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ABSTRACT
The covariance matrix � of non-linear clustering statistics that are measured in current and upcoming surveys is of fundamental
interest for comparing cosmological theory and data and a crucial ingredient for the likelihood approximations underlying
widely used parameter inference and forecasting methods. The extreme number of simulations needed to estimate � to sufficient
accuracy poses a severe challenge. Approximating � using inexpensive but biased surrogates introduces model error with
respect to full simulations, especially in the non-linear regime of structure growth. To address this problem, we develop a matrix
generalization of Convergence Acceleration by Regression and Pooling (CARPool) to combine a small number of simulations
with fast surrogates and obtain low-noise estimates of � that are unbiased by construction. Our numerical examples use CARPool
to combine GADGET-III N-body simulations with fast surrogates computed using COmoving Lagrangian Acceleration (COLA).
Even at the challenging redshift z = 0.5, we find variance reductions of at least O(101) and up to O(104) for the elements of the
matter power spectrum covariance matrix on scales 8.9 × 10−3 < kmax < 1.0 h Mpc−1. We demonstrate comparable performance
for the covariance of the matter bispectrum, the matter correlation function, and probability density function of the matter density
field. We compare eigenvalues, likelihoods, and Fisher matrices computed using the CARPool covariance estimate with the
standard sample covariance and generally find considerable improvement except in cases where � is severely ill-conditioned.

Key words: methods: statistical – large-scale structure of Universe.

1 IN T RO D U C T I O N

In the era of precision cosmology, modelling the statistical prop-
erties of observables is crucial to derive cosmological parameters
constraints from large-scale structure surveys. Particularly, the co-
variance matrix � of clustering statistics, such as the matter power
spectrum and the matter bispectrum, as well as its inverse – the
precision matrix – are key elements when building likelihood ap-
proximations, efficient estimators, or developing optimal summaries
of observations for cosmological inference (Heavens, Jimenez &
Lahav 2000; Eifler, Schneider & Hartlap 2009; Takahashi et al. 2009;
Harnois-Déraps, Vafaei & Van Waerbeke 2012; Dodelson & Schnei-
der 2013; Harnois-Déraps & Pen 2013; Blot et al. 2014; Percival et al.
2014; Taylor & Joachimi 2014; Alsing & Wandelt 2018; Harnois-
Déraps, Giblin & Joachimi 2019; Hikage, Takahashi & Koyama
2020; Wadekar, Ivanov & Scoccimarro 2020).

Unfortunately, estimating the covariance matrix of large-scale
structure observables is extremely challenging owing to both the
large number of samples required and the computational cost per
sample. A brute force solution to estimate covariance matrices would
be to generate mock samples of survey statistics with computa-
tionally intensive N-body simulations reproducing the conditions
of observation (volume, redshifts, sky area...), and then to compute

� E-mail: nicolas.chartier412@gmail.com

the sample covariance matrix, which is an unbiased and positive
(semi-) definite estimator of the true covariance. But high-quality
estimates of the covariance are necessary because we actually
need its inverse, the precision matrix. This will be dominated by
the smallest eigenvalues of the covariance. It is just these small
eigenvalues that need the largest number of samples to converge.
For example, Blot et al. (2016) found in numerical experiments
for a Euclid-like survey that at least 5000 independent N-body
simulations are needed to estimate the power spectrum covariance
in order to obtain cosmological parameter forecasts at an adequate
level of accuracy given the precision of upcoming surveys. In
spite of recent progress in optimization of various N-body codes,
with GPU-acceleration and distributed-memory solutions (Springel
2005; Ishiyama, Fukushige & Makino 2009; Warren 2013; Habib
et al. 2016; Potter, Stadel & Teyssier 2017; Garrison 2019), limited
CPU time and memory resources and the large number of samples
required mean that it will remain impractical to rely solely on full N-
body simulations for covariance matrix estimation. For this reason,
cosmologists have been investigating less costly alternatives to tackle
next-generation data sets.

For certain clustering statistics that are amenable to perturbative
treatment, analytical predictions allow computing covariance esti-
mates rapidly, at the cost of making assumptions on the survey data.
Such predictions typically use the Gaussian limit for the covariance.
For example, Philcox et al. (2020) developed the RASCALC code that
estimates the covariance of the two-point galaxy correlation function
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(2PCF) and only needs one data set as input: a shot noise rescaling,
constrained by jackknife covariance matrices, describes deviations
from Gaussianity, and as a result, the large-scale model covariance
matrix is fully consistent with mocks. Philcox & Eisenstein (2019)
had applied a similar approach to the auto- and cross-covariances
of 2PCFs and three-point correlation functions (3PCFs) for general
real-space survey statistics. Li et al. (2019) proposed an analytical
computation of the ‘disconnected’ (Gaussian) part of the covariance,
that is dominant on large scales, for both correlation functions
and their Fourier space counterpart (power spectra): they found
valuable accordance with mock estimates. Mohammed, Seljak &
Vlah (2017) also experimented with an analytical decomposition
of the covariance matrix motivated by perturbation theory and
managed to get a 10 per cent agreement with simulations up to k ≈
1 h Mpc−1. Mohammed & Seljak (2014) tested a simple model for the
matter power spectrum motivated by the Zel’dovich approximation
and stressed the influence of the simulation box volume on the
convergence of the covariance matrix. Useful reviews of methods
using theoretical predictions include Bernardeau et al. (2002) and
Desjacques, Jeong & Schmidt (2018).

Alternatively, computational cosmologists have proposed various
approximate solvers designed to be much faster than N-body simu-
lations. One class of such methods exploits the availability of low
order Lagrangian Perturbation Theory (LPT): Scoccimarro & Sheth
(2002; PTHalos), Tassev & Zaldarriaga (2012), and Monaco et al.
(2013) inspired by Taffoni, Monaco & Theuns (2002; PINOCCHIO)
or Chuang et al. (2015; EZmocks). Futhermore, a significant number
of PM (PARTICLE-MESH) codes, which treat the force as a field on a
mesh, use the large-scale approximation provided by LPT: Tassev,
Zaldarriaga & Eisenstein (2013; COLA) and Tassev et al. (2015;
sCOLA) implemented by Leclercq et al. (2020) and Feng et al.
(2016; FastPM) available in a distributed version by Modi, Lanusse &
Seljak (2020), White, Tinker & McBride (2014; QPM), and Kitaura,
Yepes & Prada (2014; PATCHY), to name a few.

