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Abstract

We consider an inverse boundary value problem for the heat equation with
a nonsmooth coefficient of conductivity which models the displacement of a
moving body inside an isotrop but nonhomogeneous background. We prove
the uniqueness of the moving inclusion from the knowledge of the Dirichlet-
to-Neumann operator by using a dynamical probe method.
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1 Introduction

1.1 Inverse heat conductivity problem

Let T > 0 and let Ω be a bounded domain in R3, with a lipschitzian boundary
Γ = ∂Ω. Let us consider the anisotropic heat equation

∂tv − div (a∇v) = 0 in Ω0,T ≡ Ω× (0, T ), (1)

where the operators div, the divergence, and ∇, the gradient, are relative to the
spatial variable x. In our model, the conductivity a = (aij)1≤i,j≤3 is a 3 × 3 real
symmetric matrix with positive bounded measurable coefficients of x. It satisfies
the uniform elliptic condition:
there exists γ∞ > 0 such that

γ−1
∞ |ξ|2 ≤ aξ · ξ ≤ γ∞|ξ|2, ξ ∈ R3. (2)

It is well-known (see [19]) that, for all f ∈ L2(0, T ;H1/2(Γ)) and v0 ∈ L2(Ω), there
exists only one solution v = v(a, v0; f) ∈ H1((0, T );L2(Ω))∩L2((0, T );H1(Ω)) of (1)
with the following initial boundary value problem:{

v = f on Γ0,T ≡ Γ× (0, T ),
v
∣∣
t=0

= v0 on Ω.
(3)

Then, we can define the Dirichlet-to-Neumann map (D-N map) as

Λa;v0 : L2((0, T );H1/2(Γ)) 3 f 7→ a∇v(a, v0; f) · ν ∈ L2((0, T );H−1/2(Γ)),
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where ν denotes the outer unit normal to Γ. In physical terms, f = f(t, x) is the
temperature distribution on the boundary and Λa,v0

(f) is the resulting heat flux
through the boundary.

In this article we are concerned with the Calderón inverse problem for (1) which
is to determine a from the knowledge of the D-N map Λv0,a. The conductivity a
consists in a non necessarily smooth background and an unknown inclusion t 7→
Dt ⊂ Ω which moves continuously inside the body Ω. Thus, in our inverse problem,
the function a|Ω\Dt coincides with a measurable real matrix-function b ∈ L∞(Ω)
which satisfies (2) and represents the conductivity of a background medium, and
so, is known. The inverse problem we address is to determine the moving inclusion
D = ∪0≤t≤T (Dt × {t}) ⊂ Ω0,T from the knowledge of Λa,v0 .

Remark 1. In our problem the value of the conductivity inside the inclusion, a|Dt ,
and the initial value of v, v0, are unknown but the article does not deal with their
determination.

1.2 Main assumptions

The two following assumptions were already considered in [3],[13],[17].

(H0): There exists a positive constant δ1 such that

(H0a) : ((b− a)a−1b)S ≥ δ1 > 0, b− a ≥ δ1 > 0 inD,

or

(H0b) : ((b− a)a−1b)S ≤ −δ1 < 0, b− a ≤ −δ1 < 0 inD.

(Here, if m is a 3 × 3 real matrix then mS = 1
2 (m + mT ) denotes its

symmetric part.)

(H1): for all t ∈ [0, T ], the set R3 \Dt is connected.

Because of technical limitations of our method when b is not sufficiently smooth,
we need some additional geomerical assumptions on D. For a point x ∈ R3 and a
non-empty set E ⊂ R3 we denote by d(x,E) the quantity infz∈E |x− z| and by |E|
the Lebesgue-measure of E.

(H2): t 7→ Dt is lipschitzian in the following sense:
there exists KD > 0 such that for all x ∈ Ω the mapping t 7→ d(x,Ω\Dt)
is lipschitzian in [0, T ] with lipschitzian constant KD and the mapping
t 7→ d(x,Dt) is lipschitzian at all s ∈ [0, T ] such that Ds 6= ∅ with
lipschitzian constant KD.

(H3): Dt is lipschitzian, uniformly as t ∈ [0, T ], i.e, there exists LD ∈
(0, 1) such that |Dt ∩ B(x, r)| ≥ LD min(|Dt|, |B(x, r)|), ∀r > 0, x ∈
∂Dt, t ∈ [0, T ].

Runge approximation in the dynamical probe method (see [13]) is based on the
uniqueness property (UC) which holds if the conductivity is constant but may fail
if it is not sufficiently smooth. Therefore we add the following assumption on b:
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(UC) in Ω - Let a sufficiently smooth domain ω ⊂ Ω, a < b and let
u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that ∂tu − div(b∇u) = 0
in ω× (a, b) and u = a∇u ·ν = 0 on S× (a, b), where S is an non-empty
open subset of ∂ω. Then, necessarily, u = 0 in ω × (a, b).

Remark 2. The above definition of (UC) is independent of the choice of the time-
interval [0, T ] since in our work we assume that b does not depend on the variable
t.

Remark 3. Condition (UC) holds if b is lipschitzian or piecewise smooth: see
Vessella [18, chap 5].

1.3 Main Result

Here we state our uniqueness result for the above inverse problem. Let v0, v′0 ∈
L2(Ω), two conductivities a,a′ satisfying (H0)-(H3) and (UC). Let D′ the inclusion
related to a′.

Theorem 1. Assume that Λv0,a = Λv′0,a′ . Then, D = D′.

Remark 4. Our proof of Theorem 1 is not completely constructive, although it is
based on a dynamical method as in [17], where a (theoretical) reconstruction of D
from the knowledge of Λv0,a was developed.

Remark 5. We shall proof Theorem 1 with the following assumption:

D(t) ⊂ Ω, t ∈ [0, T ].

Therefore we replace (H1) by:
(H1’): one has D(t) ⊂ Ω, and the set Ω \Dt is connected, for all t ∈ [0, T ].

The general proof of Theorem 1 where D(t) may touch ∂Ω is easily get from the
following modification on the case (H1’):

• We consider a large smooth bounded domain Ω′ containing Ω and we put
b = I3 (the 3× 3 identity matrix) in Ω′ \ Ω.

• (If necessary)1 (UC) is assumed with Ω replaced by Ω′.

Remark 6. The proof of Theorem 1 will show that (H0) can be extended to the
following situation:

(H0’) There exist positive constants ε0, δ1, such that for (x, t) ∈ D̄,

((b−a)a−1b)S(x) ≥ δ1 > 0, b(x)−a(x) ≥ δ1 > 0 if d(x, ∂Dt) ≤ ε0,

or

((b−a)a−1b)S ≤ −δ1 < 0, b(x)−a|Dt(x) ≤ −δ1 < 0 if d(x, ∂Dt) ≤ ε0,

1the question that (UC) in Ω would imply (UC) in Ω′ is out of the scope of this article
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1.4 Outline

In Section 2 we recall the basis of the dynamical probe method, Runge approxima-
tion, and we construct indicator and pre-indicator functions from special Cauchy
boundary data. In Section 3 we give lower and upper estimates on the indicator
function which we achieve to prove in Section 4 after several technical results. In
Section 5 we achieve the proof of our main Theorem 1.

1.5 Literature review

Assumption was already considered in [3],[13], but not in [17].

2 The dynamical probe method (DPM) with spe-
cial solutions of the heat equation

2.1 Notations

Let us give some notations for this paper. For E ⊂ R3, a < b, and for U ⊂ R3 ×R,
we put Ea,b = E × (a, b) and Ut ≡ {x ∈ R3 (x, t) ∈ U}.
For non-negative integers p, q or p = 1/2, Hp(Ω) Hp(∂Ω) and Hp,q(Ω(a,b)) denote
the usual Sobolev spaces where the superscripts p and q indicate the regularity with
respect to x and t, respectively. For an open set U ⊂ R4 with Lipschitz boundary
∂U , Hp,q(U) is defined likewise. More precisely, g ∈ Hp,q(U) if and only if there
exists G ∈ Hp,q(R4) with G = g in U . If it is the case, ‖g‖Hp,q(U) is defined to be

‖g‖Hp,q := inf ‖G‖Hp,q(R4),

where the infimum is taken over all G such that G = g in U . Let X be a normed
space of functions. A function f(x, t) is said to be in L2((0, T );X) if f(·, t) ∈ X for
almost all t ∈ (0, T ) and

‖f‖2L2((0,T );X) :=

∫ T

0

‖f(·, t)‖2L2(X)dt <∞.

