O Poisson 
email: olivier.poisson@univ-amu.fr
  
Recovering time-dependent inclusion in heat conductive bodies

Keywords: Inverse problem, Heat equation, Dynamical probe method AMS : 35R30, 35K05

We consider an inverse boundary value problem for the heat equation with a nonsmooth coefficient of conductivity which models the displacement of a moving body inside an isotrop but nonhomogeneous background. We prove the uniqueness of the moving inclusion from the knowledge of the Dirichletto-Neumann operator by using a dynamical probe method.

Introduction 1.Inverse heat conductivity problem

Let T > 0 and let Ω be a bounded domain in R 3 , with a lipschitzian boundary Γ = ∂Ω. Let us consider the anisotropic heat equation

∂ t v -div (a∇v) = 0 in Ω 0,T ≡ Ω × (0, T ), (1) 
where the operators div, the divergence, and ∇, the gradient, are relative to the spatial variable x. In our model, the conductivity a = (a ij ) 1≤i,j≤3 is a 3 × 3 real symmetric matrix with positive bounded measurable coefficients of x. It satisfies the uniform elliptic condition: there exists γ ∞ > 0 such that

γ -1 ∞ |ξ| 2 ≤ aξ • ξ ≤ γ ∞ |ξ| 2 , ξ ∈ R 3 . (2) 
It is well-known (see [START_REF] Wloka | Partial Differential Equations[END_REF]) that, for all f ∈ L 2 (0, T ; H 1/2 (Γ)) and v 0 ∈ L 2 (Ω), there exists only one solution v = v(a, v 0 ; f ) ∈ H 1 ((0, T ); L 2 (Ω))∩L 2 ((0, T ); H 1 (Ω)) of [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] with the following initial boundary value problem:

v = f on Γ 0,T ≡ Γ × (0, T ), v t=0 = v 0 on Ω. (3) 
Then, we can define the Dirichlet-to-Neumann map (D-N map) as Λ a;v0 : L 2 ((0, T );

H 1/2 (Γ)) f → a∇v(a, v 0 ; f ) • ν ∈ L 2 ((0, T ); H -1/2 (Γ)),
where ν denotes the outer unit normal to Γ. In physical terms, f = f (t, x) is the temperature distribution on the boundary and Λ a,v0 (f ) is the resulting heat flux through the boundary.

In this article we are concerned with the Calderón inverse problem for (1) which is to determine a from the knowledge of the D-N map Λ v0,a . The conductivity a consists in a non necessarily smooth background and an unknown inclusion t → D t ⊂ Ω which moves continuously inside the body Ω. Thus, in our inverse problem, the function a| Ω\Dt coincides with a measurable real matrix-function b ∈ L ∞ (Ω) which satisfies [START_REF] Cristo | Stable determination of the discontinuous conductivity coefficient of a parabolic equation[END_REF] and represents the conductivity of a background medium, and so, is known. The inverse problem we address is to determine the moving inclusion D = ∪ 0≤t≤T (D t × {t}) ⊂ Ω 0,T from the knowledge of Λ a,v0 .

Remark 1. In our problem the value of the conductivity inside the inclusion, a| Dt , and the initial value of v, v 0 , are unknown but the article does not deal with their determination.

Main assumptions

The two following assumptions were already considered in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF], [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF]. (Here, if m is a 3 × 3 real matrix then m S = 1 2 (m + m T ) denotes its symmetric part.) (H1): for all t ∈ [0, T ], the set R 3 \ D t is connected.

Because of technical limitations of our method when b is not sufficiently smooth, we need some additional geomerical assumptions on D. For a point x ∈ R 3 and a non-empty set E ⊂ R 3 we denote by d(x, E) the quantity inf z∈E |x -z| and by |E| the Lebesgue-measure of E.

(H2): t → D t is lipschitzian in the following sense: there exists K D > 0 such that for all x ∈ Ω the mapping t → d(x, Ω\D t ) is lipschitzian in [0, T ] with lipschitzian constant K D and the mapping t → d(x, D t ) is lipschitzian at all s ∈ [0, T ] such that D s = ∅ with lipschitzian constant K D .

(H3): D t is lipschitzian, uniformly as t ∈ [0, T ], i.e, there exists L D ∈ (0, 1) such that |D t ∩ B(x, r)| ≥ L D min(|D t |, |B(x, r)|), ∀r > 0, x ∈ ∂D t , t ∈ [0, T ].

Runge approximation in the dynamical probe method (see [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF]) is based on the uniqueness property (UC) which holds if the conductivity is constant but may fail if it is not sufficiently smooth. Therefore we add the following assumption on b:

(UC) in Ω -Let a sufficiently smooth domain ω ⊂ Ω, a < b and let u ∈ H1 (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)) such that ∂ t u -div(b∇u) = 0 in ω × (a, b) and u = a∇u • ν = 0 on S × (a, b), where S is an non-empty open subset of ∂ω. Then, necessarily, u = 0 in ω × (a, b).

Remark 2. The above definition of (UC) is independent of the choice of the timeinterval [0, T ] since in our work we assume that b does not depend on the variable t. 

Main Result

Here we state our uniqueness result for the above inverse problem. Let v 0 , v 0 ∈ L 2 (Ω), two conductivities a, a satisfying (H0)-(H3) and (UC). Let D the inclusion related to a .

Theorem 1. Assume that Λ v0,a = Λ v 0 ,a . Then, D = D .
Remark 4. Our proof of Theorem 1 is not completely constructive, although it is based on a dynamical method as in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF], where a (theoretical) reconstruction of D from the knowledge of Λ v0,a was developed.

Remark 5. We shall proof Theorem 1 with the following assumption:

D(t) ⊂ Ω, t ∈ [0, T ].
Therefore we replace (H1) by: (H1'): one has D(t) ⊂ Ω, and the set Ω \ D t is connected, for all t ∈ [0, T ].

The general proof of Theorem 1 where D(t) may touch ∂Ω is easily get from the following modification on the case (H1'):

• We consider a large smooth bounded domain Ω containing Ω and we put b = I 3 (the 3 × 3 identity matrix) in Ω \ Ω.

• (If necessary) 1 (UC) is assumed with Ω replaced by Ω .

Remark 6. The proof of Theorem 1 will show that (H0) can be extended to the following situation:

(H0') There exist positive constants ε 0 , δ 1 , such that for (x, t) ∈ D,

((b -a)a -1 b) S (x) ≥ δ 1 > 0, b(x) -a(x) ≥ δ 1 > 0 if d(x, ∂D t ) ≤ ε 0 , or ((b-a)a -1 b) S ≤ -δ 1 < 0, b(x)-a| Dt (x) ≤ -δ 1 < 0 if d(x, ∂D t ) ≤ ε 0 ,

Outline

In Section 2 we recall the basis of the dynamical probe method, Runge approximation, and we construct indicator and pre-indicator functions from special Cauchy boundary data. In Section 3 we give lower and upper estimates on the indicator function which we achieve to prove in Section 4 after several technical results. In Section 5 we achieve the proof of our main Theorem 1.

Literature review

Assumption was already considered in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF], but not in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

2 The dynamical probe method (DPM) with special solutions of the heat equation

Notations

Let us give some notations for this paper. For E ⊂ R 3 , a < b, and for

U ⊂ R 3 × R, we put E a,b = E × (a, b) and U t ≡ {x ∈ R 3 (x, t) ∈ U }.
For non-negative integers p, q or p = 1/2, H p (Ω) H p (∂Ω) and H p,q (Ω (a,b) ) denote the usual Sobolev spaces where the superscripts p and q indicate the regularity with respect to x and t, respectively. For an open set U ⊂ R 4 with Lipschitz boundary ∂U , H p,q (U ) is defined likewise. More precisely, g ∈ H p,q (U ) if and only if there exists G ∈ H p,q (R 4 ) with G = g in U . If it is the case, g H p,q (U ) is defined to be

g H p,q := inf G H p,q (R 4 ) ,
where the infimum is taken over all G such that G = g in U . Let X be a normed space of functions. A function f (x, t) is said to be in L 2 ((0, T ); X) if f (•, t) ∈ X for almost all t ∈ (0, T ) and

f 2 L 2 ((0,T );X) := T 0 f (•, t) 2 L 2 (X) dt < ∞.
(see [START_REF] Lions | Magenes Non-Homogeneous Boundary Value Problems and Applications II Berlin[END_REF] for more details). We write L a := ∂ t -div (a∇•), so L I := ∂ t -∆ for the homogeneous case. Similarly, we consider operator for the backward related heat equation, L * a := -∂ t -div (a∇•). We denote by B(r) any ball of radius r > 0 in R 3 . The open ball {x ∈ R 3 ; |y -x| < r}, r > 0, is denoted B(y, r). We denote by d(t) the distance between y(t) and

D t if D t = ∅, i.e., d(t) = d(y(t), D t ). If D t = ∅ then we put d(t) = +∞, 1/d(t) = 0. If m is a 3 × 3 real matrix then m S = 1 2 (m + m T ) denotes its symmetric part and if ξ ∈ R 3 then m S (ξ) 2 := m S ξ • ξ.

