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Introduction

The Mullineux problem is a long standing problem in the representation theory of the symmetric groups which has been studied by various authors since the end of the 70's. Let S n be the symmetric group on n letters with n > 1. It is known that the irreducible representations of S n over the field of complex numbers are naturally labeled by the partitions of n (the sequences of non increasing positive integers of total sum n.)

Irr C (S n ) = {ρ λ | λ partition of n}.
The characters and the dimensions of these representations may also been easily computed thanks to the combinatorics of partitions. There are exactly two non isomorphic representations of S n with dimension 1: the trivial representation which is labeled by the partition (n) and the sign representation ε, labeled by the partition (1. . . . .1)

n times

. As a consequence, if λ is a partition of n, there exists another partition µ such that

ρ µ ≃ ε ⊗ ρ λ .
It is natural to ask how one can compute µ from λ. The result is that µ is the conjugate partition of λ which is defined by interchanging rows and columns in the Young diagram of λ (the Young diagram of λ is the finite collection of boxes arranged in left-justified rows, with λ k boxes in the kth row for all k ≥ 1.) Of course, all the above questions and problems arise when we replace C by an arbitrary field k and in particular by a field of characteristic p > 0. In this case, the irreducible representations have first been constructed in [START_REF] James | The irreducible representations of the symmetric groups[END_REF]. They are labeled by a subset of partitions called the set of p-regular partitions the partitions of n where the non zero parts are not repeated p or more times.

Irr k (S n ) = { ρ λ | λ p-regular partition of n}.

We also have two one-dimensional representations: the trivial representation and the sign representation ε and they are non isomorphic if and only if p = 2. By contrast, we still not even know how to compute the dimensions of these representations in general. The other mentioned problem still makes sense in this context. Namely, if λ is a p-regular partition then there exists a unique p-regular partition µ such that ρ µ ≃ ε ⊗ ρ λ . If we set m p (λ) := µ, we thus obtain an involution m p on the set of p-regular partitions.

If p = 2 then it is clear that m p = Id (because then ε is nothing but the trivial representation) but in general, it is difficult to describe m p . In fact, this map may even be defined in the context of Hecke algebras 2010 Mathematics Subject Classification: 20C08,05E10 1 of type A at a p-root of unity. In this case, p do not need to be a prime but just a positive integer (greater than 2). The associated involution that we obtain coincides with m p if p is prime. A natural problem is thus to find an explicit description of this involution m e on the set of e-regular partitions for all e ∈ N >1 . This is the main subject of the present paper.

In [START_REF] Mullineux | Bijections of p-regular partitions and p-modular irreducibles of the symmetric groups[END_REF], Mullineux has first given a conjectural algorithm for computing this involution (which will be called the Mullineux involution in the sequel). Later, another equivalent algorithm has been given by Xu [START_REF] Xu | On p-series and the Mullineux conjecture[END_REF][START_REF] Xu | On Mullineux' conjecture in the representation theory of symmetric groups[END_REF]. In [START_REF] Kleshchev | Branching rules for modular representations of symmetric groups III: Some corollaries and a problem of Mullineux[END_REF], Kleshchev gave another combinatorial recursive algorithm for computing the Mullineux involution but it was not clear at that time why this algorithm would be equivalent to the Mullineux (and the Xu's) algorithm. Ford and Kleshchev gave a proof of this fact later in [START_REF] Ford | A proof of the Mullineux conjecture[END_REF]. Another proof was given in [START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF] by Bessenrodt and Olsson. In [START_REF] Brundan | A new proof of the Mullineux Conjecture[END_REF], Brundan and Kujawa gave another proof using works by Serganova on the general linear supergroup. We also note that recently, Fayers [START_REF] Fayers | Regularisation, crystals and the Mullineux map[END_REF] has given another way for computing the involution.