(see [15] for more details).
We write La := ∂t−div (a∇·), so LI := ∂t−∆ for the homogeneous case. Similarly,
we consider operator for the backward related heat equation, L∗a := −∂t−div (a∇·).
We denote by B(r) any ball of radius r > 0 in R3. The open ball {x ∈ R3; |y−x| <
r}, r > 0, is denoted B(y, r).
We denote by d(t) the distance between y(t) and Dt if Dt 6= ∅, i.e., d(t) =
d(y(t), Dt). If Dt = ∅ then we put d(t) = +∞, 1/d(t) = 0.
If m is a 3× 3 real matrix then mS = 1

2 (m + mT ) denotes its symmetric part and
if ξ ∈ R3 then mS(ξ)2 := mSξ · ξ.

2.2 Brief history of the determination of an inclusion from
the D-N map

The determination (i.e, the problem of uniqueness) of a sufficiently smooth inclusion
inside an homogeneous body was stated in [4] with a proof by contradiction. DPM
for (1) is an extension of Ikehata’s probe method which was developed for the
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elliptic equation div(a∇v) = 0. It was firstly presented in [3] where the background
is homogeneous and Dt ∈ C2 for all t. Although a part of DPM in [3] works for
all spatial dimension n, the reconstruction of D was proved in the case n = 1 only.
DPM in [3], corrected in [13], uses Runge approximation of the fundamental solution
of LIu = δ(y,s), (y, s) ∈ Ω(0,T ). Extending [4] in a more quantitative version which
requires a little bit more smoothness and differs to the DPM of [3] and [13], [2]
proved the log-stability of Λa,0 7→ D.

Returning to DPM, the author of this article used in [17] ”special solutions”
for the classical heat operator which are more convenient functions than the basic
fundamental solutions Γ(x−y, t−s), because their behaviour in time and space are
sufficiently separated. Since the background in [17] is homogeneous, [17] showed that
DPM can reconstruct any spatially irregular inclusion as in the elliptic situation.
But in our situation we are limited to inclusions with not too spatially irregularities
(see (H3)), and we have no reconstruction process.

2.3 Runge approximation

Runge approximation for the operator unperturbed operator LI with the homoge-
neous conductivity a = I3 was developed in [3] and [13].

Let a lipschitzian curve Σ : [0, T ] 3 t 7→ y(t) ∈ R3 \ Dt which does not touch
D. We extend Σ to t ∈ R by putting y(t) = y(T ) for t ≥ T and y(t) = y(0) for
t ≤ 0. Then, thanks to (H1’), there exists an open set U ⊂ Ω×R containing D and
satisfying 

∂U is lipschitzian,
dist(U,Σ) := inf{|x− y|; x ∈ U, y ∈ Σ} > 0,
Ω \ Ut is connected, t ∈ R.

Runge-type approximation as in [3, 13, 17] works thanks to (UC) notably, and yields
the following result. For τ > 0 we denote Στ = ∪t∈RB(y(t), 1/τ)× {t}.

Proposition 1. Assume (H1’) and (UC). Let Σ and U be as above. Let u ∈
H1,0(Ω(0,T )) ∩H0,1(Ω(0,T )) be a solution of Lbu = 0 in Ω(−1,T+1) \ Στ . Then for
τ > inf{τ > 0 | dist(U,Στ ) > 0} there exists a sequence uj ∈ H1,0(Ω(−1,T+1)) ∩
H0,1(Ω(−1,T+1)) such that Lbuj = 0 in Ω(−1,T+1),

uj → u in H1,0(U) ∩H0,1(U),
uj(0) = u(0) in L2(Ω).

2.4 Heat Kernels

In many researchs devoted to inverse problems for parabolic equations, the back-
ground is homogeneous, i.e, b = I3. In such a classical situation, the heat operator
is ∂t −∆ and its usual kernel Γ(x, t) has many properties, as

1. It is explicit:

Γ(x, t) =
1

(4πt)3/2
e
−x2

4t , t > 0, x ∈ R3.

2. It satisfies

Γ(x, t) ≤ C√
t
|∇Γ(x, t)|, t > 0, x ∈ R3,
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for some C > 0. Hence, Γ(x, t) is small compared to |∇Γ(x, t)| as t→ 0.

3. Thanks to the Laplace transform
∫∞

0
·e−τ2tdt of ∂t−∆, we consider similarily

the elliptic operator −∆+τ2 with the (large) real parameter τ > 0. Its kernel
E(x; τ) is explicit too:

E(x; τ) =

∫ ∞
0

Γ(x, t)e−τ
2tdt =

e−τ |x|

4π|x|
, x ∈ R3.

4. It satisfies
E(x; τ) ≤ τ |∇E(x; τ)|, x ∈ R3.

Hence, E(x; τ) is small compared to |∇E(x; τ)| as τ → ∞, uniformly in all
bounded set of R3 \ {0}. This fact was exploited in [17].

Let us come back to the heat equation with a general conductivity b. We put
b(x) = I3 for x ∈ R3 \ Ω.

For y ∈ R3, we denote by Gy ∈ C(R;L2(R3)) the fundamental solution of

LbGy = δ(y,0),

which satisfies
Gy(x, t) = 0, t < 0.

We have the estimate:

κe−
|x−y|2

4κ2t

t3/2
≤ Gy(x, t) ≤ e−

κ2|x−y|2
4t

κt3/2
, x ∈ R3, t > 0, (4)

for some constant κ = κ(b) ∈ (0, 1) (see [1, 16]).
For τ > 0 we put the Laplace Transform of Gy(x, t) as

pτ (x; y) := e−τ
2t

∫ t

−∞
eτ

2sGy(x, t− s)ds =

∫ ∞
0

e−τ
2sGy(x, s)ds. (5)

Let us observe that pτ (·; y) belongs to H1
loc(R3 \ {y}) and, thanks to (4), satisfies

(−div (b∇·) + τ2)pτ (·; y) = δy(·), (6)

2
√
π
κ2e−

τ
κ |x−y|

|x− y|
≤ pτ (x; y) ≤ 2

√
π
e−κτ |x−y|

κ2|x− y|
, x ∈ R3 \ {y}. (7)

This is also a consequence of the works of Nash and Aronson.

2.5 Special solutions

Let us consider a lipschitzian curve Σ ⊂ R3×R as in Section 2.3, and fix θ ∈ (0, T ).
Let another positive parameter µ ≥ 1 that we shall precise later.

In [17] with b ≡ I3 the author considered special solutions related to the follow-
ing functions:

UOP (x, t) := eτ
2(T+t)

∫ ∞
0

eτµ(|t−θ−s|−|t−θ|)Γ(x− y(t− s), s)e−τ
2sds,

U∗OP (x, t) := e−τ
2(T+t)

∫ ∞
0

eτµ(|t−θ+s|−|t−θ|)Γ(x− y(t+ s), s)e−τ
2sds.
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In fact, UOP and U∗OP are respectively solutions of the following forward and back-
ward heat equations:

LIUOP (x, t) = eτ
2(t+T )e−τµ|t−θ|pτ (x; y(t)) in R3 × R,

L∗IU∗OP (x, t) = e−τ
2(t+T )e−τµ|t−θ|pτ (x; y(t)) in R3 × R.

Moreover they satisfies (see [17, Lemma 1]):

UOP (x, t) = ϕ(x, t)eτ
2(t+T )e−τµ|t−θ|pτ (x; y(t)),

U∗OP (x, t) = ϕ∗(x, t)e−τ
2(t+T )e−τµ|t−θ|pτ (x; y(t)),

such that, for some C = C(R,µ) > 0 and all τ ≥ C,

1

C
≤ |ϕ(x, t)|+ |ϕ∗(x, t)| ≤ C inB(0, R)× R, (8)

|∇ϕ(x, t)|+ |∇ϕ∗(x, t)| ≤ C inB(0, R)× R. (9)

With the general conductivity b, we construct here special solutions uτ and u∗τ as
follows. Let us put

mτ (x, t) = M0(τ |x− y(t)|), t ∈ R, (10)

where M0 is defined by M0(r) = |1− r| 1|r|≤1. Hence mτ is a lipschitzian function
with support closed to Σ as τ >> 1. We then put, for (x, t) ∈ R3 × R,

uτ (x, t) =

∫
s∈R

∫
y∈R3

eτ
2(s+T )e−τµ|s−θ|m(y, s)Gy(x, t− s)dyds (11)

=

∫ ∞
s=0

∫
y∈R3

eτ
2(T+t−s)e−τµ|t−θ−s|m(y, t− s)Gy(x, s)dyds,

u∗τ (x, t) =

∫
s∈R

∫
y∈R3

e−τ
2(T+s)e−τµ|s−θ|mτ (y, s)Gy(x, s− t)dyds (12)

=

∫ ∞
s=0

∫
y∈R3

e−τ
2(T+t+s)e−τµ|t−θ+s|mτ (y, t+ s)Gy(x, s)dyds.

The functions uτ and u∗τ (x, t) are positive and satisfy

Lbuτ (x, t) = eτ
2(t+T )e−τµ|t−θ|m(x, t) in R3 × R, (13)

L∗bu∗τ (x, t) = e−τ
2(T+t)e−τµ|t−θ|mτ (x, t) in R3 × R.