Brief history of the determination of an inclusion from the D-N map

The determination (i.e, the problem of uniqueness) of a sufficiently smooth inclusion inside an homogeneous body was stated in [START_REF] Elayyan | On uniqueness of the recovery of the discontinuous conductivity coefficient of a parabolic equation[END_REF] with a proof by contradiction. DPM for ( 1) is an extension of Ikehata's probe method which was developed for the elliptic equation div(a∇v) = 0. It was firstly presented in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF] where the background is homogeneous and D t ∈ C 2 for all t. Although a part of DPM in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF] works for all spatial dimension n, the reconstruction of D was proved in the case n = 1 only. DPM in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], corrected in [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF], uses Runge approximation of the fundamental solution of L I u = δ (y,s) , (y, s) ∈ Ω (0,T ) . Extending [START_REF] Elayyan | On uniqueness of the recovery of the discontinuous conductivity coefficient of a parabolic equation[END_REF] in a more quantitative version which requires a little bit more smoothness and differs to the DPM of [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF] and [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF], [START_REF] Cristo | Stable determination of the discontinuous conductivity coefficient of a parabolic equation[END_REF] proved the log-stability of Λ a,0 → D.

Returning to DPM, the author of this article used in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF] "special solutions" for the classical heat operator which are more convenient functions than the basic fundamental solutions Γ(x -y, t -s), because their behaviour in time and space are sufficiently separated. Since the background in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF] is homogeneous, [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF] showed that DPM can reconstruct any spatially irregular inclusion as in the elliptic situation. But in our situation we are limited to inclusions with not too spatially irregularities (see (H3)), and we have no reconstruction process.

Runge approximation

Runge approximation for the operator unperturbed operator L I with the homogeneous conductivity a = I 3 was developed in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF] and [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF].

Let a lipschitzian curve Σ : [0, T ] t → y(t) ∈ R 3 \ D t which does not touch D. We extend Σ to t ∈ R by putting y(t) = y(T ) for t ≥ T and y(t) = y(0) for t ≤ 0. Then, thanks to (H1'), there exists an open set

U ⊂ Ω × R containing D and satisfying    ∂U is lipschitzian, dist(U, Σ) := inf{|x -y|; x ∈ U, y ∈ Σ} > 0, Ω \ U t is connected, t ∈ R.
Runge-type approximation as in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF][START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF][START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF] works thanks to (UC) notably, and yields the following result. For τ > 0 we denote Σ τ = ∪ t∈R B(y(t), 1/τ ) × {t}.

Proposition 1. Assume (H1') and (UC). Let Σ and U be as above. Let u ∈ H 1,0 (Ω (0,T ) ) ∩ H 0,1 (Ω (0,T ) ) be a solution of

L b u = 0 in Ω (-1,T +1) \ Σ τ . Then for τ > inf{τ > 0 | dist(U, Σ τ ) > 0} there exists a sequence u j ∈ H 1,0 (Ω (-1,T +1) ) ∩ H 0,1 (Ω (-1,T +1) ) such that    L b u j = 0 in Ω (-1,T +1) , u j → u in H 1,0 (U ) ∩ H 0,1 (U ), u j (0) = u(0) in L 2 (Ω).

Heat Kernels

In many researchs devoted to inverse problems for parabolic equations, the background is homogeneous, i.e, b = I 3 . In such a classical situation, the heat operator is ∂ t -∆ and its usual kernel Γ(x, t) has many properties, as 1. It is explicit:

Γ(x, t) = 1 (4πt) 3/2 e -x 2 4t , t > 0, x ∈ R 3 . 2. It satisfies Γ(x, t) ≤ C √ t |∇Γ(x, t)|, t > 0, x ∈ R 3 ,
for some C > 0. Hence, Γ(x, t) is small compared to |∇Γ(x, t)| as t → 0.

3. Thanks to the Laplace transform ∞ 0 •e -τ 2 t dt of ∂ t -∆, we consider similarily the elliptic operator -∆ + τ 2 with the (large) real parameter τ > 0. Its kernel E(x; τ ) is explicit too:

E(x; τ ) = ∞ 0 Γ(x, t)e -τ 2 t dt = e -τ |x| 4π|x| , x ∈ R 3 . 4. It satisfies E(x; τ ) ≤ τ |∇E(x; τ )|, x ∈ R 3 .
Hence, E(x; τ ) is small compared to |∇E(x; τ )| as τ → ∞, uniformly in all bounded set of R 3 \ {0}. This fact was exploited in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Let us come back to the heat equation with a general conductivity b. We put b(x

) = I 3 for x ∈ R 3 \ Ω. For y ∈ R 3 , we denote by G y ∈ C(R; L 2 (R 3 )) the fundamental solution of L b G y = δ (y,0) , which satisfies G y (x, t) = 0, t < 0.
We have the estimate:

κe -|x-y| 2 4κ 2 t t 3/2 ≤ G y (x, t) ≤ e -κ 2 |x-y| 2 4t κt 3/2 , x ∈ R 3 , t > 0, (4) 
for some constant κ = κ(b) ∈ (0, 1) (see [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF][START_REF] Nash | Continuity of solutions of a parabolic and elliptic equations[END_REF]).

For τ > 0 we put the Laplace Transform of G y (x, t) as

p τ (x; y) := e -τ 2 t t -∞ e τ 2 s G y (x, t -s)ds = ∞ 0 e -τ 2 s G y (x, s)ds. (5) 
Let us observe that p τ (•; y) belongs to H 1 loc (R 3 \ {y}) and, thanks to (4), satisfies

(-div (b∇•) + τ 2 )p τ (•; y) = δ y (•), (6) 2 
√ π κ 2 e -τ κ |x-y| |x -y| ≤ p τ (x; y) ≤ 2 √ π e -κτ |x-y| κ 2 |x -y| , x ∈ R 3 \ {y}. (7) 
This is also a consequence of the works of Nash and Aronson.

Special solutions

Let us consider a lipschitzian curve Σ ⊂ R 3 × R as in Section 2.3, and fix θ ∈ (0, T ). Let another positive parameter µ ≥ 1 that we shall precise later.

In [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF] with b ≡ I 3 the author considered special solutions related to the following functions:

U OP (x, t) := e τ 2 (T +t) ∞ 0 e τ µ(|t-θ-s|-|t-θ|) Γ(x -y(t -s), s)e -τ 2 s ds, U * OP (x, t) := e -τ 2 (T +t) ∞ 0 e τ µ(|t-θ+s|-|t-θ|) Γ(x -y(t + s), s)e -τ 2 s ds.
In fact, U OP and U * OP are respectively solutions of the following forward and backward heat equations:

L I U OP (x, t) = e τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)) in R 3 × R, L * I U * OP (x, t) = e -τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)) in R 3 × R. Moreover they satisfies (see [17, Lemma 1]): U OP (x, t) = ϕ(x, t)e τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)), U * OP (x, t) = ϕ * (x, t)e -τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)), such that, for some C = C(R, µ) > 0 and all τ ≥ C, 1 C ≤ |ϕ(x, t)| + |ϕ * (x, t)| ≤ C in B(0, R) × R, (8) 
|∇ϕ(x, t)| + |∇ϕ * (x, t)| ≤ C in B(0, R) × R. (9) 
With the general conductivity b, we construct here special solutions u τ and u * τ as follows. Let us put

m τ (x, t) = M 0 (τ |x -y(t)|), t ∈ R, (10) 
where M 0 is defined by M 0 (r) = |1 -r| 1 |r|≤1 . Hence m τ is a lipschitzian function with support closed to Σ as τ >> 1. We then put, for (x, t) ∈ R 3 × R,

u τ (x, t) = s∈R y∈R 3 e τ 2 (s+T ) e -τ µ|s-θ| m(y, s)G y (x, t -s)dyds (11) = ∞ s=0 y∈R 3 e τ 2 (T +t-s) e -τ µ|t-θ-s| m(y, t -s)G y (x, s)dyds, u * τ (x, t) = s∈R y∈R 3 e -τ 2 (T +s) e -τ µ|s-θ| m τ (y, s)G y (x, s -t)dyds (12) = ∞ s=0 y∈R 3 e -τ 2 (T +t+s) e -τ µ|t-θ+s| m τ (y, t + s)G y (x, s)dyds.
The functions u τ and u * τ (x, t) are positive and satisfy

L b u τ (x, t) = e τ 2 (t+T ) e -τ µ|t-θ| m(x, t) in R 3 × R, (13) 
L * b u * τ (x, t) = e -τ 2 (T +t) e -τ µ|t-θ| m τ (x, t) in R 3 × R. Remark 7. If m τ (x, t
) was replaced by δ(x-y(t)) then it would be difficult to make the estimation of ẏ(s)∇ y G y(t-s) (x, t) that would appear in the expression of ∂ t u τ .

