FDCs via transhipment. This assumption is introduced for simplifying the mathematical formulation of the problem, because if the cost is FDC-dependent, the mathematical model of this problem will involve multi-dimensional (multivariate) probablity density functions which are difficult to deal with. Moreover, we assume 10  kk fc fc for any product k. α: expected service level for each product at each FDC. zα: z-value corresponding to the service level α.

Decision Variables

ik q : inventory replenishment quantity of product k for stock i.

Other Variables

ik I : on-hand inventory of product k at stock i after the pre-promotion inventory replenishment.

With the above notations, we first formulate the quantities fulfilled by the local FDC, other FDCs, and the CDC for the demand of each product k observed by each FDC i during the promotion period and the inventory level of each stock at the end of the period.

Obviously, for ik d , the demand of product k observed by FDC i, the amount of ik d that can be fulfilled locally by the FDC during the promotion period is given by

  min , ik ik Id,
where ik I is the on-hand inventory of product k at FDC i at the beginning of the period.

If part of demand ik d cannot be fulfilled locally, it will be partially or totally fulfilled by other FDCs and the CDC. Since 10 kk fc fc  , if a customer order cannot be fulfilled locally, it will be first fulfilled by other FDCs if possible and then by the CDC.

Therefore, the order fulfilment quantity of product k by the CDC is given by 0 min , max ,0 



is the amount of the total demand of product k that cannot be fulfilled by all FDCs. From this unfulfilled amount, we can derive that the amount of the total demand of product k that can be fulfilled by all FDCs is given by max ,0

FDC FDC FDC ik ik ik i N i N i N d d I           .
Consequently, the order fulfilment quantity of product k by other FDCs is given by

  max ,0 min , FDC FDC FDC FDC ik ik ik ik ik i N i N i N i N d d I I d              
, where

  min , FDC ik ik iN Id  
is the amount of the total demand of product k fulfilled locally.

Next, we formulate the on-hand inventory and lost sales of each stock at the end of the promotion period.

Since the holding cost k hc of each product k is assumed the same for all FDC, we only need to consider all FDCs' total on-hand inventory of product k after order fulfilment for calculating their total inventory holding cost of the product. This total on-hand inventory is given by min , max , 0

FDC FDC FDC FDC FDC ik ik ik ik ik i N i N i N i N i N I d I I d                         
. The on-hand inventory of product k at the CDC after order fulfilment is thus given by 0 0 min , max ,0

FDC FDC k k ik ik i N i N I I d I                    .
The lost sales quantity of product k after order fulfilment is given by 0 max , 0 min , max ,0

FDC FDC FDC FDC ik ik k ik ik i N i N i N i N d I I d I                           
, where the first term is the amount of the total demand of product k that cannot be fulfilled by all FDCs, and the second term is the amount of the total demand of product k fulfilled by the CDC. Finally, the sales quantity (the total quantity of all fulfilled orders) of product k is given by its total demand minus its lost sales, i.e., 0 max , 0 min , max ,0

FDC FDC FDC FDC FDC ik ik ik k ik ik i N i N i N i N i N d d I I d I                               .
The objective function of the model is the distribution system's expected total profit (ETP), which is defined as the sales gross profit of all products minus the logistics costs composed of inventory holding costs, lost sales costs, order fulfilment costs, and shipping (transportation) costs for inventory replenishment. From the above derivations, we can formulate ETP as:

0 = E max , 0 min , max ,0 FDC FDC FDC FDC FDC k ik ik ik k ik ik k K i N i N i N i N i N ETP p d d I I d I                                                  0 00 min , max ,0 max , 0 FDC FDC FDC FDC k k k ik ik k ik ik k K i N i N k K i N i N hc I I d I hc I d                                        0 max , 0 min , max ,0 FDC FDC FDC FDC k ik ik k ik ik k K i N i N i N i N ls d I I d I                                    0 0 min , max ,0 FDC FDC k k ik ik k K i N i N fc I d I                   1 max , 0 min , FDC FDC FDC FDC k ik ik ik ik ik k K i N i N i N i N fc d d I I d                               k ik i i N k K vp q sc (1)
The expected total profit can be rewritten as equation ( 2) (see Appendix A1 -Transformation of equation ( 1) into ( 2)):

1 1 0 = ( ) ( ) ( ) ( ) ik FDC FDC iN FDC k k k ik k k k k ik k I k K i N k K i N ETP p hc fc p hc ls fc x I f x dx                       0 0 0 0 0 0 0 ( ) ( ) ( ) ( ) ik k iN FDC ik k ik FDC iN FDC iN FDC II k k k k k k ik k II I k K i N p hc ls fc I f x dx x I f x dx                          01 0 0 ( ) ( ) ik ik FDC FDC I k k k ik k ik ik ik I k K i N k K i N hc I hc I fc I f x dx xf x dx                         k ik i i N k K vp q sc (2)
Thus, the stochastic inventory replenishment planning problem of the two-echelon distribution system can be formulated as the following nonlinear programming model SIRP.

SIRP:

Max ETP subject to 0 , , ik ik ik FDC iN I I q k K    (3) 0 0 0 0 , FDC k k k ik iN I I q q k K       (4) 
,

S k ik i FDC kK i v I C N      (5) , R k ik i kK iN v q C     (6) , 0, , ik ik I q i N k K    (7) 
where constraints (3) and ( 4) are inventory balance equations for all FDCs and the CDC respectively, constraints (5) are storage capacity constraints of the FDCs, and constraints ( 6) are transportation capacity constraints for the replenishments of all stocks.

In addition to profit maximization, if the distribution system wants to achieve a given service level α for each product at each FDC during the promotion period, then the following constraints ( 8) must be added.