Remark 7. If mτ (x, t) was replaced by δ(x−y(t)) then it would be difficult to make
the estimation of ẏ(s)∇yGy(t−s)(x, t) that would appear in the expression of ∂tuτ .

We then expect that

uτ (x, t)
τ→∞' eτ

2(T+t)e−τµ|t−θ|τ−3pτ (x, y(t)), (14)

u∗τ (x, t)
τ→∞' e−τ

2(T+t)e−τµ|t−θ|τ−3pτ (x, y(t)), (15)

where the meaning of ”'” will be clarified shortly. Since the comparison requires
the time-derivatives of uτ (x, t) or u∗τ (x, t) and remembering Remark 7, we introduce
the following smooth approximation of pτ (x; y(t)):

Pτ (x, t) :=

∫ ∞
0

∫
R3

e−τ
2smτ (y, t)Gy(x, s)dyds. (16)
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We then put

qτ (x, t) := e−τ
2(T+t)uτ (x, t)− e−τµ|t−θ|Pτ (x, t), (17)

q∗τ (x, t) := eτ
2(T+t)u∗τ (x, t)− e−τµ|t−θ|Pτ (x, t). (18)

The main difficulty in the proof of Theorem 1 is to prove that the quantity

R0 :=

∫
D

(|∇qτ (x, t)|2 + |∇q∗τ (x, t)|2) dxdt, (19)

is negligible compared to
∫
D
τ−6e−2τµ|t−θ||∇pτ (x, t)|2 dxdt or, in an equivalent way

(see Lemmas 4.3 and 4.4), to
∫
D
τ−4e−2τµ|t−θ||pτ (x, t)|2 dxdt. We shall prove in

Appendix the following Lemma.

Lemma 2.1. (Estimate of ∇qτ in Dt). Let M > 0 and assume that |ẏ|∞ ≤
M . Under (H3) there exist two positive constants C = C(b, LD, dΩ, µ,M), C0 =
C0(κ, dΩ,M) such that if t ∈ [0, T ] and τ > max(2µ,C0/d(t)) then∫

Dt

(|∇qτ (x, t)|2+|∇q∗τ (x, t)|2)dx ≤ Cτ−4e−2τµ|t−θ|d(t)2

∫
Dt

|pτ (x, y(t))|2dx. (20)

(Remember that d(t) = d(y(t), Dt).) So R0 is effectively ”negligible” when
the curve Σ is sufficiently close to D at least at time θ. This constraint is new
compared to consequences of (8) and (9) (for which Assumption (H3) is in addition
superfluous) and makes a theoritical reconstruction of D problematic, as opposite
to the possible reconstruction proposed in [17].

2.6 Pre-indicator sequence and indicator function

As in section 2.3, we can consider sequences (uj)j and (u∗j )j such that uj → uτ and
u∗j → u∗τ in the sense of Proposition 1. Considering vj = v(a, v0;uj |Γ(0,T )

) and the

solution vτ ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) of
Lavτ = Lbuτ ,
vτ = uτ on Γ0,T ,

vτ
∣∣
t=0

= v0 on Ω,
(21)

we put
wτ = vτ − uτ (22)

and

Ij(τ) :=

∫
Γ×[0,T ]

(Λa;v0(uj |Γ[0,T ]
)− b∇uj · ν) u∗j |Γ×[0,T ] dσ(x)dt,

I∞(τ) :=

∫
Ω×[0,T ]

(a− b)∇vτ∇u∗τ dxdt+

∫
Ω

[wτu
∗
τ ]
T
0 dx, (23)

where dσ(x) is the usual measure on the boundary Γ. The knowledge of Λa;v0

involves that of Ij(τ)’s. Furthermore, as for the proofs in [3, 17], Proposition 1
implies that

Ij(τ)→ I∞(τ) ∈ R as j →∞. (24)

Hence, if (UC) holds, then the knowledge of Λa;v0 involves that of I∞(τ)’s.
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3 Estimates on the indicator function

Lemma 3.1. Under assumption (H0b) we have

I∞(τ) ≤ C

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (25)

+C

∫
D

(|∇qτ |2 + |∇q∗τ |2) dxdt+ 10(‖v0‖2L2(Ω) + dΩ)e−τµmin(T−θ,θ),

and

I∞(τ) ≥ 1

C

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (26)

−C
∫
D

(|∇qτ |2 + |∇q∗τ |2) dxdt− 10(‖v0‖2L2(Ω) + dΩ)e−τµmin(T−θ,θ),

for some C = C(a) ≥ 1, for all τ > µ+ 1, µ > 0.

Proof in Appendix.

We put also

dΩ := sup{|x− y|; x, y ∈ Ω}, (27)

εΣ := inf
t∈[0,T ]

d(t) > 0. (28)

Lemma 3.2. Let M > 0 and assume that |ẏ|∞ ≤ M . Then, under assump-
tion (H0b), there exist positive constants c = c(a, µ,M), C1 = C1(v0, dΩ), C2 =
C2(κ, dΩ,M), C3 = C3(dΩ, κ,M, µ), such that, if τ > max(2µ,C2/εΣ), we then
have

I∞(τ) ≤ cτ−4

∫
D

e−2τµ|t−θ||pτ (x, y(t))|2 dxdt (29)

+C1e
−τµmin(T−θ,θ),

and

I∞(τ) ≥ cτ−4

∫
D

(
1− C3d(t)2

)
e−2τµ|t−θ||pτ (x, y(t))|2 dxdt (30)

−C1e
−τµmin(T−θ,θ).

The proof of Lemma 3.2 requires the developments of Section 4
Let us extend ‖n to (−∞, 0] by putting ‖n(I) = −∞ if I ≤ 0.

Lemma 3.3. Let θ ∈ (0, T ). Let us fix µ ≥ µ1 = 4κ−1dΩ max((T − θ)−1, θ−1).
1) Let a lipschitzian curve Σ such that |ẏ| ≤M and εΣ > 0. We then have

lim sup
τ→∞

τ−1 ln(I∞(τ)) ≤ −2κεΣ. (31)

2) Assume that Dθ 6= ∅. Let α ∈ (0, (8C3)−1/2) where C3 is the constant in (30).
Let M,α > 0 and a familly Σ = Σ(ε) for 0 < ε ≤ α3 such that we have |ẏ(·)|∞ ≤M
and 

|ẏ(·)|∞ ≤ M,
d(t) = d(y(t), Dt) ≤ 2α for |t− θ| ≤ α4,
d(t) = d(y(t), Dt) ∈ [ε/2, 2α−3|t− θ|] for |t− θ| ≥ εα,
d(t) = d(y(t), Dt) ∈ (ε/2, 2εα−2] for |t− θ| ≤ εα.

(32)
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Then there exists ε1 = ε1(κ, θ,D, α,M, µ) ∈ (0, α] such that for 0 < ε ≤ ε1 we have
I∞(τ) > 0 if τ > τ1(ε), and

lim inf
τ→∞

τ−1 ln(I∞(τ)) ≥ −8κ−1α−2ε (33)

Proof in Appendix.

4 Technical Results

4.1 First technical aspects

Lemma 4.1. Let t ∈ [0, T ] such that Dt 6= ∅. Then there exists a non empty finite
familly I, and points xi ∈ Dt, i ∈ I, such that

∪i∈IBi(1/τ) ⊂ Dt ⊂ ∪i∈IBi(3/τ),

and Bi(1/τ)∩Bj(1/τ) = ∅ if i, j ∈ I, i 6= j, where Bi(R) denotes the open euclidian
ball of radius R > 0 and centered at xi.

Proof. The lemma is a straightforwardly consequence of the compactness of Dt

and Vitali’s lemma.

We have the following proposition (see [5] for example).

Proposition 2. (Parabolic Harnack inequality). There exists c = c(κ) > 0 depend-
ing on the constant κ of (4) only such that if r > 0, t ∈ R, if y ∈ R3 \ B(2r) or
0 6∈ (t− r2, t+ r2), then we have

max
x∈B(r),s∈[t− 3

4 r
2,t− 1

4 r
2]
Gy(x, s) ≤ c min

x∈B(r),s∈[t+ 1
4 r

2,t+r2]
Gy(x, s). (34)

Let us recall that pτ is defined by (5). From Proposition 2, we prove the following
Lemma.

Lemma 4.2. (Elliptic Harnack inequality). Let β > 0. There exists cβ = c(b, β)
such that for all τ > 0, all ball B(β/τ) ⊂ RN , if y 6∈ B(2β/τ) we then have

max
x∈B(β/τ)

pτ (x; y) ≤ cβ min
x∈B(β/τ)

pτ (x; y). (35)

Proof. Applying (34) with s = t, r = β/τ , we have, for all x, z ∈ B(β/τ),

pτ (z; y) =

∫ ∞
0

e−τ
2sGy(z, s)ds

=

∫ ∞
1
2β

2/τ2

e−τ
2(s− 1

2β
2/τ2)Gy(z, s− 1

2
β2/τ2)ds

≤
∫ ∞

1
2β

2/τ2

e−τ
2(s− 1

2β
2/τ2)cGy(x, s)ds

≤ ce
1
2β

2

∫ ∞
0

e−τ
2sGy(x, s)ds

= ce
1
2β

2

pτ (x; y).