We then expect that

u τ (x, t) τ →∞ e τ 2 (T +t) e -τ µ|t-θ| τ -3 p τ (x, y(t)), (14) 
u * τ (x, t) τ →∞ e -τ 2 (T +t) e -τ µ|t-θ| τ -3 p τ (x, y(t)), (15) 
where the meaning of " " will be clarified shortly. Since the comparison requires the time-derivatives of u τ (x, t) or u * τ (x, t) and remembering Remark 7, we introduce the following smooth approximation of p τ (x; y(t)):

P τ (x, t) := ∞ 0 R 3 e -τ 2 s m τ (y, t)G y (x, s)dyds. (16) 
We then put

q τ (x, t) := e -τ 2 (T +t) u τ (x, t) -e -τ µ|t-θ| P τ (x, t), (17) 
q * τ (x, t) := e τ 2 (T +t) u * τ (x, t) -e -τ µ|t-θ| P τ (x, t). (18) 
The main difficulty in the proof of Theorem 1 is to prove that the quantity 

R 0 := D (|∇q τ (x, t)| 2 + |∇q * τ (x, t)| 2 ) dxdt, ( 19 
)
is negligible compared to D τ -6 e -2τ µ|t-θ| |∇p τ (x, t)| 2 dxdt
C = C(b, L D , d Ω , µ, M ), C 0 = C 0 (κ, d Ω , M ) such that if t ∈ [0, T ] and τ > max(2µ, C 0 /d(t)) then Dt (|∇q τ (x, t)| 2 +|∇q * τ (x, t)| 2 )dx ≤ Cτ -4 e -2τ µ|t-θ| d(t) 2 Dt |p τ (x, y(t))| 2 dx. (20) (Remember that d(t) = d(y(t), D t ).
) So R 0 is effectively "negligible" when the curve Σ is sufficiently close to D at least at time θ. This constraint is new compared to consequences of ( 8) and ( 9) (for which Assumption (H3) is in addition superfluous) and makes a theoritical reconstruction of D problematic, as opposite to the possible reconstruction proposed in [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Pre-indicator sequence and indicator function

As in section 2.3, we can consider sequences (u j ) j and (u * j ) j such that u j → u τ and u * j → u * τ in the sense of Proposition 1. Considering

v j = v(a, v 0 ; u j | Γ (0,T ) ) and the solution v τ ∈ H 1 ((0, T ); L 2 (Ω)) ∩ L 2 ((0, T ); H 1 (Ω)) of    L a v τ = L b u τ , v τ = u τ on Γ 0,T , v τ t=0 = v 0 on Ω, (21) we put w τ = v τ -u τ (22) 
and

I j (τ ) := Γ×[0,T ] (Λ a;v0 (u j | Γ [0,T ] ) -b∇u j • ν) u * j | Γ×[0,T ] dσ(x)dt, I ∞ (τ ) := Ω×[0,T ] (a -b)∇v τ ∇u * τ dxdt + Ω [w τ u * τ ] T 0 dx, ( 23 
)
where dσ(x) is the usual measure on the boundary Γ. The knowledge of Λ a;v0 involves that of I j (τ )'s. Furthermore, as for the proofs in [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF][START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF], Proposition 1 implies that

I j (τ ) → I ∞ (τ ) ∈ R as j → ∞. (24) 
Hence, if (UC) holds, then the knowledge of Λ a;v0 involves that of I ∞ (τ )'s.

3 Estimates on the indicator function Lemma 3.1. Under assumption (H0b) we have

I ∞ (τ ) ≤ C D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt (25) +C D (|∇q τ | 2 + |∇q * τ | 2 ) dxdt + 10( v 0 2 L 2 (Ω) + d Ω )e -τ µ min(T -θ,θ) ,
and

I ∞ (τ ) ≥ 1 C D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt (26) -C D (|∇q τ | 2 + |∇q * τ | 2 ) dxdt -10( v 0 2 L 2 (Ω) + d Ω )e -τ µ min(T -θ,θ) , for some C = C(a) ≥ 1, for all τ > µ + 1, µ > 0.
Proof in Appendix.

We put also

d Ω := sup{|x -y|; x, y ∈ Ω}, (27) 
ε Σ := inf t∈[0,T ] d(t) > 0. ( 28 
)
Lemma 3.2. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then, under assumption (H0b), there exist positive constants c = c(a, µ, M ),

C 1 = C 1 (v 0 , d Ω ), C 2 = C 2 (κ, d Ω , M ), C 3 = C 3 (d Ω , κ, M, µ), such that, if τ > max(2µ, C 2 /ε Σ ), we then have I ∞ (τ ) ≤ cτ -4 D e -2τ µ|t-θ| |p τ (x, y(t))| 2 dxdt (29) 
+C 1 e -τ µ min(T -θ,θ) , and

I ∞ (τ ) ≥ cτ -4 D 1 -C 3 d(t) 2 e -2τ µ|t-θ| |p τ (x, y(t))| 2 dxdt (30) -C 1 e -τ µ min(T -θ,θ) .
The proof of Lemma 3.2 requires the developments of Section 4 Let us extend n to (-∞, 0] by putting

n(I) = -∞ if I ≤ 0. Lemma 3.3. Let θ ∈ (0, T ). Let us fix µ ≥ µ 1 = 4κ -1 d Ω max((T -θ) -1 , θ -1 ). 1) Let a lipschitzian curve Σ such that | ẏ| ≤ M and ε Σ > 0. We then have lim sup τ →∞ τ -1 ln(I ∞ (τ )) ≤ -2κε Σ . (31) 2) Assume that D θ = ∅. Let α ∈ (0, (8C 3 ) -1/2 ) where C 3 is the constant in (30). Let M, α > 0 and a familly Σ = Σ(ε) for 0 < ε ≤ α 3 such that we have | ẏ(•)| ∞ ≤ M and        | ẏ(•)| ∞ ≤ M, d(t) = d(y(t), D t ) ≤ 2α for |t -θ| ≤ α 4 , d(t) = d(y(t), D t ) ∈ [ε/2, 2α -3 |t -θ|] for |t -θ| ≥ εα, d(t) = d(y(t), D t ) ∈ (ε/2, 2εα -2 ] for |t -θ| ≤ εα. (32)
Then there exists

ε 1 = ε 1 (κ, θ, D, α, M, µ) ∈ (0, α] such that for 0 < ε ≤ ε 1 we have I ∞ (τ ) > 0 if τ > τ 1 (ε), and lim inf τ →∞ τ -1 ln(I ∞ (τ )) ≥ -8κ -1 α -2 ε (33) Proof in Appendix.
4 Technical Results 

First technical aspects

∪ i∈I B i (1/τ ) ⊂ D t ⊂ ∪ i∈I B i (3/τ ),
and

B i (1/τ )∩B j (1/τ ) = ∅ if i, j ∈ I, i = j, where B i (R)
denotes the open euclidian ball of radius R > 0 and centered at x i .

Proof. The lemma is a straightforwardly consequence of the compactness of D t and Vitali's lemma.

We have the following proposition (see [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash[END_REF] for example).

Proposition 2. (Parabolic Harnack inequality).

There exists c = c(κ) > 0 depending on the constant κ of (4) only such that if r > 0, t ∈ R, if y ∈ R 3 \ B(2r) or 0 ∈ (t -r 2 , t + r 2 ), then we have

max x∈B(r),s∈[t-3 4 r 2 ,t-1 4 r 2 ] G y (x, s) ≤ c min x∈B(r),s∈[t+ 1 4 r 2 ,t+r 2 ] G y (x, s). (34) 
Let us recall that p τ is defined by [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash[END_REF]. From Proposition 2, we prove the following Lemma. 

Proof. Applying (34) with s = t, r = β/τ , we have, for all x, z ∈ B(β/τ ),

p τ (z; y) = ∞ 0 e -τ 2 s G y (z, s)ds = ∞ 1 2 β 2 /τ 2 e -τ 2 (s-1 2 β 2 /τ 2 ) G y (z, s - 1 2 β 2 /τ 2 )ds ≤ ∞ 1 2 β 2 /τ 2 e -τ 2 (s-1 2 β 2 /τ 2 ) cG y (x, s)ds ≤ ce 1 2 β 2 ∞ 0 e -τ 2 s G y (x, s)ds = ce 1 2 β 2 p τ (x; y).
We then obtain (35).