,,

ik ik ik FDC iN I z k K        (8)

RESOLUTION OF THE MODEL BY PIECEWISE LINEAR APPROXIMATION

Because model SIRP is a nonlinear programing model with a nonlinear integral objective function, we cannot solve it directly by using a commercial MILP solver like that of CPLEX. Fortunately, we can prove that the objective function is strictly concave under the assumption

0 0 1 k k k k hc hc fc fc    > 0 and 00 k k k k
p hc ls fc    > 0 for each product k, so we can optimally solve the model by piecewise linear approximation of its objective function. In the following, we first prove the concavity of the objective function, then introduce a piecewise linearized model of SIRP and its properties, and finally present a piecewise linear approximation approach for solving SIRP. The proofs of all propositions in this section can be found in Appendix A2.

After a mathematical transformation, the objective function ( 2) can be rewritten as follows (see Appendix A1 -Transformation of equation ( 2) into ( 9)):

1 0 0 1 0 = ( ) ( ) ( ) ( ) ik FDC FDC iN FDC k k k ik k k k k ik k I k K i N k K i N ETP p hc fc hc hc fc fc x I f x dx                       0 0 0 0 0 ( ) ( ) ( ) ik k FDC iN FDC k k k k ik k k II k K i N p hc ls fc x I I f x dx                 01 0 0 ( ) ( ) ik ik FDC FDC I k k k ik k ik ik ik I k K i N k K i N hc I hc I fc I f x dx xf x dx                         k ik i i N k K vp q sc (9) Define 0 () k Gy = 0 ( ) ( ) k y x y f x dx    , () ik Gy=   0 ( ) ( ) y ik ik y yf x dx xf x dx    , FDC i N  .
The objective function can be rewritten as equation ( 10).

1 0 0 1 0 ( ) ( ) ( ) FDC FDC k k k ik k k k k k ik k K i N k K i N ETP p hc fc hc hc fc fc G I                   00 00 ( ) ( ) FDC k k k k k ik k k K i N p hc ls fc G I I         01 0 () FDC FDC k k k ik k ik ik k ik i k K i N k K i N i N k K hc I hc I fc G I vp q sc                        (10) Proposition 1: If 0 0 1 k k k k hc hc fc fc    > 0 and 00 k k k k
p hc ls fc    > 0 for any product k, the objective function ETP is strictly concave with respect to its variables.

Note that

0 0 1 k k k k hc hc fc fc    > 0 is derived directly from 0  kk hc hc and 10  kk fc fc . The assumption 00 k k k k p hc ls fc    > 0 is also reasonable, because if 00 k k k k p hc ls fc    ≤ 0, we have 0 k fc ≥ 0  k k k p hc ls > kk p ls  .
In this case, it is more profitable to let an order of product k lost rather than fulfilling the order from the CDC. In the following, we assume the conditions in Proposition 1 hold. According to Property 1, SIRP is a linear constrained concave maximization problem which can be solved by piecewise linear approximation of its objective function Let 00 ()

FDC k k ik iN u G I    , FDC ik iN I    FDC k , 0 0 0 () FDC k k ik k iN v G I I    , 0 FDC ik k iN II     N k ,
and ()

ik ik ik w G I  , ik I  FDC ik , FDC iN  , where set FDC k is a set of considered values of FDC ik iN I   , N k is a set of considered values of 0 FDC ik k iN II   
, and FDC ik is a set of considered values of ik I in the piece-wise approximation of ETP. The three functions 0k u , 0k v , and ik w can be respectively approximated from below by the following linear inequalities ( 11), ( 12) and ( 13). Here, ' 0 (.) , respectively.

' 0 0 0 ( ) ( )( ) FDC k k k ik iN u G I G I I I      , I  FDC k , kK  (11) ' 0 0 0 0 ( ) ( )( ) FDC k k k ik k iN v G I G I I I I       , I  N k , kK  (12) ' ( ) ( )( ) ik ik ik ik w G I G I I I    , I  FDC ik , FDC iN  , kK  (13) 
Define a piecewise linearized model of SIRP as:

SIRP : 1 0 0 1 0 0 0 0 Max ( ) ( ) ( )                        FDC k k k ik k k k k k k k k k k k K i N k K k K ETP p hc fc hc hc fc fc u p hc ls fc v 0 1 0 FDC FDC k k k ik k ik k ik i k K i N k K i N i N k K hc I hc I fc w vp q sc                        (14) 
subject to (3)-( 7) and ( 11)-( 13).

This model depends on the sets FDC k ETP denote the optimal objective value of SIRP and SIRP , respectively, * x and x denote the value of a variable x at an optimal solution of SIRP and SIRP , respectively, we have the following three propositions:

, N k , FDC ik , FDC iN  , kK  . Let = { FDC k , N k , FDC ik , FDC iN  , kK  }. In
Proposition 2: The optimal solution of SIRP is also a feasible solution of SIRP and * ETP provides an upper bound for * ETP .

Proposition 3:

For any given = { FDC k , N k , FDC ik , FDC iN  , kK  } and an optimal solution  x = (  ik q , 0  k q ,  ik I , 0  k I , 0  k u , 0  k v ,  ik w ) of  SIRP , let FDC k = {} FDC FDC k ik iN I , N k = 0 {} FDC N k ik k iN II , FDC ik = {} FDC ik ik I , = { FDC k , N k , FDC ik , FDC iN  , kK  }. If ETP (  x ) > * ETP ,  
SIRP has an optimal solution

  x = (   ik q , 0   k q ,   ik I , 0   k I , 0   k u , 0   k v ,   ik w ) such that ETP (   x ) < ETP (  x ) or ETP (   x ) = * ETP .
Proposition 4:

If SIRP has an optimal solution ( ik q , 0k q , ik I , 0k I , 0k u , 0k v , ik w ) such that ETP ( ik q , 0k q , ik I , 0k I , 0k u , 0k v , ik w ) = ETP( ik q , 0k q , ik I , 0k I ) then ( ik q , 0k q , ik I , 0k I )
is also an optimal solution of SIRP. In this case,

* ETP = * ETP .
According to Proposition 3, the linear constraints ( 11)-( 13) used to approximate the objective function of SIRP in a piecewise linear way can be added to model SIRP dynamically (iteratively) until the condition in Proposition 4 is satisfied or the difference between the upper bound ETP (

ik q , 0k q , ik I , 0k I , 0k u , 0k v , ik w
), denoted by UB hereafter, and the best lower bound of the optimal objective value of SIRP , denoted by LB, is reduced to a given maximum admissible relative gap (error). With this in mind, we propose the following iterative linear approximation procedure for solving SIRP.