We then obtain (35).

Let us recall that y(·) and Σ were defined in Section 2.5 and Pτ by (16).
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Lemma 4.3. (Caccioppoli’s Inequality for Pτ ). Let Pτ be defined by (16). Let
β > 0. Then there exists c = c(β,b) > 0 such that for all τ > 0, if B(β/τ) ∩
B(y(t); 1

τ ) = ∅ we then have

1

c

∫
B( β4τ )

τ2P 2
τ (x, t)dx ≤

∫
B( β2τ )

|∇Pτ |2(x, t)dx ≤ c
∫
B( βτ )

τ2P 2
τ (x, t)dx. (36)

Proof in Appendix.

4.2 Comparison between uτ , Pτ and pτ

Lemma 4.4. (Comparison between Pτ and pτ ). There exists c = c(b) > 0 such
that for all τ > 0, t ∈ R, if x 6∈ B(y(t); 2

κ5τ ) we then have

1

c
τ3Pτ (x, t) ≤ pτ (x, y(t)) ≤ cτ3Pτ (x, t), (37)

where κ is the constant of (4) or (7).

Proof in Appendix.

Lemma 4.5. (Comparison between uτ and pτ ). Let M > 0 and assume that |ẏ|∞ ≤
M . Then there exist positive constants C = C(b, dΩ, µ,M), C1 = C1(κ, dΩ,M) such
that for τ ≥ max(2µ, 2κ−1M), t ∈ [0, T ], x ∈ Ω \B(y(t), C1/τ), we have:

e−τ
2(T+t)uτ (x, t) ≤ Ce−τµ|t−θ|τ−3pτ (x, y(t)). (38)

Proof in Appendix.

Lemma 4.6. Let t ∈ [0, T ]. Let M > 0 and assume that |ẏ|∞ ≤ M . Then
there exist positive constants C = C(b, dΩ, µ,M), C1 = C1(κ, dΩ,M) such that for
τ ≥ max(2µ, 2κ−1M), t ∈ [0, T ] and x ∈ Ω \B(y(t), C1/τ) we have:

|∂t(e−τ
2(t+T )uτ (x, t))| ≤ Ce−τµ|t−θ|τ−2pτ (x, y(t)). (39)

Proof in Appendix.

Remember that qτ is defined by (17).

Lemma 4.7. (Estimate of qτ ). Let t ∈ [0, T ]. Let M > 0 and assume that |ẏ|∞ ≤
M . Then there exist C = C(b, dΩ, µ,M) > 0, C1 = C1(κ, dΩ,M), such that for
τ ≥ 2µ, t ∈ [0, T ] and x ∈ Ω \B(y(t), C1/τ), we have

|qτ (x, t)| ≤ Cτ−3e−τµ|t−θ||x− y(t)| pτ (x, y(t)). (40)

Proof in Appendix.

4.3 Estimates in Dt

Lemma 4.8. (Estimates of Pτ in Dt). Let t ∈ [0, T ]. Let us put τ0 = 12

κ5d(t)
.

Then, there exists c = c(b) ≥ 1 such that for all τ > τ0, we have

1

c

∫
Dt

τ−4p2
τ (x, y(t))dx ≤

∫
Dt

|∇Pτ (x, t)|2dx ≤ c
∫
Dt

τ−4p2
τ (x, y(t))dx. (41)
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Proof in Appendix.

Lemma 4.9. (Estimate of ∇qτ in Dt). Let t ∈ [0, T ]. Let M > 0 and assume
that |ẏ|∞ ≤ M . Then there exist two positive constants C = C(b, dΩ, µ,M), C2 =
C2(κ, dΩ,M) such that if τ > τ1 := max(2µ,C2/d(t)) ≥ τ0, where τ0 is defined in
Lemma 4.8, then∫

Dt

|∇qτ |2(x, t)dx ≤ Cτ−4e−2τµ|t−θ|
∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx. (42)

Proof in Appendix.

Lemma 4.10. Under (H3) there exists a positive constant C = C(LD, κ) such that
we have, for τ > κ−3d(t)−1, t ∈ [0, T ],∫

Dt

|x− y(t)|2|pτ (x, y(t))|2dx ≤ Cd(t)2

∫
Dt

|pτ (x, y(t))|2dx. (43)

Proof in Appendix.

Now we are ready to prove Lemma 3.2.

4.4 Proof of Lemma 3.2

We obtain (30) and (29) from (26), (25), (20) of Lemma 2.1, (41) of Lemma 4.8.

5 Proof of Theorem 1

We may assume that (H0b) holds, since the case where (H0a) holds is similar.
Thanks to Remark 5 we have Dt ∪D′t ⊂ Ω, t ∈ [0, T ]. Let us assume that D 6= D′.
Then there exists (z, θ) ∈ Ω × [0, T ] with Dθ 6= ∅, z ∈ ∂Dθ and z 6∈ D′θ or with
D′θ 6= ∅, z ∈ ∂D′θ and z 6∈ Dθ. Thus, we consider for simplicity that z ∈ ∂Dθ

and z 6∈ D′θ. Thanks to (H2), t 7→ (Dt, D
′
t) is continuous so we consider also that

0 < θ < T . In fact let us explain why can consider also that z ∈ ∂Dθ \ D′t if
|t − θ| < β for some β > 0. If D′t is void for |t − θ| sufficiently small then it is
immediate, but if D′t is not void for |t− θ| sufficiently small then we can’t be sure
that d(z,D′t) > 0 when t ' θ. However, in such a case, thanks to (H2), there exists
a sequence θn → θ satisfying D′θn 6= ∅ and Dθn \D′θn 6= ∅. We then replace (z, θ)

by another couple (zn, θn) with zn ∈ ∂Dθn \D′θn . Then, since D′θn 6= ∅ and thanks
to (H2), we have zn 6∈ ∂D′t if t ' θn.
So we can consider that

z ∈ ∂Dθ \D′t if |t− θ| ≤ β for some β > 0. (44)

We then construct a familly of curves Σ = Σε for 0 < ε ≤ α3 =: ε1, for some
positive α such that (32) and

d(y(t), D′t) ≥ α/2 ∀t, (45)

hold. Proof. Since Dθ and D′θ are lipschitzian and simply connected (see (H1’))
then there exists a lipschitzian curve ỹ : [0, 1] 3 s 7→ ỹ(s) ∈ R3 with a constant
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Lipschitz M̃ such that ỹ(0) = z, ỹ(1) 6∈ Ω, ỹ(s) 6∈ Dθ for s 6= 0 and ỹ(s) 6∈ D′t for
s ∈ [0, 1] and |t− θ| ≤ β. Thanks to (H2), (H3) and to (44) we have

d(ỹ(s), D′t) ≥ α−KD′ |t− θ|, for s ∈ [0, 1], (46)

d(ỹ(s), Dt) ∈ [αs−KD|t− θ|,
1

α
s+KD|t− θ|], s ∈ [0, 1], (47)

for some sufficiently small positive α ≤ max(1, θ, T−θ,d(Dt, ∂Ω), (2KD)−1, (2KD′)
−1,
√
β).

We put y0(t) = ỹ(|t− θ|/α2) for |t− θ| ≤ α2 and y0(t) = ỹ(1) for |t− θ| ≤ α2.
From (46) and since y0(t′) 6∈ Ω for |t′ − θ| ≥ α2 we then have

d(y0(t′), D′t) ≥ α/2, for |t− θ| ≤ α2 or |t′ − θ| ≥ α2. (48)

From (47) and since y0(t′) 6∈ Ω for |t′ − θ| ≥ α2 we then have for |t− θ| ≤ |t′ − θ|

d(y0(t′), Dt) ∈ [
1

2
α−1|t− θ|, 2α−3|t− θ|]. (49)

Then for all ε ∈ (0, α3] we put

y(t) = y0(ε) for |t− θ| ≤ ε, y(t) = y0(t) for |t− θ| ≥ ε.

Thanks to (48), (49) we obtain (32) and (45).

Let us denote by I ′∞(τ) the indicator function for the conductivity a′. Thanks
to Lemma 3.3 we have for ε ∈ (0, ε1]

lim sup
τ→∞

τ−1 ln(I ′∞(τ)) ≤ −κα,

and
lim inf
τ→∞

τ−1 ln(I∞(τ)) ≥ −8κ−1α−2ε.

