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ABSTRACT 

 

Topo-bathymetric lidar is a powerful tool to survey coastal 

ecosystems while ensuring data continuity between land and 

water regardless of the nature of the terrain, and allowing the 

collection of information up to several dozens of metres 

deep. This study analyzes the potential of full waveform 

lidar data to monitor key ecosystems for climate change 

mitigation: seagrasses. It proposes an original way of 

processing topo-bathymetric lidar waveforms to map their 

spatial repartition and extent in Corsica (France). Waveform 

statistical and shape parameters are computed and used to 

produce a map of seagrass meadows that reaches over 86% 

of overall accuracy. Seagrass height is also extracted, 

offering perspectives for structural complexity assessment 

and ecosystem services quantification. 

 

Index Terms— Topo-bathymetric lidar, Lidar 

waveform, Seagrass, 3D mapping, Machine learning. 

 

1. INTRODUCTION 

 

Seagrasses grow in worldwide nearshore areas and occupy 

thousands of square kilometers [1]. Seagrass meadows 

provide food support and habitat to marine species and 

human communities, protect coastlines by ensuring wave 

attenuation and are critical blue carbon sinks: they are 

therefore of great ecological interest to many coastal areas 

[2]. Although their role in ocean-climate change mitigation 

is widely recognized, seagrasses are threatened: a third of 

the European seagrass area was lost between 1869 and 2016 

[3] due to multiple anthropogenic and natural stressors [4]. 

Monitoring the extent, health and diversity of seagrass 

ecosystems is crucial to ensure efficient and sustainable 

management of coastal waters. Maps of seagrass meadows 

are currently made by processing observations acquired with 

various techniques [5], as for example satellites [5], [6], 

[7], airborne [7] or UAV [8] imagery. Bathymetry extracted 

from sonar [9], [10], [11] acquisitions or lidar surveys [12], 

[13] is also the base of many seagrass ecosystems maps. 

However, both passive imagery techniques and active sonar 

surveys have limitations: passive imagery is constrained by 

water turbidity [5], [14] while sonar is unusable in unsafe 

navigation areas. Collecting inaccessible information on 

seagrasses is therefore still necessary. There is also a strong 

need for mapping approaches that allow three-dimensional 

structural information on seagrasses. 

The present study shows how topo-bathymetric lidar can 

be used to survey seagrass ecosystems and provide both two-

dimensional – a map of the extent – and three-dimensional – 

structural complexity knowledge – information on their 

state. It features an original signal processing method that 

proves that not only bathymetry but also benthic return 

characteristics allow seagrass detection and 3D mapping. 

This method was assessed on the East coast of Corsica 

(France, Figure 1), where seagrasses play a key role in 

ecological equilibrium maintenance. It opens perspectives 

for the study of coastal ecosystems – topo-bathymetric lidar 

ensures data continuity between land and water – as well as 

possibilities to better understand seagrass structural 

complexity and ecology on extended areas, independently 

from the terrain’s safety. 

 

2. TOPOBATHYMETRIC LIDAR OPERATING 

PRINCIPLE 

 

Lidar uses the backscatter of a laser pulse to collect data on 

encountered obstacles, resulting in a dense point cloud. 

Topo-bathymetric lidar emits laser pulses on two different 

wavelengths: green (515 nm) and infrared (1064 nm). While 

the infrared wavelength is fully reflected by water, the green 

wavelength penetrates the water column and allows sea floor 



measurement in low turbidity situations. Airborne topo-

bathymetric lidar is therefore ideal to collect continuous data 

on coastal areas. 

Analysis of full waveform lidar data shows that the 

shape of the reflected signal provides information on the 

type of objects encountered. In marine areas, the 

backscattered signals contain three main parts: the sea 

surface return (a peak), the water column return and the 

benthic return (sea floor, a peak). Since light diffusion is 

impacted by water, the backscattered intensity of the benthic 

echo depends on the water column. Here, we focus on the 

benthic return’s shape and statistical parameters and their 

use for seagrass detection and mapping. 