Piecewise Linear Approximation (PLA) Procedure:

Step0. Initialize FDC k = ,0 FDC k , N k = ,0 N k , FDC ik = ,0 FDC ik for all FDC iN 
, kK  , and LB = .

Step1. Solving linear programming model SIRP by a commercial LP solver to obtain its optimal solution ( ik q , 0k q , ik I , 0k I , 0k u , 0k v , ik w ). The optimal objective value of SIRP , denoted by UB, is an upper bound of the optimal objective value of model SIRP. Compute the objective value of the feasible solution ( ik q , 0k q , ik I , 0k I ) of SIRP and update the best lower bound of the optimal objective value of SIRP by LB = max(ETP( ik q , 0k q , ik I , 0k I ), LB). Step2. If the relative gap (UB  LB)/UB <  ( is a given small number representing the maximum admissible relative gap), stop and output the solution (

ik q , 0k q , ik I , 0k I ). Otherwise, update FDC k = FDC k { FDC ik iN I   }, N k = N k { 0 FDC ik k iN II    }, FDC ik = FDC ik { ik I } for all FDC iN 
, kK  , and go to Step 1.

The above procedure generates a series of lower bounds and upper bounds for the optimal objective value of SIRP. According to Proposition 3, the upper bound UB is strictly decreasing in each iteration of the procedure until UB = * ETP , and the best lower bound LB is weakly increasing according to its definition. This implies that the upper bound and the lower bound finally converge to the same value with UB = * ETP . At this value, an optimal solution of SIRP is obtained, since UB = LB and UB = * ETP together imply LB = * ETP , and the feasible solution ( ik q , 0k q , ik I , 0k I ) of SIRP corresponding to the best lower bound LB is an optimal solution of SIRP. So the above procedure always converges, it finds an optimal or near-optimal solution of SIRP with relative gap smaller than  in terms of objective value.

EVALUATION OF THE MODEL

As the inventory replenishment planning problem in this paper has not been studied in the literature, we cannot compare our model SIRP with an existing one. Since currently Alibaba applies a deterministic approach based on demand forecasts to plan the inventory replenishment of its distribution system for the double 11 promotion, we evaluate the performance of SIRP by comparing it with its deterministic counterpart which replaces each random demand in SIRP by its mean value, where the mean as the unbiased estimation of the demand can be considered its forecast. Moreover, this comparison can help us to evaluate the value of the stochastic solution [START_REF] Birge | Introduction to Stochastic Programming[END_REF] obtained by SIRP.

The deterministic model, which is denoted by DIRP, can be formulated as follows: DIRP: 

0 Max max , 0 min , max ,0 FDC FDC FDC FDC FDC k ik ik ik k ik ik k K i N i N i N i N i N p I I I                                                0 00 min , max ,0 max , 0 FDC FDC FDC FDC k k k ik ik k ik ik k K i N i N k K i N i N hc I I I hc I                                         0 max , 0 min , max ,0 FDC FDC FDC FDC k ik ik k ik ik k K i N i N i N i N ls I I I                                     0 0 min , max ,0 FDC FDC k k ik ik k K i N i N fc I I                    1 max , 0 min , FDC FDC FDC FDC k ik ik ik ik ik k K i N i N i N i N fc I I                          k ik i i N k K vp q sc      ( 

 

0 1 1 0 Max FDC FDC k ik k k k ik k k k k k K i N i N k K p hc I fc x p hc ls fc                         0 0 1 1 FDC k k k k k ik k ik i k K k K i N i N k K y p hc ls fc fc z vp q sc                    (16) 
subject to constraints (3) to ( 7), and:

,

FDC FDC ik ik i N i N x I k K               (17) 0  x (18) 0 ,   k y I k K (19) ,   y x k K (20)
, ,

ik ik FDC z I i N k K   (21) 
, ,

ik ik FDC z i N k K     (22)
Since the ending inventory levels ,,

ik I i N k K 
can be derived from the replenishment quantities ,, ik q i N k K  in both models SIRP and DIRP, any solution of the two models can be represented by ( , , )

ik q i N k K . Let ( , , ) S ik q i N k K  and
( , , )

D ik q i N k K  denote the optimal solution of model SIRP and the optimal solution of model DIRP respectively. The value of the stochastic solution obtained by SIRP can be calculated as ( , , ) ( , , )

SD ik ik ETP q i N k K ETP q i N k K     
, where ( , , )

S ik ETP q i N k K  and ( , , ) D ik ETP q i N k K 
are the expected total profits (objective values) of SIRP obtained at the stochastic solution ( , , )

S ik q i N k K  and the deterministic solution ( , , )

D ik q i N k K  respectively.

NUMERICAL EXPERIMENTS

In this section, the performance of our model SIRP and its solution method proposed is evaluated numerically on instances generated based on data of Alibaba. We compare SIRP with its deterministic counterpart DIRP for inventory replenishment planning of the distribution system studied. For sake of confidentiality, some data of the instances will be not provided hereafter.

For these instances, the number of FDCs in the distribution system is set to 9 with totally 10 stocks (1 CDC and 9 FDCs), the number of products is set to 500 or 1000. The sales gross profit of each product is generated in a range between 10 and 200 RMB Yuan. The holding cost per unit of each product k at the CDC in the promotion period is set to 12% 10 / 365

k p  
, where k p is the sales gross profit of the product, 12% is an annual holding cost rate, 10 is the number of days in the promotion period including the time for delivering customer orders placed in the period, and 365 is the number of days in each year. The holding cost of each product at each FDC is set as 1.2 times of the holding cost of the same product at the CDC. The lost sales cost per unit of each product is set according to its holding cost and its expected service level (90%, 95%, or 97.5% in three scenarios). Note that the service level is only used to set the lost sales cost, the safety stock constraints (7) are not considered in our numerical experiments. The shipping (transportation) cost of each inventory replenishment from the CDC to an FDC or from suppliers to the CDC is set according to the replenishment volume in m 3 (i.e., the total volume of the products shipped in this replenishment) and the shipping distance in km. Since all FDCs are located in a region with their distances from the CDC ranged from 30 to 150 km and the shipping cost per m 3 per km is approximately one RMB Yuan, the shipping cost is generated in a range between 30 and 150 RMB Yuan. The cost of fulfilling a customer order by other FDCs linearly depends on the shipping cost per m 3 and the volume of the product(s) ordered. The cost of fulfilling a customer order by the CDC is set as 1.25 times of that by other FDCs. The volume of each product is generated from a range between 0.005 and 0.05 m 3 .