The aim of this paper is to present several elementary combinatorial (and recursive) algorithms for the computation of the involution using the Kleshchev result. These algorithms are based on the results of [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF][START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF] and on the following points:

1. Each simple module for the Hecke algebra of type A labeled by an e-regular partition of rank n can be seen as a simple module for the affine Hecke algebra of type A.

2. The Mullineux map at the level of Hecke algebra coincide with the so called Iwahori-Matsumoto involution for the affine Hecke algebra of type A.

3. The Iwahori-Matsumoto involution may be computed using an analogue involution at the level of Ariki-Koike algebras associated to a multicharge s ∈ Z l .

4. This later involution may be computed using the Mullineux involution for Hecke algebras of type A on e-regular partitions with rank (strictly) less than n.

As a consequence, to compute the image of an e-regular partition of rank n under the Mullineux involution, we are reduced to compute several images of e-regular partitions of rank strictly less than n under the Mullineux involution. This thus gives a recursive algorithm to solve our problem. In fact, depending on the multicharge, we choose for our Ariki-Koike algebras, we obtain several different algorithms. It turns out that for a particular choice of multicharge, our algorithm is equivalent to Xu's algorithm. This thus gives a new elementary proof for the fact that the Mullineux and the Xu's algorithm give an answer for the Mullineux problem. This also gives a new interpretation of these algorithms (another interpretation is also given in [START_REF] Brundan | A new proof of the Mullineux Conjecture[END_REF]). The paper will be organized as follows. In section 2, we recall some basic facts on the representation theory of affine Hecke algebras of type A and of Ariki-Koike algebras. We also recall several results coming from [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF][START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF] concerning the labelling of the simple modules for these algebras and the relations between them. Section 3 introduces the Mullineux and the Iwahori-Matsumoto involutions and shows how these two maps are related. In section 4, we study combinatorial properties of partitions and multipartitions which will be used in the following sections. Section 5 gives the algorithms we get for computing the Mullineux involution. The last section shows that Xu's algorithm can be seen as one of our algorithm.
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Hecke algebras

In this first section, we recall the definitions of the affine Hecke algebra of type A and of the Ariki-Koike algebras. We then give a brief overview of their representation theories. Finally, we explain the relations between the known parametrizations of the simple modules for these algebras. The main references for these parts are [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] and [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF].

Affine Hecke algebra of type A

Let n ∈ Z >0 . Let q ∈ C * be a primitive root of unity of order e > 1. The Iwahori-Hecke algebra H n (q) of type A is the unital associative C-algebra generated by T 0 , T 1 , . . . , T n-1 and subject to the relations:

T i T i+1 T i = T i+1 T i T i+1 (i = 1, . . . , n -2), T i T j = T j T i (|i -j| > 1), (T i -q)(T i + 1) = 0 (i = 1, . . . , n -1).
The affine Hecke algebra H n (q) is the unital associative C-algebra which is isomorphic to

H n (q) ⊗ C C[X ±1 1 , . . . , X ±1 n ],
as a C-vector space and such that H n (q) and C[X ±1 1 , . . . , X ±1 n ] are both subalgebras of H n (q) with the following additional relations:

T i X i T i = qX i+1 , T i X j = X i T j ,
for all (i, j) ∈ {1, . . . , n -1} 2 with i = j. We denote by Mod n the category of finite dimensional H n (q)-modules such that for all j = 1, . . . , n, the eigenvalues of the X j are power of q. The simple objects Irr( H n (q)) in Mod n can be naturally labeled by the set of aperiodic multisegments that we now define: Definition 2.1.1. Let l ∈ N >0 and let i ∈ Z/eZ. The segment of length l and head i is the sequence of consecutive residues (i.e elements of Z/eZ, identified with {0, 1, . . . , e -1}) [i, i + 1, . . . , i + l -1] in Z/eZ. The residue i ∈ Z/eZ is then called the head of the segment and the residue i + l -1 the tail of the segment. A multisegment is a formal sum of segments. A multisegment is said to be aperiodic if for every l ∈ Z >0 , there exists i ∈ Z/eZ such that there is no segment with length l and tail i appearing in the multisegment. We denote by M e the set of aperiodic multisegments. The length of a multisegment is the sum of the lengths of the the segments appearing in it and is denoted by |ψ|. We denote by M e (n) the set of aperiodic multisegments of length n.