Another family of approaches comprises mathematical models
with free-parameters – emulators – that are trained on simulation
suites covering a given range of cosmologies to then directly predict
clustering parameters from upcoming data. Recent studies include
DeRose et al. (2019), McClintock et al. (2019a,b), Zhai et al.
(2019), Kasim et al. (2020), or Angulo et al. (2020). Although
they can provide lightning-fast estimates, emulators are limited
by the parameter range of the training set and do not guarantee
unbiased results with respect to full solvers, of which they still need
a large number of realizations to train. Some emulators based on
deep learning architectures have been shown to reproduce particle
positions or matter density fields from input initial conditions.
In other words, they can produce snapshots of a low-resolution
cosmological N-body code from which any clustering statistics can be
extracted: He et al. (2019), Dai & Seljak (2020), and Kodi Ramanah
et al. (2020). Fast approximate solvers – which we will refer to as
surrogates and which comprise all the previous families of methods
we mentioned – unfortunately do not match the accuracy of full N-
body mocks, especially in the deeply non-linear regime. Blot et al.
(2019), Colavincenzo et al. (2019), and Lippich et al. (2019), find
statistical biases in parameters estimation with covariance matrices
from surrogates up to 20 per cent higher than with covariances from
full N-body codes.

Some works in cosmology are specifically dedicated to improving
the estimation of covariance matrices. In the particular case of
Gaussian-distributed weak lensing power spectra, Taylor, Joachimi &
Kitching (2013) assessed the limits on parameter estimation imposed
by the accuracy of the precision matrix and discussed solutions

to relax them. Paz & Sánchez (2015) implemented a technique
called tapering to estimate covariance and precision matrices and
proved to be successful in reducing the confidence intervals of
parameters without introducing bias. Pearson & Samushia (2016)
fitted a theoretically motivated model with a mock catalogue in
order to estimate the covariance matrix with fewer samples. Favole
et al. (2020) provided more insight on the impact of jackknife
resampling on covariance matrix estimates, which had also been
experimented with by Escoffier et al. (2016) for the two-point
galaxy clustering correlation function. In Hall & Taylor (2019),
using a likelihood conditioned on both theoretical and simulated
covariance matrices of summary statistics reduced the required
number of simulations for covariance estimation. Pope & Szapudi
(2008) applied the concept of linear shrinkage to the matter power
spectrum covariance matrix: by optimally combining an empirical
estimate with a specified simple target (for instance a diagonal
covariance), they significantly improved the estimated covariance
when few simulations are available. Regarding non-linear shrinkage,
see for instance Joachimi (2017). In addition, the precision matrix
being essential to derive parameters confidence bounds, the fact that
the inverse of the unbiased covariance estimator is not an unbiased
estimator of the precision is now well-known notably thanks to
Hartlap, Simon & Schneider (2007). Numerous cosmology studies
focus on precision matrix estimation and on the effects – parameters
shifts for instance – of precision matrix biases (Friedrich & Eifler
2018; Sellentin & Heavens 2018; Friedrich et al. 2021; Percival et al.
2021; Philcox et al. 2021).

Chartier et al. (2020; CWAV20 from now on) developed the
Convergence Acceleration by Regression and Pooling (CARPool)
method, a general approach to reducing the number of simula-
tions needed for low variance and explicitly unbiased estimates
of clustering statistics. Equivalently, CARPool can be viewed as
a way to obtain unbiased results from fast surrogates by running
a small number of simulations. CWAV20 demonstrated a dramatic
reduction of the number of simulations required to estimate the mean
of a given statistic by exploiting the variance reduction principle
known as control variates and combining a smaller number of costly
simulations with a larger number of surrogates. CARPool exploits
the correlation between full N-body runs and fast surrogates run on
the same initial conditions, and proved to be very efficient for the
estimation of the mean of the matter power spectrum, the bispectrum
or the one-point probability density function (PDF).

It is therefore natural to study whether CARPool can improve
the estimation of covariance matrices while reducing the number of
simulations.1 Showing this to be the case is the main contribution of
this paper. We will first recall some theoretical results and generalize
the CARPool approach to covariance matrices in Section 2. Then,
we will show in Section 3, using likelihoods, eigenvalues, and
Fisher information matrices computed from the estimated covariance
matrices, that CARPool can reduce the number of mocks needed to
estimate covariance matrices of clustering statistics by at least one
order of magnitude and, depending on scale and observable, in some
cases by several orders of magnitude. We will discuss our results and
conclude in Section 4.

1Pontzen et al. (2016), Angulo & Pontzen (2016), and Villaescusa-Navarro
et al. (2018) discuss variance reduction by designing special initial conditions
that explicitly bias certain higher order n-point functions low. These would
therefore not seem promising for improving estimates of the covariance
matrix.
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2 STATISTICAL METHODS

We adopt the same notation system as in CWAV20 up to a few
necessary adaptations. Namely, let y be a costly simulation ob-
servable, constituted by scalar measurements yi, 1 ≤ i ≤ p, such
that E [ y] = μ ∈ Rp , and c an approximate random observable with
E [c] = μc ∈ Rq . In computational cosmology, y and c can be, for
instance, cold dark matter (CDM) power spectra with p and q power
band bins, respectively.

2.1 Variance reduction with control variates

In this section, we recall some results dealing with the variance
reduction technique known as control variates. For more details, see
CWAV20.