Let us recall that y(•) and Σ were defined in Section 2.5 and P τ by [START_REF] Nash | Continuity of solutions of a parabolic and elliptic equations[END_REF].

Lemma 4.3. (Caccioppoli's Inequality for P τ ). Let P τ be defined by [START_REF] Nash | Continuity of solutions of a parabolic and elliptic equations[END_REF]. Let β > 0. Then there exists c = c(β, b) > 0 such that for all τ > 0, if B(β/τ ) ∩ B(y(t); 1 τ ) = ∅ we then have

1 c B( β 4τ ) τ 2 P 2 τ (x, t)dx ≤ B( β 2τ ) |∇P τ | 2 (x, t)dx ≤ c B( β τ ) τ 2 P 2 τ (x, t)dx. (36) 
Proof in Appendix.

4.2 Comparison between u τ , P τ and p τ Lemma 4.4. (Comparison between P τ and p τ ). There exists c = c(b) > 0 such that for all τ > 0, t ∈ R, if x ∈ B(y(t); 2 κ 5 τ ) we then have

1 c τ 3 P τ (x, t) ≤ p τ (x, y(t)) ≤ cτ 3 P τ (x, t), ( 37 
)
where κ is the constant of ( 4) or [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF].

Proof in Appendix. 

C = C(b, d Ω , µ, M ), C 1 = C 1 (κ, d Ω , M ) such that for τ ≥ max(2µ, 2κ -1 M ), t ∈ [0, T ], x ∈ Ω \ B(y(t), C 1 /τ ), we have: e -τ 2 (T +t) u τ (x, t) ≤ Ce -τ µ|t-θ| τ -3 p τ (x, y(t)). (38) 
Proof in Appendix. 

C 1 = C 1 (κ, d Ω , M ) such that for τ ≥ max(2µ, 2κ -1 M ), t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ) we have: |∂ t (e -τ 2 (t+T ) u τ (x, t))| ≤ Ce -τ µ|t-θ| τ -2 p τ (x, y(t)). (39) 
Proof in Appendix.

Remember that q τ is defined by [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Lemma 4.7. (Estimate of q τ ). Let t ∈ [0, T ]. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist C = C(b, d Ω , µ, M ) > 0, C 1 = C 1 (κ, d Ω , M ), such that for τ ≥ 2µ, t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ), we have |q τ (x, t)| ≤ Cτ -3 e -τ µ|t-θ| |x -y(t)| p τ (x, y(t)). (40) 
Proof in Appendix. Then, there exists c = c(b) ≥ 1 such that for all τ > τ 0 , we have

Estimates in D t

1 c Dt τ -4 p 2 τ (x, y(t))dx ≤ Dt |∇P τ (x, t)| 2 dx ≤ c Dt τ -4 p 2 τ (x, y(t))dx. (41) 
Proof in Appendix. 

> κ -3 d(t) -1 , t ∈ [0, T ], Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx ≤ Cd(t) 2 Dt |p τ (x, y(t))| 2 dx. (43) 
Proof in Appendix.

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2

We obtain (30) and ( 29) from ( 26), (25), (20) of Lemma 2.1, (41) of Lemma 4.8.

Proof of Theorem 1

We may assume that (H0b) holds, since the case where (H0a) holds is similar. Thanks to Remark 5 we have

D t ∪ D t ⊂ Ω, t ∈ [0, T ]. Let us assume that D = D .
Then there exists (z, θ) ∈ Ω × [0, T ] with D θ = ∅, z ∈ ∂D θ and z ∈ D θ or with D θ = ∅, z ∈ ∂D θ and z ∈ D θ . Thus, we consider for simplicity that z ∈ ∂D θ and z ∈ D θ . Thanks to (H2), t → (D t , D t ) is continuous so we consider also that 0 < θ < T . In fact let us explain why can consider also that z ∈ ∂D θ \ D t if |t -θ| < β for some β > 0. If D t is void for |t -θ| sufficiently small then it is immediate, but if D t is not void for |t -θ| sufficiently small then we can't be sure that d(z, D t ) > 0 when t θ. However, in such a case, thanks to (H2), there exists a sequence θ n → θ satisfying D θn = ∅ and D θn \ D θn = ∅. We then replace (z, θ) by another couple (z n , θ n ) with z n ∈ ∂D θn \ D θn . Then, since D θn = ∅ and thanks to (H2), we have z n ∈ ∂D t if t θ n . So we can consider that

z ∈ ∂D θ \ D t if |t -θ| ≤ β for some β > 0. ( 44 
)
We then construct a familly of curves Σ = Σ ε for 0 < ε ≤ α 3 =: ε 1 , for some positive α such that (32) and

d(y(t), D t ) ≥ α/2 ∀t, (45) 
hold. Proof. Since D θ and D θ are lipschitzian and simply connected (see (H1')) then there exists a lipschitzian curve ỹ : [0, 1] s → ỹ(s) ∈ R 3 with a constant Lipschitz M such that ỹ(0) = z, ỹ(1) ∈ Ω, ỹ(s) ∈ D θ for s = 0 and ỹ(s) ∈ D t for s ∈ [0, 1] and |t -θ| ≤ β. Thanks to (H2), (H3) and to (44) we have

d(ỹ(s), D t ) ≥ α -K D |t -θ|, for s ∈ [0, 1], (46) d 
(ỹ(s), D t ) ∈ [αs -K D |t -θ|, 1 α s + K D |t -θ|], s ∈ [0, 1], (47) 
for some sufficiently small positive α

≤ max(1, θ, T -θ, d(D t , ∂Ω), (2K D ) -1 , (2K D ) -1 , √ β).
We put y 0 (t) = ỹ(|t -θ|/α 2 ) for |t -θ| ≤ α 2 and y 0 (t) = ỹ(1) for |t -θ| ≤ α 2 . From (46) and since y 0 (t ) ∈ Ω for |t -θ| ≥ α 2 we then have

d(y 0 (t ), D t ) ≥ α/2, for |t -θ| ≤ α 2 or |t -θ| ≥ α 2 . ( 48 
)
From (47) and since y 0 (t ) ∈ Ω for |t -θ| ≥ α 2 we then have for |t -θ| ≤ |t -θ|

d(y 0 (t ), D t ) ∈ [ 1 2 α -1 |t -θ|, 2α -3 |t -θ|]. (49) 
Then for all ε ∈ (0, α 3 ] we put

y(t) = y 0 (ε) for |t -θ| ≤ ε, y(t) = y 0 (t) for |t -θ| ≥ ε.
Thanks to (48), (49) we obtain (32) and (45).

Let us denote by I ∞ (τ ) the indicator function for the conductivity a . Thanks to Lemma 3.3 we have for ε ∈ (0, ε 1 ] lim sup τ →∞ τ -1 ln(I ∞ (τ )) ≤ -κα, and lim inf

τ →∞ τ -1 ln(I ∞ (τ )) ≥ -8κ -1 α -2 ε.
Then, I ∞ (τ ) = I ∞ (τ ) for all ε < min(ε 1 , κ 2 α 4 /4) and τ sufficiently large. The result at §2.6 implies that Λ v0,a = Λ v 0 ,a .

B 1 := Ω×[0,T ] a -1 (Ψ τ ) 2 dx e -2τ 2 (T +t) dt B 2 := Ω×[0,T ]
a(∇w τ ) 2 dx e -2τ 2 (T +t) dt,

B 3 := Ω×[0,T ] τ 2 w 2 τ dx e -2τ 2 (T +t) dt,
and

R 1 := Ω [w τ u * τ ] T 0 dx, R 2 := Ω×[0,T ] (a -b)∇v τ ∇(e τ 2 (T +t) u * τ -e -τ 2 (T +t) u τ ) dx e -τ 2 (t+T ) dt = Ω×[0,T ] (a -b)∇v τ • (∇q * τ (x, t) -∇q τ (x, t)) dx e -τ 2 (t+T ) dt, R 3 := 1 2 Ω w 2 τ e -2τ 2 (T +t) T 0 dx.
Step 1. Let us prove that

I ∞ (τ ) = X 1 + B 1 + B 3 + R 1 + R 2 + R 3 , (52) 
I ∞ (τ ) = X 2 -B 2 -B 3 + R 1 + R 2 -R 3 . (53) 
From (23) we have

I ∞ (τ ) = Ω×[0,T ] (a -b)∇v τ ∇u τ dxe -2τ 2 (T +t) dt + R 1 + R 2 . (54) 
1. Let us put

A 1 := Ω×[0,T ] a -1 Ψ τ • (a -b)∇u τ dx e -2τ 2 (T +t) dt, A 2 := Ω×[0,T ] ∇w τ Ψ τ dx e -2τ 2 (T +t) dt.
Then, since (a -b)∇u τ = Ψ τ -a∇w τ , we then have

A 1 = B 1 -A 2 .
By integration by parts we have

A 2 = - Ω×[0,T ] w τ divΨ τ dxe -2τ 2 (T +t) dt = - Ω×[0,T ] w τ ∂ t w τ dxe -2τ 2 (T +t) dt = -B 3 -R 3 . ( 55 
)
We thus have

A 1 = B 1 + B 3 + R 3 . ( 56 
)
For any 3 × 3 real matrix m we have m∇u τ • ∇u τ = m S ∇u τ • ∇u τ . Then, thanks to

∇v τ = a -1 Ψ τ + a -1 b∇u τ , (57) 
we obtain (52) from ( 54) and (56).