 

3. MATERIAL AND METHOD 

 

3.1. Study area 

 

The study area is a 0.15 km² nearshore zone located near 

San Giuliano in Corsica, France. Seagrasses – Posidonia 

oceanica and Cymodocea nodosa – occupy around 42 000 

ha of the East Coast of Corsica [15]. The selected area 

encompasses experimental shallow coastal waters including 

a part of the large P. oceanica meadow known as NATURA 

2000 site « Grand herbier de la côte Orientale » and two 

small patches of P. oceanica surrounded by fine sediments. 

Depth ranges from 2 to 16.5 metres in this area. 

 

 
Figure 1. Location of the study area (WGS84 UTM32 N). 

 

3.2. Data used 

 

Topo-bathymetric lidar data acquired in October 2017 with 

a Leica HawkEye III system was used to conduct this study. 

The average point density across the zone is 0.99 point/m². 

Both the points and the full waveforms were used.  

 

 

 

 

3.3. Data processing method 

 

3.3.1. Signal processing 

The waveforms (Figure 2) – i.e. the backscattered intensity 

signal – were first smoothed using a Savitzky Golay filter 

whose principle is to estimate piecewise polynomial 

functions to remove noise. The detection of benthic habitats 

implied to detect the peaks of the waveforms corresponding 

to the sea surface and to the sea floor. This was made by 

applying a threshold to the first derivative of the smoothed 

waveform. A two-step thresholding was adopted to detect 

both major and smaller peaks and avoid loss of information. 

In order to remove the light attenuation component on 

the benthic echo, a decreasing exponential function is fitted 

to the water column component of the signal.  

To remotely sense benthic habitats with these data, we 

converted the intensities into pseudo-reflectance values, 

dividing them by the intensity of the emitted laser pulse.  

Various statistical parameters were then computed for 

each waveform, including benthic peak complexity, which 

was defined as the number of sign changes of the benthic 

return’s first derivative. Four of these parameters describe 

the shape of the benthic return: skewness, kurtosis, time 

range and complexity. Eight other ones give statistics on the 

intensity variations of the benthic return: mean, median, 

maximum, variance, standard deviation, area under curve 

and amplitude. Topography information was also extracted: 

a bathymetry map, a digital surface model (including the 

vegetation above the seabed) and the height difference 

between them were computed. Finally, the pseudo-

attenuation, the benthic return’s maximum before signal 

attenuation correction and the sea floor return’s maximum 

before correction were computed. 

 

3.3.2. Image processing 

The parameters extracted from the topo-bathymetric lidar 

waveforms were rasterized by linearly interpolating the 

values on a 1.5 m resolved grid and stacked together to 

create a 17-band raster.  

 

3.3.3. Machine learning classification 

To generate a map of the extent of seagrasses from the 

waveforms’ parameters, we performed a supervised image 

classification with a maximum likelihood probabilistic 

algorithm. The algorithm was trained by 8400 pixels 

collected on seagrass and sediment areas on the stacked 

bands, with the help of terrain knowledge provided by aerial 

imagery. The same number of 8400 pixels were also selected 

for results’ validation. 

The whole set of bands was first classified into two 

classes: sediment and seagrass. Then, we evaluated the 

contribution of each attribute by computing the accuracy 

difference between a classification in which it was used and 

another in which it was not. The parameters that lowered the 

accuracy were removed from the set of bands systematically, 



until the combination giving the best classification was 

found. 

A contribution index of each band of the selected set 

was computed by dividing the accuracy difference between 

the classifications with and without the given attribute by the 

accuracy of the classification obtained with the whole set. 

 

4. RESULTS 

 

4.1. Lidar waveform processing 

 

Figure 2 shows typical detection results for sediment and 

seagrass, and the output of the light attenuation correction.  