Example 2.1.2. For e = 3, the multisegment:

[0, 1, 2, 0] + [0] + [1] + [1, 2] + [2, 0]
is an aperiodic multisegment of length 10 where as

[0, 1, 2, 0] + [0] + [0, 1] + [1, 2] + [2, 0]
is a multisegment of length 10 which is not aperiodic.

By the geometric realization of H n (q) by Chriss and Ginzburg [START_REF] Chriss | Representation theory and complex geometry[END_REF], we know that one may naturally label the simple modules in Mod n by the set M e (n) of aperiodic multisegments of length n. We thus have:

Irr( H n (q)) = {L ψ | ψ ∈ M e (n)}

Ariki-Koike algebras

As above, we fix a primitive root of unity q ∈ C * of order e > 1. Let P l := Z l and let {z i | i = 1, . . . , l} be the canonical basis of P l . Let S l be the symmetric group generated by the transpositions σ i := (i, i + 1) for i = 1, . . . , l -1. The extended affine symmetric group S l is the semidirect product P l ⋊ S l with the relations given by σ i z j = z j σ i for j = i, i + 1 and σ i z i σ i = z i+1 for i = 1, . . . , l -1 and j = 1, . . . , l. This group is generated by the σ i for i = 1, . . . , l -1 and by τ := z l σ l-1 . . . σ 1 (see [18, §5.1].)

It acts faithfully on Z l as follows: for any s = (s 1 , . . . , s l ) ∈ Z l : σ c .s = (s 1 , . . . , s c-1 , s c+1 , s c , s c+2 , . . . , s l ) for c = 1, . . . , l -1 and z i .s = (s 1 , s 2 , . . . , s i + e, . . . , s l ) for i = 1, . . . , l.

and we have τ.s = (s 2 , . . . , s l , s 1 + e).

Let s be an orbit with respect to the above action and let s := (s 1 , . . . , s l ) ∈ Z l be an element in this orbit. The Ariki-Koike algebra H s n (q) is the quotient H n (q)/I s where I s := 1≤j≤l (X 1q sj ) . If l = 1, this is a Hecke algebra of type A (of finite type), and if l = 2 a Hecke algebra of type B (of finite type). One can see that the above algebra is well defined and depends only on the orbit of s modulo the action of S l (and on q).

The representation theory of this algebra has been intensively studied in a number of works. We refer to [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF][START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] and the references theirin. We will only recall what is needed for the results of the present paper. The analogues of the multisegments in the context of Ariki-Koike algebras are the multipartitions that we now define. For this, let us give some additional combinatorial definitions.

A partition is a nonincreasing sequence λ = (λ 1 , • • • , λ m ) of nonnegative integers. One can assume this sequence is infinite by adding parts equal to zero. The rank of the partition is by definition the number |λ| = 1≤i≤m λ i . We say that λ is a partition of n, where n = |λ|. By convention, the unique partition of 0 is the empty partition ∅.

More generally, for l ∈ Z >0 , an l-partition λ of n is a sequence of l partitions (λ 1 , . . . , λ l ) such that the sum of the ranks of the λ j is n. The number n is then called the rank of λ and it is denoted by |λ|. The set of l-partitions is denoted by Π l and the set of l-partitions of rank n is denoted by Π l (n). Let λ be an l-partition. The nodes or the boxes of λ are by definition the elements of the Young diagram of λ:

[λ] := {(a, b, c) | a ≥ 1, c ∈ {1, . . . , l}, 1 ≤ b ≤ λ c a } ⊂ Z >0 × Z >0 × {1, . . . , l}.
The content of a node γ = (a, b, c) of λ is the element ba + s c of Z and the residue is the content modulo eZ. If l = 1 (that is when we consider a partition instead of a multipartition), then the Young diagram is identified with a subset of Z >0 × Z >0 in an obvious way.