2. Let us consider (54) again. Thanks to (50) then to (51) we have

(a -b)∇v τ ∇u τ = (a -b)∇u τ ∇u τ + a∇w τ ∇u τ -b∇w τ ∇u τ = (a -b)∇u τ ∇u τ + a∇w τ (∇v τ -∇w τ ) -b∇w τ ∇u τ = (a -b)∇u τ ∇u τ -a∇w τ ∇w τ + ∇w τ Ψ τ .
Hence

I ∞ (τ ) = Ω×[0,T ] (a -b)(∇u τ ) 2 dxe -2τ 2 (T +t) dt -B 2 + A 2 + R 1 + R 2 ,
which yields (53) with the help of (55).

Step 2. We put

X 0 := D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt ( 58 
)
and

R 4 := 1 2 Ω e 4τ 2 T |u * τ (T )| 2 dx + 1 2 Ω e 2τ 2 T |u * τ (0)| 2 dx +2 Ω e -2τ 2 T |u τ (0)| 2 dx + 2 Ω e -2τ 2 T |v 0 | 2 dx, R 5 := D |∇q τ | 2 dxdt, R * 5 := D |∇q * τ | 2 dxdt.
Under assumption (H0b) we have the following estimates:

I ∞ (τ ) ≥ CX 0 + 1 2 B 1 + B 3 -2R 4 - 1 C (R 5 + R * 5 ), ( 59 
)
I ∞ (τ ) ≤ 1 C X 0 - 1 2 B 2 -B 3 + 2R 4 + 1 C (R 5 + R * 5 ), (60) 
for some C = C(a) ∈ (0, 1). Proof. Thanks to Cauchy-Minkovski inequality and to the definition (22) we have

R 1 + R 3 = Ω (w τ u * τ + 1 2 w 2 τ e -4τ 2 T )| t=T dx - Ω (w τ u * τ + 1 2 w 2 τ e -2τ 2 T )| t=0 dx ≥ -R 4 . ( 61 
)
Similarly we have

R 1 -R 3 ≤ R 4 . ( 62 
)
We observe that, thanks to (52) and ( 53),

X 1 = I ∞ (τ ) -B 1 -B 3 -R 1 -R 2 -R 3 , (63) 
X 2 = I ∞ (τ ) + B 2 + B 3 -R 1 -R 2 + R 3 . ( 64 
)
Thanks to (57) again we have

|R 2 | ≤ Ω×[0,T ] e -τ 2 (T +t) |a -b||a -1 ||Ψ τ | |∇q * τ -∇q τ | dxdt + Ω×[0,T ] e -τ 2 (T +t) |a -b||a -1 | |b||∇u τ | |∇q * τ -∇q τ | dxdt (65) ≤ 1 2 B 1 + 1 2 X 1 + C(R 5 + R * 5 ). ( 66 
)
From ( 63) and (66) we get

|R 2 | ≤ 1 2 I ∞ (τ ) - 1 2 (B 3 + R 3 + R 1 + R 2 ) + C(R 5 + R * 5 ). ( 67 
)
Estimates ( 52), ( 61) and (67) imply

I ∞ (τ ) ≥ 1 2 X 1 + 1 2 B 1 + B 3 -R 4 -C(R 5 + R * 5 ). ( 68 
)
By using ( 17), ( 18), (H0b), and the basic estimate

a 2 ≥ 1 2 (a + b) 2 -b 2 , we have X 1 ≥ D δ 1 e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt - Ω×[0,T ] |b| |a -1 ||a -b| |∇q τ | 2 dxdt ≥ CX 0 - 1 C R 5 ,
for some C = C(a) ∈ (0, 1). Then with (68) we obtain (59). Similarly, by using (53), ( 58), (64) we obtain (60).

Step 3. We prove that for τ > µ + 1 we have

|R 4 | ≤ (2 v 0 2 L 2 (Ω) + 5d Ω )e -τ µ min(T -θ,θ) . ( 69 
)
Proof. Firstly, we have

0 ≤ u τ (x, 0) = ∞ 0 R 3 e τ 2 (T -s) e -τ µ|θ+s| m(y, -s)G y (x, s)dyds ≤ e τ 2 T e -τ µθ ∞ 0 R 3 e -τ 2 s G y (x, s)dyds = 1 τ 2 e τ 2 T e -τ µθ .
Here we used the notorious relation

R 3 G y (x, s)dy = 1. ( 70 
) Hence 0 ≤ e -τ 2 T u τ (x, 0) ≤ e -τ µθ , τ ≥ 1. ( 71 
)
Similarly we have

0 ≤ e 2τ 2 T u * τ (x, T ) ≤ e -τ µ(T -θ) , τ ≥ 1. ( 72 
)
Secondly, since τ > µ + 1 > 1 we have

0 ≤ u * τ (x, 0) = ∞ 0 R 3
e -τ 2 (T +s) e -τ µ|θ-s| m(y, s)G y (x, s)dyds

≤ e -τ 2 T e -τ µθ ∞ 0 e -(τ 2 -τ µ)s R 3 G y (x, s)dyds = 1 τ 2 -τ µ e -τ 2 T e -τ µθ ≤ e -τ 2 T e -τ µθ . ( 73 
)
From ( 73), ( 72), (71), we obtain for τ > µ + 1 > 1:

R 4 ≤ 2 v 0 2 L 2 (Ω) e -2τ 2 T + 2d Ω e -τ µ(T -θ) +
3d Ω e -τ µθ , which implies (69).

Estimates ( 26) and ( 25) come immediately from ( 59), ( 60), ( 69) and the fact that B j ≥ 0 for j = 1, 2, 3.

Proof of Lemma 4.3. We observe that for all t, the function P τ (•; t) the unique solution in

H 1 (R 3 ) of (-div (b∇•) + τ 2 )P τ (•; t) = m τ (•, t). ( 74 
) Let φ ∈ C 1 (R; [0, 1]) with φ(r) = 1 for |r| ≤ 1/2 and φ(r) = 0 for |r| ≥ 1. Put ψ(x) = φ(τ (x -x 0 )/β
) where x 0 is the center of the ball B(β/τ ). We multiply (74) by P τ (•, t)ψ 2 and integrate it over Ω. Since supp (ψ) ∩ supp (m τ (•, t)) has Lebesgue measure zero, we then have

Ω [b(∇P τ (•, t)) 2 ψ 2 + 2b∇P τ (•, t)ψ P τ (•, t)∇ψ + τ 2 P 2 τ (•, t)ψ 2 ] = 0. (75) 
Then, from Cauchy-Minkovski's inequality,

Ω [b(∇P τ (, t)) 2 ψ 2 + τ 2 P 2 τ (•, t)ψ 2 ] ≤ Ω |2b∇P τ (•, t)ψ P τ (•, t)∇ψ| ≤ Ω [ 1 2 b(∇P τ (•, t)) 2 ψ 2 + 2bP 2 τ (•, t)(∇ψ) 2 ].
Thus, for some

C = C (b) > 0, Ω [|∇P τ (, t)| 2 + τ 2 P 2 τ (•, t)]ψ 2 (x)dx ≤ C Ω P 2 τ (•, t)|∇ψ| 2 (x)dx, with C = C (b) > 0. Since supp ψ ⊂ B(β/τ ) with |∇ψ(x)| ≤ τ β max |φ |, ψ ≥ 0, and ψ = 1 in B( β 2τ
), we then have

B( β 2τ ) |∇P τ (•, t)| 2 (x)dx ≤ C τ 2 β 2 B( β τ ) P 2 τ (•, t)dx,
which proves the second inequality in (36). From (75) and thanks to Cauchy-Minkovski's inequality we have also

Ω [b(∇P τ (•, t)) 2 ψ 2 + τ 2 P 2 τ (•, t)ψ 2 ] ≤ Ω |2b∇P τ (•, t)∇ψ P τ (•, t)ψ| ≤ Ω [ 2 τ 2 γ 2 ∞ |∇P τ (•, t)| 2 |∇ψ| 2 + 1 2 τ 2 P 2 τ (•, t)ψ 2 ].
Thus, for some

C = C (b) > 0, Ω τ 2 P 2 τ (•, t)ψ 2 (x)dx ≤ C 1 τ 2 Ω |∇P τ (•, t)| 2 |∇ψ| 2 (x)dx.
We then obtain

B( β 2τ ) τ 2 P 2 τ (•, t)dx ≤ C 1 β 2 B( β τ ) |∇P τ (•, t)| 2 dx, C = C (b)
, which proves the first inequality in (36) with β replaced by 2β.