 

 
Figure 2. Extracts from the lidar dataset. a) sediment, b) 

uncorrected waveform, c) corrected waveform; d) seagrass, 

e) uncorrected waveform, f) corrected waveform. Red lines 

delimitate the sea surface return, green lines the benthic 

return; the pink curve is the fitted exponential. 

 

4.2. Machine learning waveform statistics classification 

 

The most efficient attributes’ combination is formed by nine 

parameters: benthic return maximum before pseudo-

attenuation correction, peak skewness, pseudo-attenuation 

index, bathymetry, peak complexity, peak intensity variance, 

peak median intensity, peak time range. 

Calibration pixels have a separability score (Jeffries-

Matusita distance) of 1.64 on these bands. 

The maximum likelihood classification of the eight most 

accurate attributes reaches 86.4% of global accuracy and a 

Kappa coefficient of 0.73. The height difference between the 

DEM and DSM computed give an overview of seagrass 

height in the meadow areas. These are presented in Figure 3. 

 
Figure 3. a) map of seabed types in the study area, b) top-

of-vegetation and seabed depth profile (metres). 

 

The contribution of each parameter of the selected set is 

presented in Figure 4. Contributions are sorted in 

descending order and range from 0.43 to 5.01 percent. 

  

 
Figure 4: Contribution of the selected attributes to the 

global accuracy of the best classification (in percent). 

 

5. DISCUSSION AND CONCLUSION 

 

The method used to remove the light attenuation component 

efficiently corrects the effects of a sediment plume on the 

reflected intensities. It confirms the usefulness of full 

waveform data in moderately turbid waters, when intensity 

alone is not enough to detect bottom variations. However, 

the correction is perfectible: the exponential over-corrects 

the attenuation, resulting in very high reflectance 

measurements. This weakness explains the apparition of 

pseudo-attenuation as one of the main predictors and the 

absence of the corrected intensity in the selected attributes.  

The analysis of the extracted parameters and their 

contribution to classification accuracy shows that the 

returned signal’s shape and intensity as well as the 

bathymetry are all relevant to precisely describe the seascape 

and its habitats. Results also underpin that the benthic 

return’s shape is determined by the nature of the sea floor 

and that waveform analysis is still underexploited.  

The seabed map obtained reaches 86% of global 

accuracy and shows both seagrass patches and seagrass 

extended meadows. Some parts of the site are however 

misclassified: in very dense vegetation areas, the signal 

seems unable to penetrate the canopy and the echo has the 



same shape as a bare ground echo, explaining the relatively 

low accuracy obtained. A correction that does not 

exponentially increase the intensity could compensate these 

effects, since the maximum of the benthic return has the 

potential to be more discriminant if well corrected.  

Lidar avoids technical limitations encountered by 

satellite or aerial images-based approaches [5], [14], [9] and 

is therefore efficient to monitor coastal ecosystems [12], 

including seagrasses, which usually require landscape-

specific mapping approaches to avoid mis-estimation of 

their extent due to their complex spatial organization [10].  

It also offers the possibility to extract seagrass height 

(Figure 3), which provides insightful elements for seascape 

analysis and structural ecology assessment of seagrasses. 

This height estimation could however be improved by 

interpolating bathymetry under seagrass areas, since the 

vegetation absorbs all the signal at some point, preventing 

the extraction of a real bottom echo and biasing the 

bathymetry and the derived vegetation height. 

The waveform decomposition [16], slope correction 

[13], use of bathymetry-derived parameters [12] or deep 

learning classification [17] might besides improve sea floor 

detection and 3D mapping. Although ground truth validation 

is expected to refine these results, our work already opens 

various perspectives for coastal habitats monitoring. Further 

investigation of full waveform data could allow seagrass 

species, phenological phase or health assessment and 

provide knowledge on their spatial dynamics depending on 

ocean currents, which can be studied with the same data. 
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