2.1.1 General multivariate case

In order to compute an unbiased estimator μ̂ of μ, a straightforward
solution is to use the sample mean from a set of independent and
identically distributed realizations yn, n = 1, . . . N,

μ̂ = ȳ ≡ 1

N

N∑
n=1

yn . (1)

The standard deviation σ i of each ȳi , 1 ≤ i ≤ p, decreases slowly
as O(N− 1

2 ) when the number N of available samples increases. We
are interested in computing a more precise and unbiased estimator
of μ so that we need less simulations yn and thus less computational
resources.

To this end, we can use fast surrogates cn that are correlated with
the costly simulations yn, n = 1, . . . N by constructing the random
vectors

xn(β) = yn − β (cn − μc) , (2)

with control matrix β ∈ Rp×q .
The control variates estimator is then the sample mean of N

samples from equation (2)

μ̂(β) = x̄(β) = ȳ − β (c̄ − μc) . (3)

This estimator is unbiased by construction, E [μ̂(β)] = μ regardless
of any bias in the surrogates. The unique choice

β� = argmin
β∈Rp×q

det (�xx(β)) = � yc�
−1
cc . (4)

gives the minimum variance estimator (Rubinstein & Marcus 1985;
see CWAV20 for a Bayesian derivation).

As shown in CWAV20, for many practical applications where p >

> 1, imposing structure on β can lead to large reductions in com-
putational cost when β must be estimated from simulation/surrogate
pairs. In the following, we will first consider diagonal β and then the
more general case of sparse β.

2.1.2 Diagonal case

When β is diagonal, the problem reduces to estimating p independent
quantities. It is easy to prove (CWAV20) that there exists a single
control coefficient β� that minimizes the variance of the resulting
random variable

x(β) = y − β (c − μc)

β� = argmin
β∈R

σ 2
x(β) = cov(y, c)

σ 2
c

, (5)

Figure 1. Illustration of sparse control matrix β using q = 3 elements of
the surrogate c to reduce variance on an element of the simulation y. In this
example, we use adjacent elements of the surrogate; the boundary cases have
q = 2.

and with subsequent variance reduction

σ 2
x(β�)

σ 2
y

= 1 − ρ2
y,c . (6)

ρy, c is the Pearson correlation coefficient between y and c. This case
is equivalent to estimating the multivariate quantity μ, equation (3),
while replacing β� with

βdi ag = diag

(
cov(y1, c1)

σ 2
c1

,
cov(y2, c2)

σ 2
c2

, . . . ,
cov(yp, cp)

σ 2
cp

)
. (7)

CWAV20 applied this diagonal case to the estimation of the mean
of the matter power spectrum, the matter bispectrum, and the one-
dimensional matter PDF.

2.1.3 Sparse case

In some applications, multiple elements in c can help reduce variance
of any element of y. In this case, the problem reduces to p separate
estimates with q control variates each

x(β) = y − βT (c − μc) , (8)

with β ∈ Rq . The optimal choice is

β�
m = �−1

cc σ yc (9)

with σ yc, the q-dimensional column vector of covariances defined
by σ yc[i] = cov(y, ci), 1 ≤ i ≤ q (Lavenberg & Welch 1981; Ru-
binstein & Marcus 1985; Glynn & Szechtman 2002).

The attainable variance reduction with β�
m is

σ 2
x(β�

m)

σ 2
y

= 1 − σ T
yc�

−1
cc σ yc

σ 2
y

. (10)

The Bayesian derivation in CWAV20 explains the form of the right-
hand side of equation (10) as the ratio of the conditional and marginal
covariances of y. The conclusion remains the same as before: the
more the correlation, the smaller the variance. The idea is to use
more of the elements of c to improve the variance reduction on y at
the cost of estimating the vector β�

m from equation (9) instead of the
scalar β from equation (5). Fig. 1 illustrates the principle for q = 3
neighbouring surrogate variables per simulation variable. From now
on, we will consider dim( y) = dim(c) = p and have q designate the
number of surrogates elements taken for each y in the sparse case.
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Figure 2. We generalize the CARPool method to covariance matrix esti-
mation using the symmetric matrix vectorization above. This turns a p × p
symmetric matrix into a vector of its p(p + 1)/2 unique elements.

2.2 Application to covariance

In this section, we rewrite the covariance estimation problem as an
instance of the CARPool method described above. We can replace the
vectors y and c of size p by Y and C of size P = p(p + 1)/2, represent-
ing the covariance matrix elements. If

{
y1, . . . , yN

}
are realizations

of the random vector y, then the samples
{

y1 − ȳ, . . . , yN − ȳ
} ≡{

ỹ1, . . . , ỹN

}
are also realizations of a multivariate random vari-

able; and so are the outer products
{

ỹ1 ⊗ ỹ1, . . . , ỹN ⊗ ỹN

} ≡
{Y 1, . . . , YN } with P unique elements. We rewrite the sample
covariance matrix in terms of these outer products

�̂ yy = 1

N − 1

N∑
i=1

(
yi − ȳ

) (
yi − ȳ

)T

≡ N

N − 1
× 1

N

N∑
i=1

Y i

≡ γ Y , (11)

with Bessel’s correction factor γ = N/(N − 1). This is an unbiased
estimator of the true covariance � yy. Similarly, the surrogate
samples C i have sample mean

C ≡ 1

γ
�̂cc = 1

N

N∑
i=1

C i . (12)

Note the additional constraint of y and c having finite fourth-order
moments (i.e variance of the covariance).

Fig. 2 explains how we build such vectors from symmetric matrices
by ensuring matrix elements remain neighbours in the resulting
vector.2

For simplicity, in equations (11), (12), and (13), we have identified
the capital bold vectors of size P with their reconstruction into a
symmetric (p, p) matrix to emphasize that the CARPool covariance
matrix can be framed as a standard CARPool estimate. From this
point, we also drop the ‘hat’ of the estimated quantities for notational
simplicity.