Furthermore, the mean value of the demand of each product at each FDC in the promotion period is generated in the interval [3750, 6000], with the standard deviation of the demand set as the mean value multiplied by the coefficient of variation generated in the interval [0.1, 0.4]. Two types of probability distribution are considered for the demand of each product at each FDC: one is normal distribution and the other is gamma distribution. In case of gamma demand, the two parameters "shape" and "scale" of each gamma distribution involved at each FDC is set according to its mean value and standard deviation.

The storage capacity of each FDC i is set as 0.7 times of the space required for stocking all products with mean demand, i.e., 0.7

k ik kK v    
. According to Alibaba's practice, not all products can be pushed down to FDCs in the "double 11" promotion period, so the coefficient 0.7 is taken less than 1 in our numerical experiments. Note that here ik  is not the mean daily demand but the mean demand of product k observed by FDC i in the promotion period. Because of the limited storage capacity of each FDC, only highly profitable products are pushed down to FDCs by the pre-promotion inventory replenishment. The storage capacity of the CDC is sufficiently large and considered unlimited. Two scenarios are considered for joint replenishment capacity of each stock: one is unlimited and the other is limited. In the scenario with limited capacities, the maximum joint replenishment volume (in m 3 ) of each stock is set to 100*the number of products for each FDC, and 100*the number of products*the number of FDCs for the CDC. Here, 100 is the volume (in m 3 ) of a truck with 15 meters in length.

The remaining parameters to set for the distribution system are its initial inventories of all products at all FDCs and the CDC before the pre-promotion inventory replenishment. In normal sales periods, the inventory of each product k at each FDC i is used to cover its demand during the lead time. This inventory is estimated by

  ' ' ik ik ik ik ik ik L R z L R         
, where '

 ik and '  ik are the mean value and the standard deviation of daily demand of product k at FDC i, ik L and ik R are the replenishment lead time and the review lead time of product k at FDC i, and z  is the z-value corresponding to service level . For the products considered in the distribution system of Alibaba,

ik L = ik R = 1, ' ik  ≤ ' 0.5 ik 
for each FDC i and each product k, and z  ≤ 2, so we have

    ' ' ' ' 2 4 ik ik ik ik ik ik ik ik ik ik L R z L R L R                  .
According to this, the initial inventory of each product k at each FDC i is randomly set to an integer number less than ' 4   ik . The initial inventory of each product at the CDC is set in the same way except that its mean demand of each product is the sum of the mean demands of the product at all FDCs. Note that the mean demand of each product at each FDC in the promotion period is set as 25 times of the mean daily demand of the product, because according to a statistics of Alibaba, the total demand of all products in the "double 11" promotion is about 25 times of their total daily demand.

By combing 2 possible numbers of products, possible expected service levels, 2 possible scenarios of joint replenishment capacity, we generated 6 sets of instances as indicated in Table 1, where each set contains 10 instances. Our proposed models SIRP, DIRP, and piecewise linear approximation (PLA) procedure were implemented in C++ and Cplex 12.9 and all instances were tested on a personal PC with i7-8565U CPU and 16GB RAM. The maximum admissible relative gap  of PLA was set to 10 -5 , and

,0 FDC k , ,0 N k

, and

,0 FDC ik were set (initialized) as

,0 FDC k = {0, 1, 2, …, max FDC ik iN I   } , ,0 N k = {0, 1, 2, …, 0 max max FDC ik k iN II    }, ,0 FDC ik = {0, 1, 2, …, max ik I }, for all FDC iN 
, kK  , where max ik I and 0 max k I are the maximum inventory level of product k at FDC i and at the CDC, respectively. The maximum inventory level of product k at each stock is estimated as the storage capacity of the stock divided by the volume of the product. All linear programming models involved in the numerical experiments were solved by using the MILP solver of Cplex 12.9. The summarized results of the experiments are given in Table 2 to Table 5, whereas the detailed results are provided by Table 6 to Table 21 in Appendix A3.

Evaluation of the piecewise linear approximation (PLA) procedure

Our numerical experiments show that the number of iterations of our PLA procedure is less than 25 and its computation time is quite short and in several seconds for all instances.

Although the PLA's maximum admissible relative gap  is set to 10 -5 (0.001%), we observe that the real relative percentage gap may be small than 0.001% and is ranged from 0.0002% to 0.001% for all instances, which proves that PLA can quickly obtain a solution very close to the optimal solution for all instances.

Comparison of model SIRP and DIRP

We have compared SIRP with DIRP for all instance sets in case of demand with normal distribution and for two representative instance sets in case of demand with gamma distribution. The summarized results of this comparison are presented in Tables 2 to 5, where column "Average Gap" represents the average value of the relative (percentage) gaps between the expected total profit of the solution of model SIRP found by the PLA procedure and the expected total profit of the optimal solution of the deterministic planning model DIRP for 10 instances in each instance set, and column "Maximum Gap" denotes the maximum relative gap of 10 instances in each instance set. The detailed results of the relative gap for each instance are given by Tables 6 to 21 in Appendix A3. From Tables 2 and3, we can see for the instance sets with normal demand, our proposed stochastic planning model can generate a higher expected total profit compared to the deterministic planning approach with average percentage profit increase ranged from 3.57% to 4.51% and maximum percentage profit increase ranged from 3.75% to 4.61% in case of unlimited joint replenishment capacity. In case of limited joint replenishment capacity, the average percentage profit increase becomes ranged from 8.83% to 11.36%, and the maximum percentage profit increase becomes ranged from 9.66% to 13.58%. This implies that the joint replenishment (transportation) capacity for each stock has a significant impact on the relative profit increase of SIRP versus DIRP. Similar observations can be obtained for the results of the instance sets with gamma demand presented in Tables 4 and5. It seems that demand distribution has no significant impact on the performance of SIRP versus DIRP.