Proof of Lemma 4.4. Since G x (y, s) = G y (x, s) and thanks to (34) with r = 1/τ , we have for all x ∈ B(y(t), 2/τ ):

B(y(t),1/τ ) G y (x, s)dy = B(y(t),1/τ ) G x (y, s)dy ≤ |B(1/τ )| max B(y(t),1/τ ) G x (•, s) ≤ cτ -3 G x (y(t), s + 1 2τ 2 ) = cτ -3 G y(t) (x, s + 1 2τ 2 ). Then, since τ |x -y(t)| ≥ 2/κ 5 ≥ 2, since m τ ≤ 1 and supp m τ = B(y(t), 1 τ ) we have P τ (x, t) ≤ ∞ 0 e -τ 2 s B(y(t), 1 τ ) G y (x, s)dyds (76) 
≤ cτ -3 ∞ 0 e -τ 2 s G y(t) (x, s + 1 2τ 2 )ds = cτ -3 ∞ 1 2τ 2 e -τ 2 (s-1 2τ 2 ) G y(t) (x, s)ds ≤ c τ -3 ∞ 0 e -τ 2 s G y(t) (x, s)ds = c τ -3 p τ (x; y(t)).
We obtain the first inequality of (37). Let us prove the second one. Since m τ ≥ 1/2 in B(y(t), 1 2τ ) we then have

P τ (x, t) ≥ 1 2 ∞ 0 e -τ 2 s B(y(t), 1 2τ ) G y (x, s)dyds ≥ cτ -3 ∞ 0 e -τ 2 s inf y∈B(y(t), 1 2τ ) 
G y (x, s)ds.

By applying (34) with r = 1/τ and observing that G y (x, s) = G x (y, s) we then have for all x ∈ B(y(t), 2/τ ):

P τ (x, t) ≥ cτ -3 ∞ 0 e -τ 2 s inf y∈B(y(t), 1 2τ ) G y (x, s)ds ≥ cτ -3 ∞ 0 e -τ 2 s G y(t) (x, s - 1 2τ 2 )ds = cτ -3 ∞ 1 2τ 2 e -τ 2 (s+ 1 2τ 2 ) G y(t) (x, s)ds = c τ -3 p τ (x, y(t)) - 1 2τ 2 0 e -τ 2 s G y(t) (x, s)ds , (77) 
with some c > 0. We put R := 1 2τ 2 0 e -τ 2 s G y(t) (x, s)ds. Thanks to ( 4) and [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] we have

R ≤ 1 2τ 2 0 e -κ 2 |x-y(t)| 2 4s κs 3/2 ds ≤ √ 2κ -1 τ ∞ 1 e -κ 2 |x-y(t)| 2 τ 2 r/2 dr = 2 √ 2κ -3 τ -1 |x -y(t)| -2 e -κ 2 |x-y(t)| 2 τ 2 /2 ≤ 1 2 p τ (x, y(t)) 2 κ 5 τ |x -y(t)| exp(-κ -1 τ |x -y(t)|(κ 2 τ |x -y(t)|/2 -1)). Since τ |x -y(t)| ≥ 2/κ 5 > 2/κ 2 , we then have R ≤ 1 2 p τ (x, y(t)). Hence P τ (x, t) ≥ 1 2 c τ -3 p τ (x, y(t)).
The conclusion follows.

Proof of Lemma 4.5. Let us observe that e -τ µ|t-θ-s| ≤ e -τ µ|t-θ| e τ µs s > 0, t ∈ R.

Hence

e -τ 2 (T +t) u τ (x, t) = ∞ 0 e -τ 2 s e -τ µ|t-θ-s| R 3 m τ (y, t -s)G y (x, s)dyds ≤ e -τ µ|t-θ| H, (79) 
where we put

H := ∞ 0 e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds ≡ H 1 + H 2 (80) 
with

H 1 := s>λ/τ e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds, H 2 := λ/τ 0 e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds,
and where λ := 2|x -y(t)|/κ. We put also Since τ ≥ 2κ -1 M , |x -y(t)| ≥ 1/τ , we then have |x -y(t)| ≥ M /τ and so we can apply (34) where x and y are exchanged and with r = M /(2τ ). Hence

M := M λ + 1, C 1 = max(1, 8κ -7 (1 + M 2 d 2 Ω )). Since |y(t -s) -y(t)| ≤ M s, we then have B(y(t -s), 1/τ ) ⊂ B(y(t), M s + 1/τ )
H 2 ≤ ce µλ ∞ 0 e -τ 2 s |B(y(t), M /τ )|G y(t) (x, s + M 2 /(2τ 2 ))ds ≤ ce µλ ∞ 0 e -τ 2 s (2M ) 3 |B(y(t), 1/(2τ ))|G y(t) (x, s + M 2 /(2τ 2 ))ds = ce µλ (2M ) 3 ∞ M 2 /(2τ 2 )
e -τ 2 (s-M 2 /(2τ 2 )) |B(y(t), 1/(2τ ))|G y(t) (x, s)ds

= ce µλ+M 2 /2 M 3 τ -3 (p τ (x, y(t)) -R), with R := M 2 /(2τ 2 ) 0
e -τ 2 s G y(t) (x, s)ds and c = c(b) is the constant (34). Thanks to (4) we have

R ≤ M 2 2τ 2 0 e -κ 2 |x-y(t)| 2 4s κs 3/2 ds ≤ √ 2κ τ M -1 ∞ 1 e -κ 2 |x-y(t)| 2 τ 2 r/(2M 2 ) dr = 2 √ 2M κ -3 τ -1 |x -y(t)| -2 e -κ 2 |x-y(t)| 2 τ 2 /(2M 2 ) ≤ 1 2 p τ (x, y(t)) M κ 5 τ |x -y(t)| exp(-κ -1 τ |x -y(t)|(M -2 κ 2 τ |x -y(t)|/2 -1)). Since τ |x -y(t)| ≥ C 1 then M -2 κ 2 τ |x -y(t)| ≥ 2 and M -1 κ 5 τ |x -y(t)| ≥ 1. Hence R ≤ 1 2 p τ (x, y(t))
and

H 2 ≤ CM 3 e 2κ -1 µ|x-y(t)| τ -3 p τ (x, y(t))
≤ CM 3 e 2κ -1 µdΩ τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T = C(b, d Ω , µ, M ) τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T .

Let us estimate H 1 . Since G y (x, s) ≤ κ -1 s -3/2 and τ ≥ 2µ we then have

H 1 ≤ κ -1 τ -3 s>λ/τ
s -3/2 e -τ 2 s/2 ds ≤ κ -1 τ -3 s>λ/τ (λ/τ ) -3/2 e -τ 2 s/2 ds = 2(λ/τ ) -3/2 τ -2 e -τ λ/2 s>λ/τ s -3/2 e -τ λ/2 ds = 2(λ/τ ) -1/2 e -τ λ/2 .

Hence

H 1 ≤ 2κ -1 λ -1 τ -3 e -τ λ/2 .
Thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] we then obtain

H 1 ≤ κ -2 τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T . (82) 
Then, thanks to Lemma 4.4 and from (82), (81), (79), the conclusion follows.

Proof of Lemma 4.6. We have

∂ t (e -τ 2 (t+T ) u τ (x, t)) = Y 1 + Y 2 ,
with

Y 1 := -τ µ t s=0
e -τ 2 s sign(t -θ -s)e -τ µ|t-θ-s|

R 3 m τ (y, t -s)G y (x, s)dyds, Y 2 := t s=0
e -τ 2 s e -τ µ|t-θ-s|

R 3 ∂ t m τ (y, t -s)G y (x, s)dyds.
Let us estimate Y 1 . We have

|Y 1 (x, t)| ≤ τ µ ∞ s=0
e -τ 2 s e -τ µ|t-θ-s| R 3 m τ (y, t -s)G y (x, s)dyds = τ µ e -τ 2 (t+T ) u τ (x, t).