Then, I ′∞(τ) 6= I∞(τ) for all ε < min(ε1, κ
2α4/4) and τ sufficiently large. The

result at §2.6 implies that Λv0,a 6= Λv′0,a′ .

Appendix

Proof of Lemma 3.1. We put

X1 :=

∫
Ω×[0,T ]

((a− b)a−1b)S(∇uτ )2dxe−2τ2(T+t)dt,

X2 :=

∫
Ω×[0,T ]

(a− b) (∇uτ )2 dxe−2τ2(T+t)dt,

wτ := vτ − uτ , (50)

Ψτ := (a− b)∇vτ + b∇wτ = a∇vτ − b∇uτ (51)

= (a− b)∇uτ + a∇wτ ,
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B1 :=

∫
Ω×[0,T ]

a−1(Ψτ )2 dx e−2τ2(T+t)dt

B2 :=

∫
Ω×[0,T ]

a(∇wτ )2 dx e−2τ2(T+t)dt,

B3 :=

∫
Ω×[0,T ]

τ2w2
τ dx e−2τ2(T+t)dt,

and

R1 :=

∫
Ω

[wτu
∗
τ ]
T
0 dx,

R2 :=

∫
Ω×[0,T ]

(a− b)∇vτ∇(eτ
2(T+t)u∗τ − e−τ

2(T+t)uτ ) dx e−τ
2(t+T )dt

=

∫
Ω×[0,T ]

(a− b)∇vτ · (∇q∗τ (x, t)−∇qτ (x, t)) dx e−τ
2(t+T )dt,

R3 :=
1

2

∫
Ω

[
w2
τe
−2τ2(T+t)

]T
0

dx.

Step 1. Let us prove that

I∞(τ) = X1 +B1 +B3 +R1 +R2 +R3, (52)

I∞(τ) = X2 −B2 −B3 +R1 +R2 −R3. (53)

From (23) we have

I∞(τ) =

∫
Ω×[0,T ]

(a− b)∇vτ∇uτ dxe−2τ2(T+t)dt+R1 +R2. (54)

1. Let us put

A1 :=

∫
Ω×[0,T ]

a−1Ψτ · (a− b)∇uτ dx e−2τ2(T+t)dt,

A2 :=

∫
Ω×[0,T ]

∇wτΨτ dx e−2τ2(T+t)dt.

Then, since (a− b)∇uτ = Ψτ − a∇wτ , we then have A1 = B1 −A2.

By integration by parts we have

A2 = −
∫

Ω×[0,T ]

wτ divΨτ dxe−2τ2(T+t)dt = −
∫

Ω×[0,T ]

wτ ∂twτ dxe−2τ2(T+t)dt

= −B3 −R3. (55)

We thus have
A1 = B1 +B3 +R3. (56)

For any 3× 3 real matrix m we have m∇uτ · ∇uτ = mS∇uτ · ∇uτ . Then, thanks
to

∇vτ = a−1Ψτ + a−1b∇uτ , (57)
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we obtain (52) from (54) and (56).
2. Let us consider (54) again. Thanks to (50) then to (51) we have

(a− b)∇vτ∇uτ = (a− b)∇uτ∇uτ + a∇wτ∇uτ − b∇wτ∇uτ
= (a− b)∇uτ∇uτ + a∇wτ (∇vτ −∇wτ )− b∇wτ∇uτ

= (a− b)∇uτ∇uτ − a∇wτ∇wτ +∇wτΨτ .

Hence

I∞(τ) =

∫
Ω×[0,T ]

(a− b)(∇uτ )2 dxe−2τ2(T+t)dt−B2 +A2 +R1 +R2,

which yields (53) with the help of (55).

Step 2. We put

X0 :=

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (58)

and

R4 :=
1

2

∫
Ω

e4τ2T |u∗τ (T )|2dx+
1

2

∫
Ω

e2τ2T |u∗τ (0)|2dx

+2

∫
Ω

e−2τ2T |uτ (0)|2dx+ 2

∫
Ω

e−2τ2T |v0|2dx,

R5 :=

∫
D

|∇qτ |2 dxdt, R∗5 :=

∫
D

|∇q∗τ |2 dxdt.

Under assumption (H0b) we have the following estimates:

I∞(τ) ≥ CX0 +
1

2
B1 +B3 − 2R4 −

1

C
(R5 +R∗5), (59)

I∞(τ) ≤ 1

C
X0 −

1

2
B2 −B3 + 2R4 +

1

C
(R5 +R∗5), (60)

for some C = C(a) ∈ (0, 1).
Proof. Thanks to Cauchy-Minkovski inequality and to the definition (22) we

have

R1 +R3 =

∫
Ω

(wτu
∗
τ +

1

2
w2
τe
−4τ2T )|t=Tdx

−
∫

Ω

(wτu
∗
τ +

1

2
w2
τe
−2τ2T )|t=0dx

≥ −R4. (61)

Similarly we have

R1 −R3 ≤ R4. (62)

We observe that, thanks to (52) and (53),

X1 = I∞(τ)−B1 −B3 −R1 −R2 −R3, (63)

X2 = I∞(τ) +B2 +B3 −R1 −R2 +R3. (64)
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Thanks to (57) again we have

|R2| ≤
∫

Ω×[0,T ]

e−τ
2(T+t)|a− b||a−1||Ψτ | |∇q∗τ −∇qτ |dxdt

+

∫
Ω×[0,T ]

e−τ
2(T+t)|a− b||a−1| |b||∇uτ | |∇q∗τ −∇qτ |dxdt (65)

≤ 1

2
B1 +

1

2
X1 + C(R5 +R∗5). (66)

From (63) and (66) we get

|R2| ≤
1

2
I∞(τ)− 1

2
(B3 +R3 +R1 +R2) + C(R5 +R∗5). (67)

Estimates (52), (61) and (67) imply

I∞(τ) ≥ 1

2
X1 +

1

2
B1 +B3 −R4 − C(R5 +R∗5). (68)

By using (17), (18), (H0b), and the basic estimate a2 ≥ 1
2 (a+ b)2 − b2, we have

X1 ≥
∫
D

δ1e
−2τµ|t−θ||∇Pτ (x, t)|2 dxdt

−
∫

Ω×[0,T ]

|b| |a−1||a− b| |∇qτ |2 dxdt ≥ CX0 −
1

C
R5,

for some C = C(a) ∈ (0, 1). Then with (68) we obtain (59).
Similarly, by using (53), (58), (64) we obtain (60).

Step 3. We prove that for τ > µ+ 1 we have

|R4| ≤ (2‖v0‖2L2(Ω) + 5dΩ)e−τµmin(T−θ,θ). (69)

Proof. Firstly, we have

0 ≤ uτ (x, 0) =

∫ ∞
0

∫
R3

eτ
2(T−s)e−τµ|θ+s|m(y,−s)Gy(x, s)dyds

≤ eτ
2T e−τµθ

∫ ∞
0

∫
R3

e−τ
2sGy(x, s)dyds =

1

τ2
eτ

2T e−τµθ.

Here we used the notorious relation∫
R3

Gy(x, s)dy = 1. (70)

Hence
0 ≤ e−τ

2Tuτ (x, 0) ≤ e−τµθ, τ ≥ 1. (71)

Similarly we have

0 ≤ e2τ2Tu∗τ (x, T ) ≤ e−τµ(T−θ), τ ≥ 1. (72)
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Secondly, since τ > µ+ 1 > 1 we have

0 ≤ u∗τ (x, 0) =

∫ ∞
0

∫
R3

e−τ
2(T+s)e−τµ|θ−s|m(y, s)Gy(x, s)dyds

≤ e−τ
2T e−τµθ

∫ ∞
0

e−(τ2−τµ)s

∫
R3

Gy(x, s)dyds

=
1

τ2 − τµ
e−τ

2T e−τµθ ≤ e−τ
2T e−τµθ. (73)

From (73), (72), (71), we obtain for τ > µ+ 1 > 1:

R4 ≤ 2‖v0‖2L2(Ω)e
−2τ2T + 2dΩe

−τµ(T−θ) + 3dΩe
−τµθ,

which implies (69).
Estimates (26) and (25) come immediately from (59), (60), (69) and the fact

that Bj ≥ 0 for j = 1, 2, 3.

Proof of Lemma 4.3. We observe that for all t, the function Pτ (·; t) the unique
solution in H1(R3) of

(−div (b∇·) + τ2)Pτ (·; t) = mτ (·, t). (74)

Let φ ∈ C1(R; [0, 1]) with φ(r) = 1 for |r| ≤ 1/2 and φ(r) = 0 for |r| ≥ 1. Put
ψ(x) = φ(τ(x−x0)/β) where x0 is the center of the ball B(β/τ). We multiply (74)
by Pτ (·, t)ψ2 and integrate it over Ω. Since supp (ψ)∩ supp (mτ (·, t)) has Lebesgue
measure zero, we then have∫

Ω

[b(∇Pτ (·, t))2ψ2 + 2b∇Pτ (·, t)ψ Pτ (·, t)∇ψ + τ2P 2
τ (·, t)ψ2] = 0. (75)

Then, from Cauchy-Minkovski’s inequality,∫
Ω

[b(∇Pτ (, t))2ψ2 + τ2P 2
τ (·, t)ψ2] ≤

∫
Ω

|2b∇Pτ (·, t)ψ Pτ (·, t)∇ψ|

≤
∫

Ω

[
1

2
b(∇Pτ (·, t))2ψ2 + 2bP 2

τ (·, t)(∇ψ)2].