The CARPool covariance estimate is then simply an instance of
the CARPool method, equation (3), applied to the vectorized sample
covariances

�yy(β) = γ X(β) = γ Y − γβ
(

C − MC
)

, (13)

where MC plays the role of μc in the case of covariance estimation,
that is to say it is the surrogate covariance matrix computed from a

2Alternatively, NUMPY provides the function tril indices
(triu indices) to simply extract the lower (upper) triangular part
of a 2D-array in a row-major order.

separate set of surrogate realizations. The estimator is unbiased by
construction, E

[
� yy(β)

] = � yy, and corrected by the factor γ .
Note that the sample covariance and the unbiased estimator of

the covariance from equation (13) do not necessarily yield, when
inverted, an unbiased estimate of the precision. Hartlap et al. (2007)
point out a correction factor (known as the ‘Hartlap factor’ in cos-
mology) for data sampled from a multivariate Gaussian distribution
that has been widely used. In recent works, impacts of biases in the
estimated precision matrix up until parameter constraints and shifts,
as well as methods to improve the estimation, have been emphasized,
e.g. in Friedrich & Eifler (2018), Percival et al. (2021), and Philcox
et al. (2021). In the following numerical experiments, we will assess
the performance of the inverse of our newly proposed covariance
estimate through multiple tests: by visual comparison, through
studying the eigenvalues of the covariances (which are simply the
reciprocals of the eigenvalues of the precision) and by computing
the Fisher matrices for parameter constraints, which are computed
through the precision. A detailed description of tests will be given in
Section 3.2.

Also, unlike the sample covariance matrix, the estimate � yy(β)
is not guaranteed to be positive semi-definite by construction for a
finite number of samples, even though its expectation is. We will
comment further on positive-definiteness in the numerical results of
Section 3.3.

3 NUMERI CAL EXPERI MENTS

Our numerical analysis assume a λcold dark matter (�CDM)
cosmology congruent with the Planck constraints from Planck
Collaboration VI (2020): 	m = 0.3175, 	b = 0.049, h = 0.6711,
ns = 0.9624, σ 8 = 0.834, w = −1.0, and Mν = 0.0 eV. For a
reminder about how to apply CARPool, see Figure 1 in CWAV20:
the principle stays the same, except the vectorized outer products
of centered data, as explained above, play the role of the data
samples to estimate the covariance matrix. The numerical analysis
presented below compares the following unbiased covariance matrix
estimators:

(i) GADGET, where we compute the sample covariance � yy with
equation (11) from N-body simulations only.

(ii) Diagonal CARPool applied individually to each unique co-
variance matrix element estimator, with equation (5) applied to the
vectorized covariance X . This framework can simply be referred to
as ‘q = 1’.

(iii) Sparse CARPool, where we estimate each simulation covari-
ance matrix element with q > 1 surrogate matrix elements according
to equation (8).

We stress that for the CARPool estimate, we compute the control
matrix β from the same N simulations entering Ȳ in equation (13).

3.1 Simulation and surrogate data

We briefly describe here the chosen simulation and surrogate
solvers we use; for details, please refer to the numerical exper-
iments of CWAV20 where the same simulations and surrogates
are used. The solvers evolve Np = 5123 CDM particles in a box
volume of (1000 h−1 Mpc)3. The simulation-surrogate sample pairs
take the same 2LPT initial conditions at starting redshift zs =
127.0.
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3.1.1 N-body solver

The simulation outputs are part of the publicly available Quijote
simulation suite3 (Villaescusa-Navarro et al. 2020). The full N-body
simulations were run with the TreePM code GADGET-III, stemming
from GADGET-II by Springel (2005). In the following, we will use all
15 000 available realizations of the fiducial cosmology to evaluate
the quality of the various estimates. We will take as the simulation
‘ground truth’ the sample mean and the sample covariance based on
12 000 of these simulations while retaining 3000 simulations to test
likelihoods built using the various estimators, see Section 3.2.2. The
force mesh grid size of all the simulations is Nm = 1024.

3.1.2 Surrogate solver

We generate the fast surrogate samples with The COmoving La-
grangian Acceleration (COLA) method from Tassev et al. (2013),
which allows generating approximate gravitational N-body outputs
using a smaller number of timesteps than our simulation code.
The principle of COLA is to add residual displacements computed
with a PARTICLE-MESH (PM) N-body solver to the trajectory given
by analytical LPT approximations. See Izard, Crocce & Fosalba
(2016) for comparisons of the capabilities and computational cost of
COLA against N-body simulations in different configurations. Like
in CWAV20, we used L-PICOLA, a publicly available and parallel
(MPI) code implementation of COLA developed by Howlett, Man-
era & Percival (2015), with a force mesh grid size N cola

m = 512. We
computed the matter power spectra, correlation functions and PDFs
using Pylians3 4 and the matter bispectra with pySpectrum.5

3.2 Description of tests

The goal of this section is to briefly explain the different tests we
have implemented to assess the reliability of the CARPool covariance
estimates, and to compare with the standard (bias-corrected) sample
covariance matrix from simulations only.

3.2.1 Variance reduction on matrix elements

This test, similarly to what was assessed concerning the mean of
clustering statistics in CWAV20, consists in taking the empirical
variance ratio, between a set of Y i samples (vectorized outer products
of centered data) and the corresponding X i(β) samples, with β

being estimated from the main set of paired simulation/surrogate
samples. More precisely, in the experiments, the same set of seeds{
si , i ∈ �1, 500�

}
serves to compute both β and the actual covariance

estimate from equation (13), while paired simulation/surrogate sam-
ples from seeds

{
si , i ∈ �501, 2000�

}
are used to estimate V ar(Y )

and V ar(X).