Sensitivity analysis of the initial inventory levels of model SIRP

To evaluate the influence of the initial inventory levels on the performance of our stochastic planning model SIRP versus the deterministic planning model DIRP, a sensitivity analysis on the levels was conducted for instance set 2 and 5 in case with unlimited joint replenishment capacity, where the initial inventory level of each product k at each stock k is 4). The results of this analysis are presented in Figure 2 and3 where GapSD represents the relative percentage gap between the expected total profit of the solution of model SIRP found by PLA and the expected total profit of the optimal solution of model DIRP. From Figure 2 and 3, we can see that the relative percentage gap of SIRP versus DIRP only changes slightly as the initial inventory levels increase largely. This implies that the performance of SIRP versus DIRP is not sensitive to the change of the initial inventory levels.

CONCLUSIONS

An inventory replenishment planning problem in a two echelon distribution system of Alibaba is studied in this paper. In the system, the demand of each product at each stock is stochastic, multiple products are jointly replenished at each stock, the storage space of each stock is limited, and customer orders may be fulfilled through multiple channels. The objective of the problem is to maximize an expected profit. This stochastic decision problem is formulated as a concave non-linear programming model and a piecewise linear approximation approach is proposed to solve the model. Numerical experiments on the instances generated partially based on the data of Alibaba have validated the model and demonstrated the efficiency of the solution approach.

Our study provides some managerial insights for pre-promotion inventory replenishment planning. Firstly, taking into account the demand uncertainy rather than only demand forecasts in this planning can create an important value which is not sensitive to customer demand distributions. Secondly, the relative profit increase or cost reduction derived by a stochastic planning approach with respect to a determinstic planning approach is not signficantly affected by the initial inventory levels of the products involved.

This study can be extended to a distribution system with more than two echelons and to a distribution system with order fulfilment channels different from what we have considered in this paper. Another extension is the consideration of multiple periods in the replenishment planning. Considering non-stationary demands in a multi-period planning model is also worthy to be investigated.

APPENDICES Appendix A1. Formulation of the Expected Total Profit

Transformation of equation ( 1) into (2):

Since max , 0

FDC FDC ik ik i N i N Id       = FDC FDC ik ik i N i N Id    + max , 0 FDC FDC ik ik i N i N dI     



, the expected total profit given by equation ( 1) can be rewritten as:
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Transformation of equation ( 2) into ( 9):

Since 0 0 00 0 ( ) ( ) ( ) ik k iN FDC ik k ik FDC iN FDC iN FDC II k k ik k II I iN I f x dx x I f x dx              = 0 0 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ik k iN FDC ik k ik FDC FDC i N i N FDC FDC II k k ik k ik k I I I i N i N I f x dx x I f x dx x I f x dx                  = 00 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ik k ik k ik FDC FDC i N i N i N FDC FDC FDC k k ik k ik k I I I I I i N i N I f x dx x I f x dx x I f x dx                    = 0 00 0 ( ) ( ) ( ) ( ) ik k ik FDC FDC i N i N FDC FDC ik k k ik k I I I i N i N I I x f x dx x I f x dx         

  

, the equation ( 2) can be rewritten as equation ( 9).

1 1 0 ( ) ( ) ( ) ( ) ik FDC FDC iN FDC k k k ik k k k k ik k I k K i N k K i N p hc fc p hc ls fc x I f x dx                       0 0 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ik k ik FDC FDC i N i N FDC FDC k k k k ik k k ik k I I I k K i N i N p hc ls fc I I x f x dx x I f x dx                            01 0 0 ( ) ( ) ik ik FDC FDC I k k k ik k ik ik ik I k K i N k K i N hc I hc I fc I f x dx xf x dx                         k ik i i N k K vp q sc 1 0 0 1 0 ( ) ( ) ( ) ( ) ik FDC FDC iN FDC k k k ik k k k k ik k I k K i N k K i N p hc fc hc hc fc fc x I f x dx                        0 0 0 0 0 ( ) ( ) ( ) ik k FDC iN FDC k k k k ik k k II k K i N p hc ls fc x I I f x dx                 01 0 0 ( ) ( ) ik ik FDC FDC I k k k ik k ik ik ik I k K i N k K i N hc I hc I fc I f x dx xf x dx                         k ik i i N k K vp q sc (9)

Appendix A2. Proofs of the Four Propositions

Proof of Proposition 1:

The first and second derivatives of 0 ()

k Gy and () ik Gy ,  FDC i
N can be calculated by the following equations ( 23) to (26). 

Proof of Proposition 2:

For simplifying the notation used in the proof of this proposition and the next proposition 3, we first reformulate model SIRP by the following linearly constrained concave programming model by redefining its variables and reformulating its constraints. Accordingly,

P: Max ETP = 1 ()   m ii i fx (27) s.t. A1x = b1, A2x ≥ b2, A3x ≤ b3 (28) x ≥ 0 ( 



SIRP can be represented by the following linear programming model:

 P : Max  ETP = 1   m i i z ( 30 
)
subject to constraints (28), (29), and

' ( ) ( )( )    i i i i i i i z f x f x x x , i x  i , i = 1, 2, …, m (31) 
where ' i f is the first derivative of i f i is a set of considered values of i x in the piece-wise approximation of ETP, = { i , i = 1, 2, …, m}. Note that all " ≥" in constraints ( 11)-( 13) of model  SIRP are changed to " ≤" in constraints (31) of model  P , because each function () ii fx is strictly concave, which is obtained by multiplying a strictly convex function 0k G or ik G with a negative coefficient and adding possibly a linear term more.