Thus, for some C ′ = C ′(b) > 0,∫
Ω

[|∇Pτ (, t)|2 + τ2P 2
τ (·, t)]ψ2(x)dx ≤ C ′

∫
Ω

P 2
τ (·, t)|∇ψ|2(x)dx,

with C ′′ = C ′′(b) > 0. Since supp ψ ⊂ B(β/τ) with |∇ψ(x)| ≤ τ
β max |φ′|, ψ ≥ 0,

and ψ = 1 in B( β2τ ), we then have∫
B( β2τ )

|∇Pτ (·, t)|2(x)dx ≤ C ′′ τ
2

β2

∫
B( βτ )

P 2
τ (·, t)dx,

which proves the second inequality in (36).
From (75) and thanks to Cauchy-Minkovski’s inequality we have also∫

Ω

[b(∇Pτ (·, t))2ψ2 + τ2P 2
τ (·, t)ψ2] ≤

∫
Ω

|2b∇Pτ (·, t)∇ψ Pτ (·, t)ψ|

≤
∫

Ω

[
2

τ2
γ2
∞|∇Pτ (·, t)|2|∇ψ|2 +

1

2
τ2P 2

τ (·, t)ψ2].
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Thus, for some C ′ = C ′(b) > 0,∫
Ω

τ2P 2
τ (·, t)ψ2(x)dx ≤ C ′ 1

τ2

∫
Ω

|∇Pτ (·, t)|2|∇ψ|2(x)dx.

We then obtain ∫
B( β2τ )

τ2P 2
τ (·, t)dx ≤ C ′′ 1

β2

∫
B( βτ )

|∇Pτ (·, t)|2dx,

C ′′ = C ′′(b), which proves the first inequality in (36) with β replaced by 2β.

Proof of Lemma 4.4. Since Gx(y, s) = Gy(x, s) and thanks to (34) with r = 1/τ ,
we have for all x 6∈ B(y(t), 2/τ):∫

B(y(t),1/τ)

Gy(x, s)dy =

∫
B(y(t),1/τ)

Gx(y, s)dy ≤ |B(1/τ)| max
B(y(t),1/τ)

Gx(·, s)

≤ cτ−3Gx(y(t), s+
1

2τ2
) = cτ−3Gy(t)(x, s+

1

2τ2
).

Then, since τ |x − y(t)| ≥ 2/κ5 ≥ 2, since mτ ≤ 1 and supp mτ = B(y(t), 1
τ ) we

have

Pτ (x, t) ≤
∫ ∞

0

e−τ
2s

∫
B(y(t), 1

τ )

Gy(x, s)dyds (76)

≤ cτ−3

∫ ∞
0

e−τ
2sGy(t)(x, s+

1

2τ2
)ds

= cτ−3

∫ ∞
1

2τ2

e−τ
2(s− 1

2τ2 )Gy(t)(x, s)ds

≤ c′τ−3

∫ ∞
0

e−τ
2sGy(t)(x, s)ds = c′τ−3 pτ (x; y(t)).

We obtain the first inequality of (37). Let us prove the second one. Since mτ ≥ 1/2
in B(y(t), 1

2τ ) we then have

Pτ (x, t) ≥ 1

2

∫ ∞
0

e−τ
2s

∫
B(y(t), 1

2τ )

Gy(x, s)dyds

≥ cτ−3

∫ ∞
0

e−τ
2s inf
y∈B(y(t), 1

2τ )
Gy(x, s)ds.

By applying (34) with r = 1/τ and observing that Gy(x, s) = Gx(y, s) we then have
for all x 6∈ B(y(t), 2/τ):

Pτ (x, t) ≥ cτ−3

∫ ∞
0

e−τ
2s inf
y∈B(y(t), 1

2τ )
Gy(x, s)ds

≥ cτ−3

∫ ∞
0

e−τ
2sGy(t)(x, s−

1

2τ2
)ds

= cτ−3

∫ ∞
1

2τ2

e−τ
2(s+ 1

2τ2 )Gy(t)(x, s)ds

= c′τ−3

(
pτ (x, y(t))−

∫ 1
2τ2

0

e−τ
2sGy(t)(x, s)ds

)
, (77)
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with some c′ > 0. We put R :=
∫ 1

2τ2

0 e−τ
2sGy(t)(x, s)ds. Thanks to (4) and (7) we

have

R ≤
∫ 1

2τ2

0

e−
κ2|x−y(t)|2

4s

κs3/2
ds ≤

√
2κ−1τ

∫ ∞
1

e−κ
2|x−y(t)|2τ2r/2dr

= 2
√

2κ−3τ−1|x− y(t)|−2e−κ
2|x−y(t)|2τ2/2

≤ 1

2
pτ (x, y(t))

2

κ5τ |x− y(t)|
exp(−κ−1τ |x− y(t)|(κ2τ |x− y(t)|/2− 1)).

Since τ |x− y(t)| ≥ 2/κ5 > 2/κ2, we then have R ≤ 1
2pτ (x, y(t)). Hence

Pτ (x, t) ≥ 1

2
c′τ−3pτ (x, y(t)).

The conclusion follows.

Proof of Lemma 4.5. Let us observe that

e−τµ|t−θ−s| ≤ e−τµ|t−θ|eτµs s > 0, t ∈ R. (78)

Hence

e−τ
2(T+t)uτ (x, t) =

∫ ∞
0

e−τ
2se−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds

≤ e−τµ|t−θ|H, (79)

where we put

H :=

∫ ∞
0

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds ≡ H1 +H2 (80)

with

H1 :=

∫
s>λ/τ

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds,

H2 :=

∫ λ/τ

0

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds,

and where λ := 2|x − y(t)|/κ. We put also M ′ := Mλ + 1, C1 = max(1, 8κ−7(1 +
M2d2

Ω)). Since |y(t−s)−y(t)| ≤Ms, we then have B(y(t−s), 1/τ) ⊂ B(y(t),Ms+
1/τ) and so

H2 ≤ eµλ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),Ms+1/τ)

Gy(x, s)dyds

≤ eµλ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),M ′/τ)

Gy(x, s)dyds.

Since τ ≥ 2κ−1M , |x− y(t)| ≥ 1/τ , we then have |x− y(t)| ≥M ′/τ and so we can
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apply (34) where x and y are exchanged and with r = M ′/(2τ). Hence

H2 ≤ ceµλ
∫ ∞

0

e−τ
2s|B(y(t),M ′/τ)|Gy(t)(x, s+M ′

2
/(2τ2))ds

≤ ceµλ
∫ ∞

0

e−τ
2s(2M ′)3|B(y(t), 1/(2τ))|Gy(t)(x, s+M ′

2
/(2τ2))ds

= ceµλ(2M ′)3

∫ ∞
M ′2/(2τ2)

e−τ
2(s−M ′2/(2τ2))|B(y(t), 1/(2τ))|Gy(t)(x, s)ds

= ceµλ+M ′2/2M ′
3
τ−3(pτ (x, y(t))−R),

with R :=
∫M ′2/(2τ2)

0
e−τ

2sGy(t)(x, s)ds and c = c(b) is the constant (34). Thanks
to (4) we have

R ≤
∫ M′2

2τ2

0

e−
κ2|x−y(t)|2

4s

κs3/2
ds ≤

√
2κ−1τM ′

−1
∫ ∞

1

e−κ
2|x−y(t)|2τ2r/(2M ′2)dr

= 2
√

2M ′κ−3τ−1|x− y(t)|−2e−κ
2|x−y(t)|2τ2/(2M ′2)

≤ 1

2
pτ (x, y(t))

M ′

κ5τ |x− y(t)|
exp(−κ−1τ |x− y(t)|(M ′−2

κ2τ |x− y(t)|/2− 1)).

Since τ |x − y(t)| ≥ C1 then M ′
−2
κ2τ |x − y(t)| ≥ 2 and M ′

−1
κ5τ |x − y(t)| ≥ 1.