Since the works of Ariki and Lascoux-Leclerc-Thibon, it is known that the representation theory of these algebras is closely related to the representation theory of quantum groups. In particular, one can naturally label the simple modules by the crystal basis of a certain integrable representation for the quantum group of affine type A. We will not give the details of all the consequences of this fact but we summarize this below. Again, we refer to [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] for a complete study. For all choice of s ∈ s, we can define a certain subset of l-partitions which are called Uglov l-partitions and which are denoted by Φ e,s (n). These classes of multipartitions, which strongly depends on the choice of s, can all be seen as non trivial generalizations of the set of e-regular partitions:

• For all s ∈ Z, we define:

A l e [s] := {(s 1 , . . . , s l ) ∈ Z l | s 1 = s ≤ s 2 ≤ . . . s l < s + e}.
This is a fundamental domain for the action of S l on Z l . If s ∈ A l e [s], then the l-partitions in Φ e,s (n) are known as FLOTW l-partitions and they have a non recursive definitions: we have λ = (λ 1 , . . . , λ l ) ∈ Φ s,e (n) if and only if:

1. For all j = 1, . . . , l -1 and i ∈ Z >0 , we have:

λ j i ≥ λ j+1 i+sj+1 -sj .
2. For all i ∈ Z >0 , we have:

λ l i ≥ λ 1 i+e+s1-s l . 3. For all k ∈ Z >0 , the set {λ j i -i + s j + eZ | i ∈ Z >0 , λ j i = k, j = 1, . . . , l},
is a proper subset of Z/eZ.

• If s satisfies for all i = 1, . . . , l -1, s i+1s i > n-1 (we say that s is very dominant, it is also sometimes referred as the "asymptotic case" in the literature) then the set Φ e,s (n) is known as the set Kleshchev l-partitions. If s ′′ satisfy the same property, then the associated set Φ e,s" (n) is the same.

• If l = 1, the set Φ e,(s) (n) is simply the set of e-regular partitions It turns out that each set Φ e,s (n) with s ∈ s gives a natural labelling for the irreducible representations of the Ariki-Koike algebra H s n (q). As a consequence, there are several natural possibilities for the labelling of the simple modules of H s n (q), one for each choice of an element in the orbit s. For more details on these parametrizations, we refer to [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]. Thus, one can write:

Irr(H s n (q)) = {D λ s | λ ∈ Φ e,s ( 
n)}. By [START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF], each of these labellings has an interpretation in terms of a cellular structure. Last, clearly, if s and s ′ in the same orbit, there is a bijection:

Ψ s→s ′ e : Φ (e,s) (n) → Φ (e,s ′ ) (n),
which is uniquely defined as follows. For all λ ∈ Φ (e,s) (n) then:

D λ s ≃ D Ψ s→s ′ e (λ) s ′ .
This bijection has been explicitly described in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF] in a combinatorial way using crystal isomorphisms (the coincidence of the crystal isomorphisms with these bijections is proved in [START_REF] Jacon | On the one dimensional representations of Ariki-Koike algebras at roots of unity[END_REF]Prop. 3.7].) We recall this description subsection (a program in GAP3 is available for computing it in all cases [START_REF] Jacon | Program in GAP3 for computing the crystal isomorphisms[END_REF]). In the next sections, the following particular case: s = (s 1 , s 2 ) and s ′ = (s 1 , s 2 + e) will be of particular interest. 