3.2.2 Negative Gaussian log-likelihood on test data

Under the assumption of Gaussianity of the matter statistics, the
negative log-likelihood gives a loss-function of the test data {yi}test

from simulations. In equation (14), the input is the covariance matrix
(sample covariance or CARPool covariance) from ‘training’ data, i.e.
the seeds we reserve for covariance estimation including the ‘truth’,

3https://github.com/franciscovillaescusa/Quijote-simulations
4https://github.com/franciscovillaescusa/Pylians3
5Available at https://github.com/changhoonhahn/pySpectrum

while the yi are the clustering statistics from test data simulations
and μ is replaced by ȳ. More precisely, the sample covariance from
the first 12 000 fiducial seeds of the Quijote simulations computes
the ‘true’ covariance and gives the reference negative log-likelihood
while the remaining seeds

{
si , i ∈ �12001, 15000�

}
constitute the

unseen test data

− ln
[
L

(
μ, � yy

)] = pN

2
ln [2π] + N

2
ln

[
det

(
� yy

)]
+1

2

N∑
i=1

(
yi − μ

)T
�−1

yy

(
yi − μ

)
. (14)

In Section 3.3, we show the convergence of the log-likelihood with
increasing number of simulations. The loss function is computed
only if the corresponding covariance estimate is positive-definite;
in the numerical tests, we will see that for different statistics,
the CARPool covariance estimates become positive-definite for a
different minimum number of samples.

3.2.3 Eigenspectrum

We compare the eigenvalues of the sample covariance from sim-
ulations with these of the CARPool covariance from simula-
tion/surrogate pairs. It is well-known that the sample covariance
matrix from equation (11) of a vector statistics of size p is at most
of rank N − 1 with N samples. Moreover, as demonstrated by Bai &
Yin (1993), among others, the sample covariance matrix for N ∼ p
is ill-conditioned even when full-rank: the smallest eigenvalues in
particular disperse from the true values and are biased low even for
unbiased estimates of the covariance matrix elements. Therefore,
computing the ratio of the ordered eigenvalues of an unbiased
covariance estimate and of the ‘ground truth’ covariance is a relevant
indicator of the quality of the estimation. We stress that this test does
not constitute a complete comparison of these matrices since the
eigenbasis could still differ. Still, comparing the eigenspectra of two
covariance estimates of the same random vector is common practise
(e.g. Joachimi 2017; Pope & Szapudi 2008) and can be considered
in the context of the other, complementary tests we show.

3.2.4 Fisher analysis and parameter uncertainties

The covariance matrix plays a central role in parameter inference and
when forecasting parameter constraints for future data sets. In this
context, the relevant performance metric is not the convergence of
the covariance matrix in isolation but the way parameter-driven vari-
ations in the measured quantities are constrained. This is precisely
what the Fisher information matrix measures, which is why it is an
essential component in parameter estimation and forecasts.

For this test, we will model the likelihood of the simulated
observable as a multivariate Gaussian with y ∼ N

(
μ(θ), �yy(θ)

)
.

In this approximation,6 the Fisher matrix is the symmetric matrix of
size (d, d)

Fij =
(
∂μ(θ )
∂θi

)T

�−1
yy

(
∂μ(θ )
∂θj

)
. (15)

6For Gaussian data whose covariance depends on the parameter values, equa-
tion (15) would include a second term. This term vanishes for the Gaussian
approximation we consider here, where the statistics are approximated as
Gaussian with constant covariance around a parameter-dependent mean (see
Alsing & Wandelt 2018 for a succinct explanation and Carron 2013 and
Kodwani, Alonso & Ferreira 2019 for further discussion).
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Figure 3. We display multiple power spectrum covariance estimates (top panels) and their inverse (bottom panels) in order to illustrate the improvement on the
standard sample covariance matrix. For reference, the power spectrum is shown on the same axes in Fig. 4. Covariance matrices are shown as their correlation

counterpart D−1�̂ D−1 with the diagonal D =
√

diag
(
�̂

)
. The precision matrices at the bottom are the inverse of the corresponding correlation matrix at the

top.

We define the vector of parameters as θ =
(	m,	b, h, ns, σ8, Mν)T , and Eθ [ y] = μ(θ) is the expectation of y
for fixed parameters θ .

The Cramér–Rao inequality then gives the lower bound of the
variance of an unbiased estimator for parameter θ i, marginalized
over the other parameters

σ 2
θi

≥ [
F−1

]
ii

. (16)

The partial derivatives of the statistics are estimated numerically
using finite differences from 500 Quijote simulations for each varying
parameter exactly as in Villaescusa-Navarro et al. (2020) (see Table
1 of this work for the parameter values). When finite difference
simulations are not already available, one can easily apply the
CARPool method to the estimation of the mean of the derivatives: in
CWAV20, especially for the matter power spectrum and bispectrum,
the precision of the CARPool mean with 5 N-body simulations was
comparable to that of the mean of 500 simulations. We do not further
explore this application of CARPool, since the focus of this paper is
covariance estimation.

3.3 Results on clustering statistics covariance at z = 0.5

Prior to extracting clustering statistics on each snapshot, we compute
the matter overdensity ρ(r = |r|) on a grid with r the comoving-
coordinates in h−1Mpc. The density contrast field is then δ(r) ≡
ρ(r)/ρ̄ − 1. We present results at redshift z = 0.5, which is ap-
proximately the lowest redshift that is relevant for upcoming galaxy
surveys of the large-scale structure. We found higher correlation
for some statistics (power spectrum) at z = 0.0 than z = 0.5 and
interpret that as the erasure by the non-linearities of discrepancies
in the intermediate structure growth. Thus, the z = 0.5 case may be
close to the worst case and we expect CARPool to be even more
efficient both for higher and for lower redshifts, either for the mean
estimation like in CWAV20 or for the covariance matrix in this study.
The tests described in Section 3.2, for each clustering statistics, allow

examining both the covariance estimator from equation (13) as well
as its inverse, as an estimator of the precision matrix. We will assess
the eigenspectrum, the negative log-likelihood loss function from
equation (2), and the Fisher matrix as a proxy for the adequacy of
the covariance matrix estimate for deriving parameter constraints.
We also show the element-by-element variance reduction on the new
estimate (performance of CARPool) and plot the covariance and
precision matrices to provide a visual cue of the reduction in noise
with respect to the sample covariance. As discussed in Section 2.2, the
precision estimate �−1

yy will not include the Hartlap factor, whether
for the sample covariance or the CARPool covariance.