Hence R ≤ 1
2pτ (x, y(t)) and

H2 ≤ CM ′
3
e2κ−1µ|x−y(t)|τ−3pτ (x, y(t))

≤ CM ′
3
e2κ−1µdΩτ−3pτ (x, y(t)), (x, t) ∈ Ω0,T

= C(b, dΩ, µ,M) τ−3pτ (x, y(t)), (x, t) ∈ Ω0,T . (81)

Let us estimate H1. Since Gy(x, s) ≤ κ−1s−3/2 and τ ≥ 2µ we then have

H1 ≤ κ−1τ−3

∫
s>λ/τ

s−3/2e−τ
2s/2ds

≤ κ−1τ−3

{ ∫
s>λ/τ

(λ/τ)−3/2e−τ
2s/2ds = 2(λ/τ)−3/2τ−2e−τλ/2∫

s>λ/τ
s−3/2e−τλ/2ds = 2(λ/τ)−1/2e−τλ/2

.

Hence
H1 ≤ 2κ−1λ−1τ−3e−τλ/2.

Thanks to (7) we then obtain

H1 ≤ κ−2τ−3pτ (x, y(t)), (x, t) ∈ Ω0,T . (82)

Then, thanks to Lemma 4.4 and from (82), (81), (79), the conclusion follows.

Proof of Lemma 4.6. We have

∂t(e
−τ2(t+T )uτ (x, t)) = Y1 + Y2,

with

Y1 := −τµ
∫ t

s=0

e−τ
2ssign(t− θ − s)e−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds,

Y2 :=

∫ t

s=0

e−τ
2se−τµ|t−θ−s|

∫
R3

∂tmτ (y, t− s)Gy(x, s)dyds.
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Let us estimate Y1. We have

|Y1(x, t)| ≤ τµ

∫ ∞
s=0

e−τ
2se−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds

= τµ e−τ
2(t+T )uτ (x, t).

Thanks to Lemma 4.5 we obtain for

|Y1(x, t)| ≤ Ce−τµ|t−θ|τ−2pτ (x, y(t)). (83)

Let us estimate Y2. Remember that supp mτ (·, t) ⊂ B(y(t), 1/τ) and that

|∂tmτ (y, t)| = τ |ẏ(t)∇M0(τ(y − y(t)))| ≤Mτ.

Hence we have , as in the estimates of (76) we obtain

|Y2| ≤ Cτ

∫ ∞
s=0

e−τ
2se−τµ|t−θ−s|

∫
B(y(t−s),1/τ)

Gy(x, s)dyds

≤ e−τµ|t−θ|H,

where H is defined by (80). Hence

|Y2| ≤ C ′e−τµ|t−θ|τ−2pτ (x, y(t)). (84)

From (83), (84) we obtain (39).

Proof of Lemma 4.7. We write qτ (x, t) =
∫∞

0
e−τ

2s
∫
R3(A−B)Gy(x, s)dyds with

A ≡ e−τµ|t−θ−s|mτ (y, t− s),
B ≡ e−τµ|t−θ|mτ (y, t).

Let us observe that, since eτµs − 1 ≤ µτseτµs and thanks to (78), then

|A−B| ≤ e−τµ|t−θ|
(
µτseτµs1B(y(t−s),1/τ) +Mτsmax(1B(y(t),1/τ), 1B(y(t−s),1/τ))

)
.

Hence
|qτ (x, t)| ≤ τe−τµ|t−θ|(µR1 +MR2) (85)

with

R1 :=

∫ ∞
0

e−τ̃
2s

∫
B(y(t−s),1/τ)

sGy(x, s)dyds, (86)

R2 :=

∫ ∞
0

e−τ
2s

∫
B̃

sGy(x, s)dyds, (87)

where τ̃ :=
√
τ2 − τµ and B̃ := B(y(t− s), 1/τ) ∪B(y(t), 1/τ).

Let us put again λ = 2κ−1|x− y(t)|. We write R2 = R21 +R22 with

R21 :=

∫ λ/τ

0

e−τ
2s

∫
B̃

sGy(x, s)dyds,

R22 :=

∫ ∞
λ/τ

e−τ
2s

∫
B̃

sGy(x, s)dyds.
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As for the estimate of H1 in the proof of Lemma 4.5 we have

|R22| ≤ 2κ−1τ−3

∫ ∞
λ/τ

s−1/2e−τ
2s/2ds

≤ 2κ−1τ−3+1/2λ−1/2

∫ ∞
λ/τ

e−τ
2s/2ds = 4κ−1τ−5+1/2λ−1/2e−τλ/2

= 2
√

2κ−1/2τ−5+1/2|x− y(t)|−1/2e−τκ
−1|x−y(t)|.

Thanks to (7) and since τ |x− y(t)| ≥ 1 we then have

|R22| ≤ κ−5/2τ−4(τ |x− y(t)|)−1/2|x− y(t)|pτ (x, y(t))

≤ C(κ)τ−4|x− y(t)|pτ (x, y(t)). (88)

For s ≤ λ/τ we have B̃ ⊂ B(y(t),M ′/τ) with M ′ := λM + 1. Hence, as for the

estimate of H2 in the proof of Lemma 4.5 and since τ |x− y(t)| ≥ 2M ′
2
κ−5 we then

have

|R21| ≤ λτ−1

∫ λ/τ

0

e−τ
2s

∫
B(y(t),M ′/τ)

Gy(x, s)dyds

≤ λτ−1C(b, dΩ,M)τ−3pτ (x, y(t))

≤ C(b, dΩ,M)τ−4|x− y(t)|pτ (x, y(t)). (89)

From (88) and (89), we obtain that for τ |x− y(t)| ≥ 2M ′
2
κ−5 we have

|R2| ≤ C(b, dΩ,M)τ−4|x− y(t)|pτ (x, y(t)). (90)

Now, we estimate R1 as R2 by splitting the integral in (87) with s < λ/τ or

s > λ/τ . We observe that τ̃ = τ
√

1− µτ−1 ≥ 1√
2
τ . Hence R1 = R11 + R12 with,

since τ̃ |x− y(t)| ≥
√

2κ−5 and τ ≥ 2µ,

|R12| ≤ τ−3+1/2λ−1/2

∫ ∞
λ/τ

e−τ̃
2s/2ds

= 2κ−1τ̃−2τ−3+1/2λ−1/2e−τλ+λµ

≤ C(κ, µ, dΩ)τ−4|x− y(t)|pτ (x, y(t)). (91)

Finally, since τ |x− y(t)| ≥ 2κ−5, we have, as for the estimate of R21,

|R11| ≤ λτ−1eλµ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),1/τ)

Gy(x, s)dyds

≤ C(b, µ, dΩ,M)τ−4|x− y(t)|pτ (x, y(t)). (92)

Thanks to (91) and (92), we obtain

|R1| ≤ C(b, µ, dΩ,M)τ−4|x− y(t)|pτ (x, y(t)). (93)

Thanks to (93) and (90), (85), we obtain (40) for τ ≥ 2µ, t ∈ [0, T ] and x ∈
Ω \B(y(t), C1/τ).
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Proof of Lemma 4.8. We consider a familly of balls Bi(1/τ), i ∈ I, τ > τ0, as
in Lemma 4.1. By using (35) (with β = 6), (36) and (37), and by observing that
Bi(6/τ0) ∩B(y(t), 2κ5/τ0) = ∅, we can write∫

Dt

|∇Pτ |2(x, t)dx ≤
∑
i∈I

∫
Bi(3/τ)

|∇Pτ |2(x, t)dx

≤ C1

∑
i∈I

∫
Bi(6/τ)

τ2P 2
τ (x, t)dx

≤ C2

∑
i∈I

∫
Bi(6/τ)

τ−4p2
τ (x, y(t))dx

≤ C3

∑
i∈I
|Bi(6/τ)|τ−4p2

τ (xi, y(t))

≤ C4

∑
i∈I
|Bi(1/τ)|τ−4 min

Bi(1/τ)
p2
τ (·, y(t))

≤ C5

∑
i∈I

∫
Bi(1/τ)

τ−4p2
τ (x, y(t))dx

≤ C5

∫
Dt

τ−4p2
τ (x, y(t))dx, (94)

with Cj = Cj(b). Hence, the second inequality of (41) is proved. The proof of the
first one is similar.

Proof of Lemma 4.9. We put C ′1 = C1 + 6, C2 = max(C ′1, 12κ−5) where C1 =
C1(κ, dΩ,M) is the constant in Lemma 4.7. We consider again the balls B(1/τ),
B(3/τ), defined in Lemma 4.1. Thus

J :=

∫
Dt

|∇qτ (x, t)|2dx ≤
∑
i

∫
Bi(3/τ)

|∇qτ (x, t)|2dx. (95)

Let us fix i and denote B(3/τ) = Bi(3/τ). We consider again the functions φ ∈
C1(R; [0, 1]) and ψ(x) = φ(τ(x− x0)/6) where x0 is the center of a ball B(6/τ), as
in the proof of Lemma 4.3 (with β = 6).
Thanks to Lemma 4.6, there exists a positive constant C = C(b, dΩ, µ,M) such
that for τ ≥ 2µ, t ∈ [0, T ], x ∈ Ω \B(y(t);C1/τ), we have∣∣(−divb∇+ τ2)qτ (x, t)

∣∣ =
∣∣∣∂t(e−τ2(t+T )uτ (x, t))

∣∣∣
≤ Cτ−2e−τµ|t−θ|pτ (x, y(t)). (96)

We observe that

x ∈ supp (ψ) = B(6/τ)⇒ |x− y(t)| ≥ |x0 − y(t))| − 6/τ ≥
d(t)− 6/τ > C ′1/τ − 6/τ = C1/τ.