Define the piece-wise linear function ()

ii zx= ' min{ ( ) ( )( )}   ii i i i i i i x f x f x x x for each i = 1, 2, …, m.
Since  P is a maximization solution, in its optimal solution, the value of each i z must be taken as large as possible (subject to all constraints (31)) for given optimal value of xi, i.e., i z = () ii zx. This implies that  P can be equivalently formulated as the following piece-wise linear programming model:

'  P : Max '  ETP = 1 ()   m ii i zx (32)
subject to constraints ( 28) and ( 29). ) is an optimal solution of  P , *

x is an optimal solution of '  P . On the other hand, if *

x is an optimal solution of '  P , there is * z with * ) is an optimal solution of  P . To prove Proposition 2, it is equivalent to prove that the optimal solution of '  P is also a feasible solution of P and the optimal objective value of '  P provides an upper bound for the optimal objective value of P. The first part of this proof is evident since '  P and P have the same constraints, i.e., the same solution space. For the second part, since all functions () ii fxare concave, we have

' ( ) ( ) ( )( )    i i i i i i i i f x f x f x x
x for any i = 1, 2, …, m and any value of i x . This implies that ()  ii fx () ii zxfor any i and i

x . Then, we have ' ( )

 ETP x = 1 ()   m ii i zx ≥ 1 ()   m ii i fx = ETP(x) for any x.
That is, the piece-wise linear objective function of '  P is an upper envelope of the nonlinear concave objective function of P. Since '  P and P are both maximization problems and have the same solution space, the optimal objective value of '  P , which is also the optimal objective value of  P , provides an upper bound for the optimal objective value of P, so we have * ETP * ETP .

Proof of Proposition 3:

Let  x and ' ( )

 
ETP x denote an optimal solution and its optimal objective value of '  P defined in the proof of Proposition 2. To prove Proposition 3, it is equivalent to prove that if

'  ETP (  x ) > * ETP , '   P has an optimal solution   x such that '   ETP (   x ) < '  ETP (  x ) or ETP (   x ) = *
ETP . Let X denote the feasible region, i.e., the set of all feasible solutions, of model P. X is a finite polyhedron. Suppose that j x = ( 1 j x , …, j m x ), j = 0, … l-1 be the l points considered in the piece-wise linear approximation of ETP, l ≥ 1.

Let  i = { 1 i x , 2 i x , …, 1  l i x }, i = 1, … m, l x is an optimal solution of '  P , where = { i , i = 1, 2, …, m};   i = {}  l ii x , i = 1, … m, and 1  l
x is an optimal solution of '   P , where = { i , i = 1, 2, …, m}. Define () x in the piece-wise approximation of () x is an extreme point of Xi; Case c):

j ii Lx = ' ( ) ( )( )  j j j i i i i i i f x f x x x , j = 0, … l-1, i = 1, …
l i x is an extreme point of Xi but 1  l i
x is an interrior point of Xi; Note that it is impossible that l i x and 1  l i

x are two extreme points of Xi, because if l i x is one extreme point of the interval Xi, the point ( l i x , ()  l ii zx) must be generated by the intersection of a tangent of () ii fxwith one boundary (left or right) of Xi. In this case, the tangent passing ( l i x , () l ii fx ) must intersect with the first tangent before intersecting with the other boundary of Xi, and the intersection of the two tangents generates the point ( 1

 l i x , 1 ()   l ii zx) such that 1  l i
x is not an extreme point of Xi. The three cases are illustrated by Figure 4 From the definition of ()

 ii zx and   i , we have ()

 ii zx ≤ ()   ii
zx for all i and any i x , so we have ' ( )

    ETP x ≤ ' ( )   ETP x .
In the following, we prove ' ( )

    ETP x < ' ( )   ETP x or ' ( )     ETP x = *
ETP if the condition of this proposition holds.

Firstly, according to the definition of '  P , '   P , l x and 1  l x , we have: 

'  ETP (  x ) = 1 ()    m l ii i zx, '   ETP (   x ) = 1 1 ()     m l ii i zx. Since 1 ()   l ii zx = '1 min{ ( ) ( )( )}     ii l i i i i i i x f x f x x x = 1 0,..., 1, min ( )   jl ii j l l Lx = 11 0,..., 1 min{ min ( ), ( )}   j l l l i i i i jl L x L x = 11 min{ ( ), ( )}    l l l i i i i z x L x , we have: '   ETP (   x ) = 11 1 min{ ( ), ( )}      m l l l i i i i i z x L x . Let M1 = { i | 1 ()  ll ii Lx ≥ 1 ()  l ii zx , i  {1, 2, ..., m}} and M2 = { i | 1 ()  ll ii Lx < 1 ()  l ii zx , i  {1,
xi ' ( )     ETP x = 1 1 ()     m l ii i zx = 1 1 ()     l ii iM zx + 2 1 ()     l ii iM zx < 1 1 ()    m l ii i zx ≤ 1 ()    m l ii i zx = ' ( )   ETP x .
Case 2: M2 = . In this case, we have:

' ( )     ETP x = 1 1 ()     m l ii i zx = 1 1 ()    m l ii i zx = ' ( )    ETP x .
In case 2, suppose that ' ( )

    ETP x = ' ( )   ETP x , then we have ' ( )    ETP x = ' ( )   ETP x . Two cases may happen: Case 2a:   x =  x , i.e., 1  l x = l x . This is impossible because if 1  l x = l x , 1 ()  ll ii Lx = () ll ii Lx = () l i fx for all i. Since ' ( )   ETP x = 1 ()    m l ii i zx > * ETP ≥ 1 ()   m l ii i fx , there is i such that ()  l ii zx > () l ii fx . For this i, we have 1 ()  ll ii Lx = () l i fx < ()  l ii zx = 1 ()  l ii zx , this is contradictory to i  M1 (M2 = ). Case 2b:   x   x , i.e., 1  l x  l x . In this case, '  ETP (   x ) = '  ETP (  x ) implies that model '  P has two different optimal solutions  
x and  x . Since the objective function of '  P is a piece-wise linear approximaton of the strictly concave objective function of P, it is also concave. Then,

  x  
x is only possible when ' () l ii fx= 0 for all i, where ' () l ii fx is the first derivative of the objective function of P with respect to variable i x at l x (  x ). That is, the tangent passing the point ( l i x , () l ii fx ), represented by the linear equation

' ( ) ( )( )    l l l i i i i i i i z f x f x x
x , is a horizontal straight line (has slope zero) for all i. In this case, '  ETP ( ) is also an optimal solution of SIRP.