3.3.1 Matter power spectrum

The density contrast δ(x) is computed on a square grid of size
Ngrid = 1024 for each snapshot, then, in 3D Fourier space, the
average of |δ(k)|2, k ∈ [k − 
k, k + 
k] gives the power spectrum
P(k) for wave vector modulus k. The Quijote power spectra range
from kmin = 8.900 × 10−3 h Mpc−1 to kmax = 5.569 h Mpc−1. The
following analysis is restricted between kmin = 8.900 × 10−3 h Mpc−1

and kmax ≈ 1.0 h Mpc−1, which results in p = 79 linearly spaced bins.
Therefore, we have P = 3160 unique covariance matrix elements to
estimate.

Fig. 3 shows the CARPool estimate of the covariance and the
precision matrix using 200 simulations. For comparison, we show
the sample covariance estimates for 200 and 2000 simulations as
well as the ‘ground truth’ covariance measured from 12 000 GADGET

simulations. The empirical variance reduction on each estimated
covariance matrix element appears in Fig. 4: as expected, the variance
reduction on the X(β) samples at large scales is much higher (∼104)
than for variances and cross-covariances at small scales (∼10-fold
reduction). In Fig. 5, we see that the q = 1 case is positive definite
from N = 80 simulations onward while with q > 1 (we stopped at
q = 3 for the power spectrum) attains positive definiteness at ∼120
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2226 N. Chartier and B. D. Wandelt

Figure 4. Top panel: We show the variance reduction with CARPool of the
estimated power spectrum second-order moments up to kmax ≈ 1.0 h Mpc−1.
The control matrix that generates 3200 Xn CARPool samples is estimated
with 200 paired realizations. The variance of the covariance elements of
� yy are estimated using 3200 available power spectra from the Quijote
simulations. Bottom panel: for reference, reduced power spectrum from the
mean of the Quijote simulations at z = 0.5.

Figure 5. Negative log-likelihood on test data – acting as a cost function
– evaluated for an increasing number of available N-body simulations used
to estimate the covariance matrix of the matter power spectrum. We observe
that the CARPool estimates converge much faster towards the true value of
the cost function.

simulations and offers no improvement on the loss function on test
data, at least for a small to moderate number of simulations and
for our choice of neighbourhood induced by the vectorization of
the covariance matrix, cf. Fig. 2. The log-likelihood of the CARPool
covariance converges much faster to the log-likelihood of the ‘ground
truth’ covariance than that of the sample covariance based on the
same number of simulations. Additionally, Fig. 6 demonstrates

Figure 6. We show the improvement on the conditioning of the covariance
estimate with CARPool by showing the ratio of the eigenvalues in ascending
order between the estimated covariance using 200 simulations and the ‘true’
covariance matrix estimated with 12 000 simulations: λtest

i /λtrue
i for each

index i. A constant line at 1 would indicate identical eigenspectra but would
not imply that the eigenbases are the same, as discussed in Section 3.2.

that for the same number of simulations (N = 200 in this plot),
the eigenvalue ratio greatly favours the CARPool estimate: small
eigenvalues, which are the last to converge when using the sample
covariance, are lifted up and the largest modes are more stable.

How does this improvement in the covariance matrix translate to
the Fisher matrix? We can see in Fig. 7 that, with respect to the Fisher
matrix computed using the ‘ground truth’ covariance, the sample
covariance of size (79,79) using 200 simulations leads to a significant
underestimate and, in some cases, rotation of the confidence regions
of the parameters. The CARPool covariance using the same number
of simulations (plus the paired and additional surrogate samples)
gives a considerably more accurate Fisher matrix.

3.3.2 Matter bispectrum

In this subsection, we turn to estimating the covariance of the matter
bispectrum. Like in CWAV20, we will consider two separate subsets
of the matter bispectrum: the matter bispectrum monopole B(k1, k2,
k3) of squeezed isosceles triangles on the one hand, and the reduced
bispectrum monopole Q(k1, k2, k3) for equilateral configurations on
the other hand. We will apply the same tests we used for the power
spectrum covariance matrix, looking at the variance reduction, the
negative log-likelihood, the eigenspectrum, and the Fisher matrix
computed from the estimated bispectrum covariance matrix.

3.3.3 Squeezed isosceles triangles

We build the first group of samples by grouping triangle configura-
tions for which k1 = k2 and by ordering the bispectrum monopoles
in ascending order of the k3/k1 ratio. We keep squeezed triangles:
(k3/k1)max = 0.20 (p = 98 and P = 3851). Since q = 3 gives a slight
improvement over q = 1, the figures will show the results for q = 3.

Fig. 8 compares the CARPool covariance estimate with the sample
covariance estimator applied 200, and 2000 GADGET simulations
with the ‘ground truth’ computed from 12 000 simulations. The
differences are visually most apparent in the precision matrix, where
the CARPool estimate from 200 simulations looks visually similar to
the standard estimate from 200 simulations. Fig. 9 gives a quantitative
view of the CARPool variance reduction of the covariance matrix
elements. As for the power spectrum covariance, CARPool also
improves the eigenvalues of the covariance matrix (Fig. 11).
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CARPool covariance 2227

Figure 7. Confidence contours of the cosmological parameters computed using the Fisher matrix based on the estimated matter power spectrum covariance
matrix. The ‘truth’ designates the confidence region using the sample covariance matrix of 12 000 N-body simulations, and the mean parameters are known
from the �CDM models used in the simulations. We, thus, demonstrate the better conditioning of the CARPool covariance estimate with respect to the sample
covariance for the same number of simulations.

For this case, the convergence of q = 1 and 3 CARPool estimates
in term of negative log-likelihood of test data appears in Fig. 10. We
also tested q = 5, but in that case the added noise in the estimate of
β, now a (5,5) matrix, for each empirical counterpart of equation (9)
worsens the performance if we limit ourselves to a moderate number
of simulations.