Hence we can multiply (96) by qτ (x, t)ψ2(x) and integrate it over Ω. This implies∫
Ω

(
b(∇qτ (·, t))2ψ2 + 2b∇qτ (·, t)ψ qτ (·, t)∇ψ + τ2q2

τ (·, t)ψ2
)

≤ Cτ−2e−τµ|t−θ|
∫

Ω

|qτ (·, t)|pτ (·, y(t))ψ2.
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Then, from Cauchy-Minkovski’s inequality, and as in the proof of Lemma 4.3, we
obtain∫

Ω

(|∇qτ (, t)|2 + τ2q2
τ (·, t))ψ2 ≤ C

∫
Ω

q2
τ (·, t)(∇ψ)2 + Ce−τµ|t−θ|τ−2 ·

·
( ∫

Ω

|qτ (·, t)|2ψ2
)1/2( ∫

Ω

|pτ (·, y(t))|2ψ2
)1/2

.

Since supp ψ = B(6/τ) with |∇ψ(x)| ≤ τ max |φ′|/6, ψ ≥ 0, and ψ = 1 in B( 3
τ ),

we then have∫
B( 3

τ )

|∇qτ (·, t)|2 ≤ Cτ2

∫
B( 6

τ )

q2
τ (·, t) + Ce−τµ|t−θ|τ−2 ·

·
( ∫

B( 6
τ )

|qτ (·, t)|2
)1/2( ∫

B( 6
τ )

|pτ (·, y(t))|2
)1/2

.

Thanks to Lemma 4.7 and by using τ−1 ≤ C1|x− y(t)| for x ∈ B( 6
τ ), we then have∫

B( 3
τ )

|∇qτ (·, t)|2 ≤ Cτ−4e−2τµ|t−θ|
∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx+

Cτ−5e−2τµ|t−θ| ·
( ∫

B( 6
τ )

|x− y(t)|2|pτ (x, y(t))|2dx
)1/2 ·

·
( ∫

B( 6
τ )

|pτ (x, y(t))|2dx
)1/2

≤ C ′e−2τµ|t−θ|τ−4

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx. (97)

By putting (97) in (95) we obtain

J ≤ C ′e−2τµ|t−θ|τ−4
∑
i

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx. (98)

Finally, as in (94) we have∑
i

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx ≤ C
∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx.

This with (98) prove (42).

Proof of Lemma 4.10. We can assume that Dt 6= ∅. We put λ = 2κ−2d(t) and

J :=

∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx = J1 + J2,

J1 :=

∫
Dt∩B(y(t),λ)

|x− y(t)|2|pτ (x, y(t))|2dx,

J2 :=

∫
Dt\B(y(t),λ)

|x− y(t)|2|pτ (x, y(t))|2dx,

J̃ :=

∫
Dt

|pτ (x, y(t))|2dx.
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We then have

J1 ≤ λ2J̃ = 4κ−4d(t)2J̃ . (99)

On the one hand thanks to (7) we have

J2 ≤ |Dt|4πκ−4 exp(−2κλτ),

and, on the other hand,

J2 ≤ 4πκ−4

∫
|x−y(t)|>λ

e−2κτ |x−y(t)|dx ≤ 16π2κ−4

∫
r>λ

e−2κτrr2dr

≤ 20π2λ2κ−5τ−1 exp(−2κτλ) ≤ 20π2λ3κ−4 exp(−2κτλ)

≤ 20π2κ−10(2d(t))3 exp(−2κτλ).

Here we used λ ≥ κ−1τ−1. Hence

J2 ≤ 4πκ−4 min(40πκ−6d(t)3, |Dt|) exp(−2κτλ). (100)

Let us fix x0 ∈ ∂Dt such that d(t) = |x0 − y(t)|. Then B(y(t), 2d(t)) ⊃ B(x0,d(t))
so, thanks to (7) and to (H3), we have

J̃ ≥
∫
Dt∩B(y(t),2d(t))

|pτ (x, y(t))|2dx

≥ |Dt ∩B(y(t), 2d(t))|4πκ4(2d(t))−2 exp(−4κ−1τd(t))

≥ πκ4|Dt ∩B(x0,d(t))|d(t)−2 exp(−2κτλ)

≥ πκ4LD min(|Dt|, |B(x0,d(t))|)d(t)−2 exp(−2κτλ)

≥ πκ4LD min(|Dt|,
4

3
πd(t)3)d(t)−2 exp(−2κτλ).

Then
J2

d(t)2J̃
≤ CL−1

D κ−14, (101)

for some numerical parameter C > 0. From (101) and (99) we obtain

J ≤ C ′L−1
D d(t)2J̃ ,

which is the estimate to prove.

Proof of Lemma 2.1. It is the direct consequence of Lemma 4.9 and Lemma
4.10.

Proof of Lemma 3.3
1) Thanks to (7) and to Lemma 3.2 there exists τ1 > 0 such that we have, for all
τ > τ1,

I∞(τ) ≤ cτ−4

∫ T

0

∫
Dt

16κ−4ε−2
Σ e−2κτεΣdxdt+ C1e

−4κ−1dΩτ

≤ (c′|D|τ−4ε−2
Σ + C1)e−2κτεΣ .

We then obtain (31).
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2) Let us fix T1 ∈ (0,min( 1
8 |Dθ|1/3, θ, T − θ, α4)] such that we have, thanks to

(H3),

|Dt| ≥
1

2
|Dθ| ≥ T 3

1 for |t− θ| ≤ T1. (102)

Thanks to (32) we have d(t)2 ≤ 1
2C3

for |t− θ| ≤ T1. Thanks to (30) in Lemma 3.2
we then have, for τ > τ1,

I∞(τ) ≥ I0 −R0

with

I0 :=
c

2
τ−4

∫
|t−θ|<T1

e−2τµ|t−θ|
∫
Dt

p2
τ (x, y(t))dxdt,

c = c(a, µ,M) > 0 and, thanks to (7),

R0 := cτ−4

∫
|t−θ|>T1

∫
Dt

e−2τµ|t−θ|p2
τ (x, y(t))dxdt+ C1e

−τµmin(θ,T−θ)

≤ (16cκ−4τ−4|Ω|ε−2
Σ + C1)e−2τµT1 ≤ C4ε

−2
Σ τ−4e−2τµT1 ,

with C4 = C4(a, |Ω|,M, v0). Thanks to (7) and to (32) we have also, for ε ∈ (0, T1/α]
(and observe that (0, T1/α] ⊂ (0, α3]),

I0 ≥ c

2
τ−4

∫
|t−θ|<αε

e−2τµ|t−θ|
∫
Dt∩B(y(t),2d(t))

κ4d−2
Ω e−4τκ−1d(t)dxdt

≥ c

2
κ4d−2

Ω τ−4e−4τκ−1α−1ε

∫
|t−θ|<αε

e−2τµ|t−θ||Dt ∩B(y(t), 2d(t))|dt.

We have Dt ∩ B(y(t), 2d(t)) ⊃ Dt ∩ B(x(t),d(t)) for some x(t) ∈ ∂Dt. Thanks
to (102) and to (H3) we then have |Dt ∩ B(x(t),d(t))| ≥ LD|B(0, 1)|d(t)3. Since
ε/2 ≤ d(t) ≤ 2α−2ε for |t − θ| < αε we then have |Dt ∩ B(y(t), 4α−2ε)| ≥
LD|B(0, 1)|ε3/8 and so

I0 ≥ C ′(Ω,a,M, α)ε3τ−4e−8τκ−1α−2ε

∫
|t−θ|<ε

e−2τµ|t−θ|dt

≥ C ′′(Ω,a,M, α)ε3τ−5e−8τκ−1α−2ε.

Let us put ε1 = T1 min(1, µκα2/8). Then for ε ∈ (0, ε1] we have

R0/I0 ≤ C ′′′ε−3ε−2
Σ τe−τµT1 .

Then we have R0/I0 ≤ 1
2 for τ ≥ τ0 sufficiently large and so

I∞(τ) ≥ 1

2
I0 ≥ C(a,Ω,M, α)ε−3τ−5e−8τκ−1α−2ε.

Hence
lim inf
τ→∞

τ−1 ln(I∞(τ)) ≥ −8κ−1α−2ε.

The conclusion follows.
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