So that :

Irr(H s n (q)) = {D (∅,3) (0,1) , D ( (1),(1,1)) (0,1) 
, D

((1),( 2)) (0,1)

, D

((2), (1)) (0,1) 
, D

((2,1),∅) (0,1)
, D

((3),∅) (0,1) } = {D (∅,(3)) (0,4) , D ((1),(1,1)) (0,4) , D ((1),(2)) (0,4) , D ((2),(1)) (0,4) , D (∅,(2,1)) (0,4) , D ((1),(1,1)) (0,4) } = {D (3,∅) (1,0) , D ((1),(1,1)) (1,0) , D ((1),(2)) (1,0) , D ((1,1),(1)) (1,0) , D ((2,1),∅) (1,0) , D ((2),(1)) (1,0) } 2.

Description of the crystal isomorphisms

First let us assume that l = 2 and that (s 1 , s 2 ) ∈ Z 2 . Let λ ∈ Φ (e,s) (n). We follow the presentation in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF].

We define the minimal integer

d ≥ |s 1 -s 2 | such that λ 1 d+1+s1-s2 = λ 2 d+1 = 0 if s 2 ≥ s 1 ,

and otherwise the minimal integer

d ≥ |s 1 -s 2 | such that λ 2 d+1+s2-s1 = λ 1 d+1 = 0. To (λ 1 , λ 2 )
, we associate its s-symbol of length d. This is the following two-rows array.

• If s 1 ≤ s 2 then: S(λ 1 , λ 2 ) = s 2 -d + λ 2 d . . . . . . s 2 -2 + λ 2 2 s 2 + λ 2 1 -1 s 2 -d + λ 1 d+s1-s2 . . . s 1 + λ 1 1 -1 • if s 1 > s 2 then: S(λ 1 , λ 2 ) = s 1 -d + λ 2 d+s2-s1 . . . s 2 + λ 2 1 -1 s 1 -d + λ 1 d . . . . . . s 1 -2 + λ 1 2 s 1 + λ 1 1 -1
We will write S(λ 1 , λ2 ) = L2 L1 where the top row (resp. the bottom row) corresponds to λ 2 (resp. λ 1 ). Of course, it is easy to recover the 2-partition from the datum of its symbol. From this symbol, we define a new symbol L2 L1 as follows.

• Suppose first s 2 ≥ s 1 . Consider x 1 = min{t ∈ L 1 }. We associate to x 1 the integer y 1 ∈ L 2 such that

y 1 = max{z ∈ L 2 | z ≤ x 1 } if min{z ∈ L 2 } ≤ x 1 , max{z ∈ L 2 } otherwise. (1) 
We repeat the same procedure to the lines L 2 -{y 1 } and L 1 -{x 1 }. By induction this yields a sequence {y 1 , ..., y d+s1-s2 } ⊂ L 2 . Then we define L 2 as the line obtained by reordering the integers of {y 1 , ..., y d+s2-s1 } and L 1 as the line obtained by reordering the integers of L 2 -{y 1 , ..., y d+s1-s2 } + L 1 (i.e. by reordering the set obtained by replacing in L 2 the entries y 1 , ..., y d+s1-s2 by those of L 1 ). We

obtain a "symbol" L2 L1 . • Now, suppose s 2 < s 1 . Consider x 1 = min{t ∈ L 2 }. We associate to x 1 the integer y 1 ∈ L 1 such that y 1 = min{z ∈ L 1 | x 1 ≤ z} if max{z ∈ L 1 } ≥ x 1 , min{z ∈ L 1 } otherwise. ( 2 
)
We repeat the same procedure to the lines L 1 -{y 1 } and L 2 -{x 1 } and obtain a sequence {y 1 , ..., y d+s1-s2 } ⊂ L 1 . Then we define L 1 as the line obtained by reordering the integers of {y 1 , ..., y d+s2-s1 } and L 2 as the line obtained by reordering the integers of L 1 -{y 1 , ..., y d+s2-s1 } + L 2 . We obtain a "symbol" L2 L1 .