Fig. 12 shows that the Fisher matrix computed using the CARPool
covariance based on 200 simulations is much more accurate even
than the sample covariance using 300 simulations, where confidence
contours are underestimated compared to the ‘ground truth’ reference
computed based on 12 000 simulations.7

7We did not include Mν here; the fiducial realizations of the bispectrum
initialized with the Zel’dovich approximation that are needed to compute the
neutrino mass derivative as in Villaescusa-Navarro et al. (2020) were not
available.

3.3.4 Equilateral triangles

The second set of bispectrum statistics is comprised of equilateral
triangles with k1 = k2 = k3 varying up to kmax = 0.75 h Mpc−1 (p =
40 and P = 820). CARPool gives a particularly strong variance
reduction for this case with a smaller p than before, so we focus
on a case with only 100 simulations. Fig. 13 visually compares the
covariance matrix estimators. Fig. 14 shows the strong variance
reduction on the covariance matrix elements from ∼ O(104) at large
scales down to ∼ O(10) at small scales. Fig. 15 emphasizes the
improvements of the log-likelihood test, with the simplest, diagonal
(q = 1) CARPool estimator being favoured (10 more simulations
than the sample covariance are required for that in the q = 3 case).
The eigenvalue ratios for the CARPool estimate, in Fig. 16, approach
the ‘ground truth’ even with only 100 N-body simulations, except for
seven smallest eigenvalues. The Fisher analysis presented in Fig. 17
exhibits the same behaviour as for the previous statistics: the sample
covariance with few simulations underestimates parameter confi-

MNRAS 509, 2220–2233 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2220/6409832 by IN
IST-C

N
R

S IN
EE IN

SB user on 29 April 2023



2228 N. Chartier and B. D. Wandelt

Figure 8. We plot different matter bispectrum covariance estimates (top panels) and their inverse (bottom panels), for squeezed isosceles triangles, similarly to
Fig. 3.

Figure 9. We demonstrate there is a significant variance reduction of the es-
timated matter bispectrum covariance matrix elements, for the set of squeezed
isosceles triangles up to (k3/k1)max = 0.2. The control matrix that generates
1800 new Xn CARPool samples, to compute the variance of each vector
element, is estimated with 200 paired realizations. To estimate the variance
of each element of � yy , we use 1800 samples from Quijote simulations.

dence intervals, while the CARPool covariance with few simulation
is much more representative of the knowledge about parameters given
by the clustering statistic of interest. We note however, that the set
of 40 equilateral triangles we treated is much less informative about
the parameters than the other statistics we consider in this paper.

3.3.5 Matter correlation function

We also tested real-space clustering statistics, the first of which
being the two-point matter correlation function ξ (r) for r ∈

Figure 10. Negative log-likelihood on test data evaluated for an increasing
number of simulations used to compute a covariance estimate, like in Fig. 5.

Figure 11. The computation method for the eigenvalue ratio of the matter
bispectrum covariance is identical to Fig. 6.

[5.0, 160.0] h−1Mpc (p = 159). As we did not experiment with
the correlation function in CWAV20, we show the reduction of
variance for the estimation of the mean in Fig. 18. With five N-
body simulations and CARPool, we get an unbiased estimate of the
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CARPool covariance 2229

Figure 12. Confidence contours of the cosmological parameter computed using the Fisher matrix, based on the estimated squeezed matter bispectrum covariance
matrix. Again, the CARPool covariance gives more realistic confidence regions than the sample covariance for an equivalent number of simulations. The ‘truth’
designates the confidence region using the sample covariance matrix of 12 000 N-body simulations; and the mean parameters are known from the �CDM models
used in the simulations.

mean correlation function with an equivalent precision – in terms of
95 per cent confidence intervals – as with the sample mean of 500
simulations.

Then, regarding the covariance matrix, we show in Fig. 19 that
we get consequential variance reduction on all the estimated second-
order moments of the correlation function vector. We note then the
reduction is ‘homogeneous’ in the matrix, since the highly correlated
large-scale modes in Fourier space intervene at all scales in real-space
by summation.

We did not, however, get significant improvement on the condi-
tioning of the covariance matrix with CARPool comparatively to
the sample covariance. In other words, CARPool does its job for
the matter correlation function – that is to say reducing variance on
covariance elements – but this improvement did not translate into a
better eigenspectrum or strong improvements of the Fisher matrix
contours.

3.3.6 Matter PDF

As in CWAV20, the matter PDF is computed on a grid with Ngrid =
512 and smoothed by a top-hat filter of radius R = 5 h−1 Mpc. We
have the raw 100 histogram bins in the range ρ/ρ̄ ∈ [

10−2, 102
]
.

Given that the covariance for this case is formally degenerate since
the histogram bins are linearly dependent – each bin can be written
as 1 minus the sum of the others – we have taken all the bins that
are non-zero across all samples up until the tails and down-sampled
the PDF by a factor 2, which gives p = 33 bins. Even after this
modification, the covariance is still nearly degenerate. There are
also strong bin-to-bin correlations that suggest going to even coarser
binning would improve the condition of the matrix; we proceeded
without processing to test the CARPool covariance estimate in this
regime.

Fig. 20 shows that the variance of the CARPool covariance
estimate is only mildly reduced. A similar effect was seen in the
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2230 N. Chartier and B. D. Wandelt

Figure 13. We plot covariance and precision matrices estimates for the reduced bispectrum of equilateral triangles, similarly to Fig. 3.

Figure 14. We exhibit the significant variance reduction for the estimated
matter reduced bispectrum covariance matrix elements, for the set of equilat-
eral triangles up to k1 = k2 = k3 ≈ 0.75. The computation of the metric is
identical to Fig. 9.