Appendix A3. Computation Results

In the following tables, UJRC and LJRC denote the scenario with unlimited joint replenishment capacity and the scenario with limited joint replenishment capacity, respectively. ND and GD represent that the demand of each product at each FDC is subject to a normal distribution and a gamma distribution, respectively. In these tables, column "ProfitSIRP" indicates the expected total profit of the solution of model SIRP found by the PLA procedure, column "ProfitDIRP" presents the expected total profit of the optimal solution of the deterministic planning model DIRP. Column "GapSD" represents the relative percentage gap between ProfitSIRP and ProfitDIRP, i.e., (ProfitSIRP -ProfitDIRP) / ProfitDIRP. 

Figure 1 :

 1 Figure 1: A two-echelon distribution system with one CDC and multiple FDCs



  ik d : demand of product k at FDC i in the promotion period, i  NFDC, k  K. ik d , i  NFDC are independent for any product k  K. ik ,  ik : mean value and standard deviation of the demand of product k at FDC i in the promotion period, i  NFDC, k  K. demand of product k observed by all FDCs in the promotion period, : mean value and standard deviation of

  k

  cost of product k per unit at the CDC in the promotion period, k  K. k hc : holding cost of product k per unit at each FDC in the promotion period, k  K. It is assumed that this unit holding cost is the same for all FDCs and k hc > 0 k hc for any k.

  k ls : lost sales cost of product k per unit, k  K.

  i sc : shipping (transportation) cost per unit of volume (m 3 ) for the inventory replenishment of stock i from its supplier, i  N. 0 k fc : order fulfilment cost of product k for each unit fulfilled by the CDC, k  K.

  k vp : volume of product k per unit (in m 3 ), k  K.

  capacity of FDC i (in m 3 ), i  NFDC.

  joint replenishment volume of stock i from its supplier (in m 3 ), i  N.

Figure 2 .

 2 Figure 2. GapSD between model SIRP and DIRP with different initial inventory levels for instance set 2 Figure 3. GapSD between model SIRP and DIRP with different initial inventory levels for instance set 5

  29)where x = (x1, x2, …., xm) T , m is the number of variables, which is also the number of nonlinear concave terms in the objective function, A1, A2, A3 are matrices, and b1, b2, b3 are column vectors. In model P, each variable ik q in SIRP is replaced by 0 are introduced. The constraints of P contain all constraints of SIRP reformualed with the new variables, the equations that ensure the sum of the variables representing ik I ,

Figure 4 .

 4 Figure 4. Succeessively considered points in the piece-wise approximation of fi(xi)

  a feasible solution of SIRP and SIRP is a maximization problem,

  the following, SIRP is represented by

 SIRP if we want to show this dependence, otherwise it is simply represented by SIRP . Let * ETP and *

  is the mean value of the demand of product k at FDC i in the promotion period.

	where 								
		By	introducing	additional	variables	x,	y	and	z	to	represent
											ik
	max	, 0  FDC FDC ik ik i N i N I      	,	min	0 II  , max FDC FDC k ik i N i N    ,0 ik       	,	FDC  iN 	 min , ik I  ik		,
	DIRP can be reformulated as the following linear programming model.
		15)								
	subject to constraints (3) to (7).				

ik

Table 1 :

 1 Parameters of six sets of instances

	Instance set	Number of products	Expected service level	Joint replenishment capacity
	1	500	90%	Unlimited Limited
	2	500	95%	Unlimited Limited
	3	500	97.5%	Unlimited Limited
	4	1000	90%	Unlimited Limited
	5	1000	95%	Unlimited Limited
	6	1000	97.5%	Unlimited Limited

Table 2 :

 2 Average and maximum profit gap between SIRP and DIRP for the instance sets with unlimited joint replenishment capacity and normal demand

	Instance Set	1	2	3	4	5	6
	Average Gap	3.57%	3.84%	4.46%	3.6%	3.88%	4.51%
	Maximum Gap	3.76%	3.96%	4.59%	3.75%	3.98%	4.61%

Table 3 :

 3 Average and maximum profit gap between SIRP and DIRP for the instance sets with limited joint replenishment capacity and normal demand

	Instance Set	1	2	3	4	5	6
	Average Gap	9.74%	9.83% 11.36% 8.83%	9.78%	11.3%
	Maximum Gap	11.82% 11.64% 12.88% 9.66% 11.69% 13.58%

Table 4 :

 4 Average and maximum profit gap between SIRP and DIRP for the instance sets with unlimited joint replenishment capacity and gamma demand

	Instance Set	2	5
	Average Gap	3.8%	3.84%
	Maximum Gap	3.93%	3.94%

Table 5 :

 5 Average and maximum profit gap between SIRP and DIRP for the instance sets with limited joint replenishment capacity and gamma demand

	Instance Set	2	5
	Average Gap	9.67%	9.62%
	Maximum Gap	11.51%	11.56%

  m; and denote () Let Xi denote the projection of X on variable xi, i.e., Xi = { xi |  x1, ..., xi-1, xi+1, ..., xm, (x1, x2, ..., xm)  X}. Since X is a finite polyhedron, Xi is a finite interval which has two extreme points corresponding to its left and right boundary.