Thanks to Lemma 4.5 we obtain for

|Y 1 (x, t)| ≤ Ce -τ µ|t-θ| τ -2 p τ (x, y(t)). (83) 
Let us estimate Y 2 . Remember that supp m τ (•, t) ⊂ B(y(t), 1/τ ) and that

|∂ t m τ (y, t)| = τ | ẏ(t)∇M 0 (τ (y -y(t)))| ≤ M τ.
Hence we have , as in the estimates of (76) we obtain

|Y 2 | ≤ Cτ ∞ s=0 e -τ 2 s e -τ µ|t-θ-s| B(y(t-s),1/τ ) G y (x, s)dyds ≤ e -τ µ|t-θ| H,
where H is defined by (80). Hence

|Y 2 | ≤ C e -τ µ|t-θ| τ -2 p τ (x, y(t)). (84) 
From ( 83), (84) we obtain (39).

Proof of Lemma 4.7. We write q τ (x, t) = ∞ 0 e -τ 2 s R 3 (A-B)G y (x, s)dyds with

A ≡ e -τ µ|t-θ-s| m τ (y, t -s),

B ≡ e -τ µ|t-θ| m τ (y, t).

Let us observe that, since e τ µs -1 ≤ µτ se τ µs and thanks to (78), then

|A -B| ≤ e -τ µ|t-θ| µτ se τ µs 1 B(y(t-s),1/τ ) + M τ s max(1 B(y(t),1/τ ) , 1 B(y(t-s),1/τ ) ) .

Hence

|q τ (x, t)| ≤ τ e -τ µ|t-θ| (µR 1 + M R 2 ) (85) 
with As for the estimate of H 1 in the proof of Lemma 4.5 we have

R 1 := ∞ 0 e -τ 2 s B(y(t-s),1/τ ) sG y (x, s)dyds, (86) 
|R 22 | ≤ 2κ -1 τ -3 ∞ λ/τ s -1/2 e -τ 2 s/2 ds ≤ 2κ -1 τ -3+1/2 λ -1/2 ∞ λ/τ e -τ 2 s/2 ds = 4κ -1 τ -5+1/2 λ -1/2 e -τ λ/2 = 2 √ 2κ -1/2 τ -5+1/2 |x -y(t)| -1/2 e -τ κ -1 |x-y(t)| .
Thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] and since τ |x -y(t)| ≥ 1 we then have

|R 22 | ≤ κ -5/2 τ -4 (τ |x -y(t)|) -1/2 |x -y(t)|p τ (x, y(t)) ≤ C(κ)τ -4 |x -y(t)|p τ (x, y(t)). (88) 
For s ≤ λ/τ we have B ⊂ B(y(t), M /τ ) with M := λM + 1. Hence, as for the estimate of H 2 in the proof of Lemma 4.5 and since τ |x -y(t)| ≥ 2M 2 κ -5 we then have

|R 21 | ≤ λτ -1 λ/τ 0 e -τ 2 s B(y(t),M /τ ) G y (x, s)dyds ≤ λτ -1 C(b, d Ω , M )τ -3 p τ (x, y(t)) ≤ C(b, d Ω , M )τ -4 |x -y(t)|p τ (x, y(t)). (89) 
From ( 88) and (89), we obtain that for τ |x -y(t)| ≥ 2M 2 κ -5 we have

|R 2 | ≤ C(b, d Ω , M )τ -4 |x -y(t)|p τ (x, y(t)). (90) 
Now, we estimate R 1 as R 2 by splitting the integral in (87) with s < λ/τ or s > λ/τ . We observe that τ = τ 1 -µτ

-1 ≥ 1 √ 2 τ . Hence R 1 = R 11 + R 12 with, since τ |x -y(t)| ≥ √ 2κ -5 and τ ≥ 2µ, |R 12 | ≤ τ -3+1/2 λ -1/2 ∞ λ/τ e -τ 2 s/2 ds = 2κ -1 τ -2 τ -3+1/2 λ -1/2 e -τ λ+λµ ≤ C(κ, µ, d Ω )τ -4 |x -y(t)|p τ (x, y(t)). (91) 
Finally, since τ |x -y(t)| ≥ 2κ -5 , we have, as for the estimate of R 21 ,

|R 11 | ≤ λτ -1 e λµ λ/τ 0 e -τ 2 s B(y(t),1/τ ) G y (x, s)dyds ≤ C(b, µ, d Ω , M )τ -4 |x -y(t)|p τ (x, y(t)). (92) 
Thanks to (91) and (92), we obtain

|R 1 | ≤ C(b, µ, d Ω , M )τ -4 |x -y(t)|p τ (x, y(t)). (93) 
Thanks to (93) and ( 90), (85), we obtain (40) for τ ≥ 2µ, t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ).

Proof of Lemma 4.8. We consider a familly of balls B i (1/τ ), i ∈ I, τ > τ 0 , as in Lemma 4.1. By using (35) (with β = 6), ( 36) and (37), and by observing that B i (6/τ 0 ) ∩ B(y(t), 2κ 5 /τ 0 ) = ∅, we can write

Dt |∇P τ | 2 (x, t)dx ≤ i∈I Bi(3/τ ) |∇P τ | 2 (x, t)dx ≤ C 1 i∈I Bi(6/τ ) τ 2 P 2 τ (x, t)dx ≤ C 2 i∈I Bi(6/τ ) τ -4 p 2 τ (x, y(t))dx ≤ C 3 i∈I |B i (6/τ )|τ -4 p 2 τ (x i , y(t)) ≤ C 4 i∈I |B i (1/τ )|τ -4 min Bi(1/τ ) p 2 τ (•, y(t)) ≤ C 5 i∈I Bi(1/τ ) τ -4 p 2 τ (x, y(t))dx ≤ C 5 Dt τ -4 p 2 τ (x, y(t))dx, (94) 
with C j = C j (b). Hence, the second inequality of (41) is proved. The proof of the first one is similar.

Proof of Lemma 4.9. We put

C 1 = C 1 + 6, C 2 = max(C 1 , 12κ -5 ) where C 1 = C 1 (κ, d Ω , M
) is the constant in Lemma 4.7. We consider again the balls B(1/τ ), B(3/τ ), defined in Lemma 4.1. Thus

J := Dt |∇q τ (x, t)| 2 dx ≤ i Bi(3/τ ) |∇q τ (x, t)| 2 dx. (95) 
Let us fix i and denote B(3/τ ) = B i (3/τ ). We consider again the functions φ ∈ C 1 (R; [0, 1]) and ψ(x) = φ(τ (x -x 0 )/6) where x 0 is the center of a ball B(6/τ ), as in the proof of Lemma 4.3 (with β = 6). Thanks to Lemma 4.6, there exists a positive constant

C = C(b, d Ω , µ, M ) such that for τ ≥ 2µ, t ∈ [0, T ], x ∈ Ω \ B(y(t); C 1 /τ ), we have (-div b∇ + τ 2 )q τ (x, t) = ∂ t (e -τ 2 (t+T ) u τ (x, t)) ≤ Cτ -2 e -τ µ|t-θ| p τ (x, y(t)). (96) 
We observe that

x ∈ supp (ψ) = B(6/τ ) ⇒ |x -y(t)| ≥ |x 0 -y(t))| -6/τ ≥ d(t) -6/τ > C 1 /τ -6/τ = C 1 /τ.
Hence we can multiply (96) by q τ (x, t)ψ 2 (x) and integrate it over Ω. This implies

Ω b(∇q τ (•, t)) 2 ψ 2 + 2b∇q τ (•, t)ψ q τ (•, t)∇ψ + τ 2 q 2 τ (•, t)ψ 2 ≤ Cτ -2 e -τ µ|t-θ| Ω |q τ (•, t)|p τ (•, y(t))ψ 2 .
Then, from Cauchy-Minkovski's inequality, and as in the proof of Lemma 4.3, we obtain

Ω (|∇q τ (, t)| 2 + τ 2 q 2 τ (•, t))ψ 2 ≤ C Ω q 2 τ (•, t)(∇ψ) 2 + Ce -τ µ|t-θ| τ -2 • • Ω |q τ (•, t)| 2 ψ 2 1/2 Ω |p τ (•, y(t))| 2 ψ 2 1/2 .
Since supp ψ = B(6/τ ) with |∇ψ(x)| ≤ τ max |φ |/6, ψ ≥ 0, and ψ = 1 in B( 3 τ ), we then have

B( 3 τ ) |∇q τ (•, t)| 2 ≤ Cτ 2 B( 6 τ ) q 2 τ (•, t) + Ce -τ µ|t-θ| τ -2 • • B( 6 τ ) |q τ (•, t)| 2 1/2 B( 6 τ ) |p τ (•, y(t))| 2 1/2 .
Thanks to Lemma 4.7 and by using τ -1 ≤ C 1 |x -y(t)| for x ∈ B( 6 τ ), we then have This with (98) prove (42).