CARPool estimate of the mean PDF. Since the densities of structures
in the COLA surrogates do not match the densities of the corre-
sponding structures in the simulations, underestimating the density
in haloes and overestimating underdensities in voids, fluctuations in
density bins of the surrogate are correlated to fluctuations in other
density bins of the simulation. A larger variance reduction would
be obtained with a brute-force dense control matrix β, though this
would require a large number of simulations to estimate the control
matrix and thus defeat the point of the approach. An alternative
would be to define a pre-processing function to map the average
density PDFs of the surrogates to approximately match the average
PDF of the simulation, as in Leclercq et al. (2013). This would likely
increase the bin-to-bin correlations for diagonal control matrix and
therefore improve the CARPool estimates. We did not pursue these

Figure 15. Negative log-likelihood on test data, evaluated for an increasing
number of available N-body simulations that intervene in the estimation of
the covariance matrix of the reduced matter bispectrum.

Figure 16. Same as Fig. 6, but for the reduced matter bispectrum of
equilateral triangles covariance; note that in this case, only 100 simulations
were used in both the standard and the CARPool estimates.
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CARPool covariance 2231

Figure 17. Same as Fig. 12, but based on the estimated equilateral matter bispectrum covariance matrix.

Figure 18. Estimated mean of the matter correlation function with 500 N-
body simulations versus five pairs of ‘N-body + cheap’ simulations. The
estimated 95 per cent confidence intervals are computed with the Student t-
score for CARPool bias-corrected and accelerated (BCa) bootstrap for the
sample mean of simulations only.

ideas further in order to test the CARPool approach without designer
pre-processing.

We found that as a consequence of the small variance reduction
and the near-degeneracy of the covariance, the eigenspectrum of
the resulting covariance estimates is not improved and in fact not
positive-definite for all test realizations. We will discuss possible
remedies to this issue below.

4 D I SCUSSI ON AND C ONCLUSI ON

We explore the problem of estimating covariance matrices as a new
application of the CARPool principle, i.e., of combining simulations
and surrogates to accelerate Monte Carlo convergence introduced
in CWAV20 and demonstrate it on multiple N-body simulation
outputs. Our generalization uses a matrix vectorization procedure
(cf. Fig. 2). All that is required to CARPool is a surrogate solver that
can rapidly generate particle snapshots with minimal computational
effort and a surrogate statistic which is strongly correlated with the
one computed by the simulation code. As in CWAV20, CARPooling
guarantees unbiased results for whatever quantity it is used to
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2232 N. Chartier and B. D. Wandelt

Figure 19. Variance reduction for the matter correlation function covariance
matrix elements, for r ∈ [5.0, 160.0] h−1 Mpc. The computation is similar to
that of Fig. 4.

Figure 20. Variance reduction for the one dimensional matter PDF, down-
sampled by a factor 2. The computation is similar to that of Fig. 4.

estimate, by construction, even if the surrogate is highly biased. No
modifications to the simulation codes are required. In this paper, we
pair GADGET and COLA to CARPool the elements of the covariance
matrix of statistics derived from GADGET N-body simulations. As in
CWAV20, we do not perform any pre-processing of the statistics to
improve correlations to study the raw performance of CARPool.
For particular applications, there are likely physically motivated
approaches that would improve the variance reduction, as discussed,
e.g., in Section 3.3.6.

Our presentation focuses on the relative reduction of the Monte
Carlo variance on the covariance matrix and the resulting reduction
in computational cost. An alternative but equivalent perspective is to
view CARPool as a technique to de-biases sets of fast surrogates
using a limited number of full simulations. Rather than merely
accelerating convergence, CARPool can be an enabling technology
to help reach accuracy requirements that would have otherwise been

out of reach with a fixed amount of computation, since that is likely
to be the limited resource.

We assess the impact of the CARPool variance reduction using
derived properties of the covariance matrix, such as the inverse
covariance (or precision) matrix, the eigenvalues, a log-likelihood
statistic, and the (inverse) Fisher matrix. 8

For the power spectrum and both equilateral and squeezed triangle
configurations of the bispectrum, the variance of the covariance
matrix elements is reduced by more than order of magnitude and
up to four orders of magnitude. These improvements translate to
significantly more accurate log-likelihoods computed from test data,
eigenvalues, and estimated confidence regions for cosmological
parameters when compared to computations using a reference
covariance matrix based on 12 000 N-body realizations.

CARPool also gave significant reductions of variance for the
covariance matrices of the matter correlation function and the matter
one-point PDF, two real-space clustering statistics. In this instance,
we found that these improvements did not translate to significant
improvements in the derived (test) quantities. For example, in these
cases, the eigenvalue ratios and Fisher matrices computed using the
CARPool covariance show only marginal improvement compared
to those using the sample covariance matrix based on the same
number of simulations. These examples have severely ill-conditioned
covariance matrices, sometimes causing the smallest eigenvalues of
the CARPool estimator to scatter negative. This can be understood
because our matrix generalization of CARPool reduces variance
on the elements of the covariance matrix but does not explicitly
guarantee positive (semi-)definiteness of the covariance matrix. A
possible way to address this issue would be to apply techniques
designed to improve the condition of the covariance matrix such as
tapering (Paz & Sánchez 2015) and shrinkage estimators (Schäfer &
Strimmer 2005; Pope & Szapudi 2008; Joachimi 2017), albeit at
the cost of giving up the strict unbiasedness of the covariance
matrix estimates. Alternatively, we could seek to impose positive
definiteness in our matrix generalization of the CARPool method;
this will be subject of future work.

More generally, combining CARPool with other fast estimators
of the covariance matrix listed in Section 1 will likely lead to
further improvements since CARPool relies on the entirely different
principle of combining simulations and surrogates. Similarly, we
explored only a single surrogate. Combinations of surrogates or better
surrogates, such as those mentioned in Section 1 could well lead
to further acceleration. We leave an exploration of such combined
estimators to future work.
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DATA AVA ILA BILITY

The data underlying this article are available through globus.org,
and instructions can be found at https://github.com/franciscovillae
scusa/Quijote-simulations. Additionally, a PYTHON3 package with
code examples and documentation is provided at https://github.com
/CompiledAtBirth/pyCARPool to experiment with CARPool.
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