	For the two successively considered points l i x and	l i	1 		
			fi(xi)				
						𝑧ҧ 𝑖  (𝑥ҧ 𝑖 𝑙 )
						𝑧ҧ 𝑖 + (𝑥ҧ 𝑖 𝑙+1 ) 𝑓 𝑖 (𝑥ҧ 𝑖 𝑙 ) 𝑓 𝑖 (𝑥ҧ 𝑖 𝑙+1 )
						𝑥ҧ 𝑖 𝑙	𝑥ҧ 𝑖 𝑙+1	xi
						ii zxin model '  P by
	() ii  zxto indicate its dependence on	, i.e.,	() ii  zx=	min{ ( ) i i x  f x	'  ( )( i i i f x x x i	)}	=
						ii	
	0,..., 1 jl  min ( ) ii j Lx.						

Table 6 :

 6 Comparison of model SIRP and DIRP on instances set 1 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	10332 66683	10524 11814	10263 35363	10701 70765	10394 39207	10576 56429	10383 82206	10411 42107	10387 56368	10633 30120
	ProfitSIRP	10708 64829	10887 61338	10622 81601	11104 26196	10766 71285	10943 78626	10751 33792	10784 04868	10746 77677	11029 81188
	GapSD	3.64% 3.45% 3.50% 3.76% 3.58% 3.47% 3.54% 3.58% 3.46% 3.73%

Table 7 :

 7 Comparison of model SIRP and DIRP on instances set 2 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	11196 71065	10604 64480	10408 19811	11003 70204	10488 65704	10216 66934	10659 37301	10751 66667	10380 99668	10940 34916
	ProfitSIRP	11627 13735	11001 03002	10805 48199	11434 89166	10902 49723	10596 55759	11059 40271	11163 55172	10783 68886	11374 11249
	GapSD	3.84% 3.74% 3.82% 3.92% 3.95% 3.72% 3.75% 3.83% 3.88% 3.96%

Table 8 :

 8 Comparison of model SIRP and DIRP on instances set 3 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	11128 51598	10539 05374	10343 74075	10936 87085	10423 98076	10152 98909	10594 59816	10685 98914	10316 67264	10874 07383
	ProfitSIRP	11624 57223	10998 50334	10803 29151	11433 34135	10900 92819	10592 79408	11056 98500	11161 77141	10781 80453	11372 85273
	GapSD	4.46% 4.36% 4.44% 4.54% 4.58% 4.33% 4.36% 4.45% 4.51% 4.59%

Table 9 :

 9 Comparison of model SIRP and DIRP on instances set 4 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	21865 81936	20943 00973	20566 55882	21629 05891	21967 37308	20962 76473	20792 72909	21080 87158	20983 33648	21259 52856
	ProfitSIRP	22656 41414	21711 49963	21273 40737	22433 40526	22791 73925	21683 23230	21541 25771	21862 41160	21715 49285	22008 85401
	GapSD	3.62% 3.67% 3.44% 3.72% 3.75% 3.44% 3.60% 3.71% 3.49% 3.52%

Table 10 :

 10 Comparison of model SIRP and DIRP on instances set 5 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	21566 63295	20608 79941	21726 44018	20725 28640	21025 41826	20828 29010	21158 23878	20606 29988	20915 82509	21502 33877
	ProfitSIRP	22397 75004	21419 41857	22565 37086	21546 65869	21809 98698	21609 64414	21999 54332	21425 50533	21716 67252	22356 57191
	GapSD	3.85% 3.93% 3.86% 3.96% 3.73% 3.75% 3.98% 3.98% 3.83% 3.97%

Table 11 :

 11 Comparison of model SIRP and DIRP on instances set 6 with UJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	GapSD	4.48% 4.56% 4.48% 4.58% 4.35% 4.37% 4.61%	4.6%	4.45%	4.6%

Table 12 :

 12 Comparison of model SIRP and DIRP on instances set 1 with LJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	9398491 03	940632 555	94659 5458	964368 992	95025 4617	97861 1839	96229 6153	95712 0948	94549 1894	98436 9546
	ProfitSIRP	1038478 232	105180 0354	10333 36282	107119 4324	10433 51588	10662 08052	10457 18346	10428 41967	10383 30498	10691 83186
	GapSD	10.49%	11.82% 9.16% 11.08% 9.80% 8.95% 8.67% 8.96% 9.82% 8.62%

Table 13 :

 13 Comparison of model SIRP and DIRP on instances set 2 with LJRC and ND

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	101386 2519	10115 49134	9350786 99	10107 58282	929032 955	929644 149	9732481 54	97963 7507	936629 791	10133 96546
	ProfitSIRP	112166 3346	10760 31072	1037114 446	11053 92026	103719 5036	103318 2403	1071739 825	10726 28558	103649 4174	10938 89213
	GapSD	10.63% 6.37%	10.91%	9.36% 11.64% 11.14%	10.12%	9.49% 10.66% 7.94%

Table 19 :

 19 Comparison of model SIRP and DIRP on instances set 5 with UJRC and GD

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	21570 95686	20612 31740	21730 92650	20729 48278	21029 92889	20832 59196	21161 95178	20610 18586	20919 86838	21506 49584
	ProfitSIRP	22392 88536	21415 89809	22560 89220	21543 79362	21803 97348	21603 89865	21996 24370	21422 68973	21711 64012	22354 06055
	GapSD	3.81%	3.9%	3.82% 3.93% 3.68%	3.7%	3.94% 3.94% 3.78% 3.94%

Table 20 :

 20 Comparison of model SIRP and DIRP on instances set 2 with LJRC and GD

	Instance	1	2	3	4	5	6	7	8	9	10
	ProfitDIRP	10149449 27	10126 00189	93608809 1	10119 13192	929892 042	9307191 29	97434 7454	98070 7238	93764 1017	10145 59612
	ProfitSIRP	11213015 52	10755 15442	10367407 58	11049 50222	103693 6786	1032747 830	10713 01003	10722 14636	10361 02998	10935 76098
	GapSD	10.48%	6.21%	10.75%	9.19% 11.51%	10.96%	9.95% 9.33% 10.5% 7.79%

Table 21 :

 21 Comparison of model SIRP and DIRP on instances set 5 with LJRC and GD

	Instance	1	2	3	4	5	6	7	8	9	10
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