The new symbol L2 L1 that we obtain is canonically associated to a bipartition (λ 1 , λ 2 ) and the multicharge (s 2 , s 1 ). The crystal isomorphisms in the case l = 2 are thus entirely determined from the following results proved in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF]:

1. We have Ψ (s1,s2)→σ1(s1,s2) e (λ 1 , λ 2 ) = (λ 1 , λ 2 ).
2. We have Ψ (s1,s2)→τ.(s1,s2) e (λ 1 , λ 2 ) = (λ 2 , λ 1 ).

3. For all σ = x 1 . . . . .x m ∈ S 2 with x i ∈ {σ 1 , τ } for all i = 1, . . . , m, we have:

Ψ (s1,s2)→σ.(s1,s2) e = Ψ x2.....xm.(s1,s2)→σ.(s1,s2) e • . . . • Ψ (s1,s2)→xm.(s1,s2) e
In the general case l ∈ N >0 and s ∈ Z l , now:

1. For all c = 1, . . . , l -1, we have Ψ (s1,s2)→σc(s1,s2) e (λ) = µ, where µ j = λ j for all j = c, c + 1, µ c = λ c and µ c+1 = λ c+1 .

2. We have Ψ s→τ.s e (λ) = (λ 2 , . . . , λ l , λ 1 ). . Let λ = (λ 1 , λ 2 ) ∈ Φ (e,s) (n), we then write its symbol:

For all

σ = x 1 . . . . .x m ∈ S 2 with x i ∈ {σ 1 , . . . , σ l-1 , τ } for all i = 1, . . . ,
S(λ 1 , λ 2 ) = s 2 -d + λ 2 d . . . . . . s 2 -2 + λ 2
We then perform the above algorithm to obtain a new symbol L2 L1 which must be of the form :

y d+s1-s2 . . . y 1 x d . . . . . . x 2 x 1
We then consider the following symbol: 0 . . . e -1 x d + e . . . . . . x 2 + e x 1 + e y d+s1-s2 . . . y 1 By the discussion above, this is the (s 1 , s 2 + e)-symbol of the bipartition Ψ (s1,s2)→(s1,s2+e) e (λ 1 , λ 2 ) (more details and examples can be found in [START_REF] Jacon | Crystal graphs of irreducible highest weight U q ( sl e )-modules of level two and Uglov bipartitions[END_REF])

Example 2.3.2. We keep the example 2.2.2, one can check that the map Ψ (0,1)→(0,4) e is given as follows 1), ( 2)) → (∅, (2, 1)) (( 2), ( 1)) → (( 2), ( 1)) ((2, 1), ∅) → ((1, 1), ( 1))

Ψ (0,1)→(0,4) e : Φ 3,(0,1) → Φ 3,(0,4) (∅, (3)) → (∅, ( 3 
)) ((1), (1, 1)) → ((1), (1, 1)) ((
((3), ∅) → ((1), ( 2)) 
More examples can be found in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF].

Aperiodic multisegments and multipartitions

Let s be an orbit of Z l with respect to the action of the affine symmetric group (recall the definition of the action in §2.2). If V is a simple module for the Ariki-Koike algebra then it is also a simple H n (q)-module in the category Mod n . Hence there exists a unique aperiodic multisegment ψ such that V ≃ L ψ (as a H n (q)-module). As a consequence, far any s ∈ s we have a well defined map:

χ n e,s : Φ (e,s) (n) → M e (n), which is defined as follows. Let λ ∈ Φ (e,s) (n), then we have a unique χ n (e,s) (λ) ∈ M e (n) such that:

D λ s ≃ L χ n e,s (λ) 
. By [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF], this map may be described as follows:

• Assume first that s ∈ A l e [s] for all non zero part λ c i of λ, we associate the segment

[(1 -i + s c ) + eZ, . . . , λ c i -i + s c ].
By [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF], The multisegment χ n e,s (λ) is just the formal sum of all the segments associated to the non zero part of λ.