B( 3 τ ) |∇q τ (•, t)| 2 ≤ Cτ -4 e -2τ µ|t-θ| B( 6 τ ) |x -y(t)| 2 |p τ (x, y(t))| 2 dx + Cτ -5 e -2τ
Proof of Lemma 4.10. We can assume that D t = ∅. We put λ = 2κ -2 d(t) and J := We then have

J 1 ≤ λ 2 J = 4κ -4 d(t) 2 J. ( 99 
)
On the one hand thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] we have Here we used λ ≥ κ -1 τ -1 . Hence J 2 ≤ 4πκ -4 min(40πκ -6 d(t) 

Then J 2 d(t) 2 J ≤ CL -1 D κ -14 , (101) 
for some numerical parameter C > 0. From ( 101) and (99) we obtain

J ≤ C L -1 D d(t) 2 J,
which is the estimate to prove.

Proof of Lemma 2.1. It is the direct consequence of Lemma 4.9 and Lemma 4.10.

Proof of Lemma 3. We then obtain (31). Let us put ε 1 = T 1 min(1, µκα 2 /8). Then for ε ∈ (0, ε 1 ] we have

R 0 /I 0 ≤ C ε -3 ε -2
Σ τ e -τ µT1 .

Then we have R 0 /I 0 ≤ 1 2 for τ ≥ τ 0 sufficiently large and so I ∞ (τ ) ≥ 1 2 I 0 ≥ C(a, Ω, M, α)ε -3 τ -5 e -8τ κ -1 α -2 ε .

Hence lim inf

τ →∞ τ -1 ln(I ∞ (τ )) ≥ -8κ -1 α -2 ε.

The conclusion follows.

(

  H0): There exists a positive constant δ 1 such that (H0a) : ((b -a)a -1 b) S ≥ δ 1 > 0, ba ≥ δ 1 > 0 in D, or (H0b) : ((b -a)a -1 b) S ≤ -δ 1 < 0, ba ≤ -δ 1 < 0 in D.

Remark 3 .

 3 Condition (UC) holds if b is lipschitzian or piecewise smooth: see Vessella [18, chap 5].

Lemma 4 . 1 .

 41 Let t ∈ [0, T ] such that D t = ∅. Then there exists a non empty finite familly I, and points x i ∈ D t , i ∈ I, such that

Lemma 4 . 2 .

 42 (Elliptic Harnack inequality). Let β > 0. There exists c β = c(b, β) such that for all τ > 0, all ball B(β/τ ) ⊂ R N , if y ∈ B(2β/τ ) we then have max x∈B(β/τ ) p τ (x; y) ≤ c β min x∈B(β/τ ) p τ (x; y).

Lemma 4 . 5 .

 45 (Comparison between u τ and p τ ). Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist positive constants

Lemma 4 . 6 .

 46 Let t ∈ [0, T ]. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist positive constants C = C(b, d Ω , µ, M ),

Lemma 4 . 8 .

 48 (Estimates of P τ in D t ). Let t ∈ [0, T ]. Let us put τ 0 = 12 κ 5 d(t).

Lemma 4 . 9 .

 49 (Estimate of ∇q τ in D t ). Let t ∈ [0, T ]. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist two positive constants C = C(b, d Ω , µ, M ), C 2 = C 2 (κ, d Ω , M ) such that if τ > τ 1 := max(2µ, C 2 /d(t)) ≥ τ 0 , where τ 0 is defined in Lemma 4.8, then Dt |∇q τ | 2 (x, t)dx ≤ Cτ -4 e -2τ µ|t-θ| Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx.(42)Proof in Appendix. Lemma 4.10. Under (H3) there exists a positive constant C = C(L D , κ) such that we have, for τ

  t),M s+1/τ ) G y (x, s)dyds ≤ e µλ λ/τ 0 e -τ 2 s B(y(t),M /τ ) G y (x, s)dyds.

R 2 := ∞ 0 e

 0 -τ 2 s B sG y (x, s)dyds, (87) where τ := τ 2 -τ µ and B := B(y(t -s), 1/τ ) ∪ B(y(t), 1/τ ). Let us put again λ = 2κ -1 |x -y(t)|. We write R 2 = R 21 + R 22 with R 21 := λ/τ 0 e -τ 2 s B sG y (x, s)dyds, R 22 := ∞ λ/τ e -τ 2 s B sG y (x, s)dyds.

  Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx = J 1 + J 2 , J 1 := Dt∩B(y(t),λ) |x -y(t)| 2 |p τ (x, y(t))| 2 dx,J 2 := Dt\B(y(t),λ) |x -y(t)| 2 |p τ (x, y(t))| 2 dx, J := Dt |p τ (x, y(t))| 2 dx.

J 2 ≤

 2 |D t |4πκ -4 exp(-2κλτ ), and, on the other hand,J 2 ≤ 4πκ -4 |x-y(t)|>λ e -2κτ |x-y(t)| dx ≤ 16π 2 κ -4 r>λ e -2κτ r r 2 dr ≤ 20π 2 λ 2 κ -5 τ -1 exp(-2κτ λ) ≤ 20π 2 λ 3 κ -4 exp(-2κτ λ)≤ 20π 2 κ -10 (2d(t)) 3 exp(-2κτ λ).

3 1 ) 4 T 0

 140 Thanks to[START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] and to Lemma 3.2 there exists τ 1 > 0 such that we have, for all τ > τ 1 ,I ∞ (τ ) ≤ cτ -Dt 16κ -4 ε -2 Σ e -2κτ εΣ dxdt + C 1 e -4κ -1 dΩτ ≤ (c |D|τ -4 ε -2 Σ + C 1 )e -2κτ εΣ .

2 ) 2 |D θ | ≥ T 3 1 2 τc 2 κ 4 d - 2 Ω

 22322 Let us fix T 1 ∈ (0, min( 1 8 |D θ | 1/3 , θ, T -θ, α4 )] such that we have, thanks to (H3),|D t | ≥ 1 for |t -θ| ≤ T 1 .(102)Thanks to (32) we have d(t) 2 ≤ 1 2C3 for |t -θ| ≤ T 1 . Thanks to (30) in Lemma 3.2 we then have, for τ > τ 1 , I ∞ (τ ) ≥ I 0 -(x, y(t))dxdt, c = c(a, µ, M ) > 0 and, thanks to[START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF],R 0 := cτ -4 |t-θ|>T1 Dt e -2τ µ|t-θ| p 2 τ (x, y(t))dxdt + C 1 e -τ µ min(θ,T -θ) ≤ (16cκ -4 τ -4 |Ω|ε -2 Σ + C 1 )e -2τ µT1 ≤ C 4 ε -2 Σ τ -4 e -2τ µT1 , with C 4 = C 4 (a, |Ω|, M, v 0 ). Thanks to[START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities. Multi dimensional case[END_REF] and to (32) we have also, for ε ∈ (0, T 1 /α] (and observe that (0, T 1 /α] ⊂ (0, α 3 ]), e -2τ µ|t-θ| Dt∩B(y(t),2d(t))κ 4 d -2 Ω e -4τ κ -1 d(t) dxdt ≥ τ -4 e -4τ κ -1 α -1 ε |t-θ|<αε e -2τµ|t-θ| |D t ∩ B(y(t), 2d(t))|dt. We have D t ∩ B(y(t), 2d(t)) ⊃ D t ∩ B(x(t), d(t)) for some x(t) ∈ ∂D t . Thanks to (102) and to (H3) we then have |D t ∩ B(x(t), d(t))| ≥ L D |B(0, 1)|d(t) 3 . Since ε/2 ≤ d(t) ≤ 2α -2 ε for |t -θ| < αε we then have |D t ∩ B(y(t), 4α -2 ε)| ≥ L D |B(0, 1)|ε 3 /8 and soI 0 ≥ C (Ω, a, M, α)ε 3 τ -4 e -8τ κ -1 α -2 ε|t-θ|<ε e -2τ µ|t-θ| dt ≥ C (Ω, a, M, α)ε 3 τ -5 e -8τ κ -1 α -2 ε .

  µ|t-θ| •

				1/2 •
				B( 6 τ )
		•	|p τ (x, y(t))| 2 dx	1/2
		B( 6 τ )	
		≤ C e -2τ µ|t-θ| τ -4	|x -y(t)| 2 |p τ (x, y(t))| 2 dx.	(97)
				B( 6 τ )
	By putting (97) in (95) we obtain
		J ≤ C e -2τ µ|t-θ| τ -4	|x -y(t)| 2 |p τ (x, y(t))| 2 dx.	(98)
			i	B( 6 τ )
	Finally, as in (94) we have	
	i	B( 6 τ )	

|x -y(t)| 2 |p τ (x, y(t))| 2 dx |x -y(t)| 2 |p τ (x, y(t))| 2 dx ≤ C Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx.

the question that (UC) in Ω would imply (UC) in Ω is out of the scope of this article

Appendix

Proof of Lemma 3.1. We put

= (a -b)∇u τ + a∇w τ ,