• As a consequence, in general, if s ′ ∈ s. Let s ∈ A l e [s] ∩ s, then χ n e,s ′ (λ) = χ n e,s (Ψ s ′ →s e (λ)).
Given an aperiodic multisegment ψ, It is now natural to try to find the multicharges s such that ψ as an antecedent for the map χ n e,s . This question has been completely solved in [START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF]. There always exist such multicharges (they are non unique in general) which are called admissible multicharges. By [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF], χ n e,s is injective so that if s is admissible for ψ there exists a unique λ such that χ n e,s (λ) = ψ. This l-partition will be called admissible (with respect to ψ). By definition, we have the following proposition where we use the following notation. For s and t two multicharges, we denote s ⊂ t if and only if, for all j ∈ Z/eZ, the number of integers conguent to j in s is less or equal to the number of integers conguent to j in t. Proposition 2.4.1. Assume that λ ∈ Φ (e,s) (n) then t is admissible for the multisegment χ n e,s (λ) if and only if s ⊂ t.

Proof. Set s = (s 1 , . . . , s l ) and t = (t 1 , . . . , t m ). Assume that λ ∈ Φ (e,s) (n) then as a H n (q)-module, we have that 1≤j≤l (X 1 -q sj ) acts as 0 on D λ s ≃ L χ n e,s (λ) . As a consequence, as s ⊂ t, we have that 1≤j≤m (X 1 -q tj ) acts as 0 on L χ n e,s (λ) . This implies that it is a well-defined H t n (q)-module and the result follows.

Remark 2.4.2. One can also prove the above proposition combinatorially using the descriptions of the admissible multicharges.

The Mullineux and the Iwahori-Matsumoto involutions

The aim of this section is to introduce the Mullineux involution for the symmetric group and its analogues in the context of Ariki-Koike algebras and affine Hecke algebras.

Iwahori-Matsumoto involution for affine Hecke algebras of type A

We have an involution ♯ on H n (q) which has been defined by Iwahori and Mastumoto in [START_REF] Iwahori | On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups[END_REF]:

T ♯ i = -qT -1 i , X ♯ j = X -1 j
for i = 1, . . . , n -1 and j = 1, . . . , n. The Iwahori-Matsumoto involution naturally induces an involution on the set of aperiodic multisegments. We have an involution:

♯ : M e (n) → M e (n), defined for all ψ ∈ M e (n) by L ♯ ψ = L ψ ♯ .
Remark 3.1.1. We have in fact two others well defined involutions on H n (q) which are defined as follows:

• The Zelevinsky involution τ defined in [START_REF] Moeglin | Sur l'involution de Zelevinski[END_REF] :

T ♯ i = -qT -1 n-i , X ♯ j = X -1 n+1-j ,
for i = 1, . . . , n -1 and j = 1, . . . , n.

• The involution ∇ :

T ∇ i = -qT n-i , X ∇ j = X n+1-j , for i = 1, . . . , n -1 and j = 1, . . . , n.
We have for all x ∈ H n (q):

x τ = (x ∇ ) ♯ = (x ♯ ) ∇ .
These two involutions thus also induce involutions on the set M e (n) and they have been studied in [START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF].

Mullineux involution for Ariki-Koike algebras

Assume that s ∈ Z l . Then we have a well-defined algebra automorphism:

γ : H s n (q) → H s n (q -1
), which is defined on the generators as follows:

T 0 → T -1 0 , T i → -qT -1
i . This map naturally induces bijections on the indexing sets of the simple modules of Ariki-Koike algebras. Let s ♯ be the orbit of (-s 1 , . . . , -s l ) modulo the action of the affine symmetric group. Let v ∈ s ♯ then we have a map: This map has been described in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF]. If l = 1 and e is prime then it coincides with the usual Mullineux involution of the symmetric group that we have defined in the introduction. If l = 1, then it corresponds to the Mullineux involution of the Hecke algebra of type A of [START_REF] Brundan | Modular branching rules and the Mullineux map for Hecke algebras of type A[END_REF] which will simply be denoted by m e (it does not depend on s). In this paper, we will give an algorithm for computing m e . Remark 3.2.1. If λ is a partition and γ a node of its Young diagram, the γ-hook of λ id by definition the set of all the nodes at the right and at the bottom of γ (including γ). The length of the hook is the number of nodes in it. We say that λ is an e-core if all the hooks have length strictly less than e. If λ is an e-core then m e (λ) can be easily described: it is just the conjugation of λ (as in the semisimple case), see [START_REF] Mullineux | Bijections of p-regular partitions and p-modular irreducibles of the symmetric groups[END_REF] (when e is a prime but the results generalizes easily if e is an integer). More generally, it is a natural question to ask how one can describe all the maps m s→v e in general. It turns out that by [START_REF] Jacon | On the Mullineux involution for Ariki-Koike algebras[END_REF]Prop. 4.2], knowing the map m e , one can describe it quite easily in a particular case: Proposition 3.2.2. Assume that s is very dominant. Let s ♯ := (-s ′ 1 , . . . , -s ′ l ) be a very dominant multicharge such that s ′ i ≡ s i + eZ for all i = 1, . . . , l. Then for all λ ∈ Φ (e,s) (n), we have:

m s→v e : Φ (e,s) (n) → Φ (e,v) (n) 
m s→s ♯ e
(λ) = (m e (λ 1 ), . . . , m e (λ l )).

As a consequence, this result, combining with the fact that we know how to compute the natural bijection between the various parametrizations of the simple modules of Ariki-Koike algebras permit to describe all the Mullineux involutions (assuming that we know m e ). Indeed, let v 1 ∈ s and let v 2 ∈ s ♯ . Let s 1 ∈ s be a very dominant multicharge. Then we have:

m v1→v2 e = Ψ s ♯ 1 →v2 e • m s1→s ♯ 1 • Ψ v1→s1 e
where s ♯ 1 is as in the above proposition. Example 3.2.3. We keep the setting of example 2.2.2. For n = 3, the multicharge (0, 4) is very dominant, so the above result applies in this case. One can take s ♯ = (0, 5) which is also very dominant. Using the fact that m 3 → (∅, (2, 1)) (( 1), (1, 1)) → ((1), ( 2)) (( 1), ( 2)) → (∅, (3)) (( 2), (1)) → ((1, 1), ( 1)) ((1, 1), (1)) → ((2), ( 1)) ((3), ∅) → ((1), (1, 1))

Relations between the involutions

Now we put all the above results together to deduce relations between the various involutions we have defined. The following result is proved in [START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF].

Theorem 3.3.1. Let ψ be an aperiodic multisegment and let s ∈ A l e [s] be an admissible multicharge for ψ. Set s t = (-s l , . . . , -s 1 ) ∈ A l e [-s l ] then we have:

Ψ ♯ = χ n e,s t • m s→s t e • (χ n e,s ) -1 (ψ)
As a consequence, the Iwahori-Mastumoto involution may be computed as follows. Take an aperiodic multisegment ψ.

• Choose an admissible multicharge s for ψ and compute λ := (χ n e,s ) -1 (ψ) using §2.4.

• Compute ν := m s→s t e (λ) using the discussion in the last section.

• Compute ψ ♯ := χ n e,s t (ν) using the algorithm described in [START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF].

Example 3.3.2. Take e = 3 and the multisegment [0]+[0, 1, 2]+ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF][START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF]. One can see that (0, 1) is admissible for this multisegment and we have (χ 7 3,(0,1) ) -1 (ψ) = ((3), (3, 1)). We need to compute m s→s t e ((3), (3, 1)). To do this, we first compute Ψ (0,1)→(0,7) e ((3), (3, 1)) as (0, 7) is very dominant. We obtain the bipartition ((1), [START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF]). Now we have seen that m (0,7)→(0,8) e ((1), (3, 3)) = (m 3 (1), m 3 (3, 3)) = ((1), ( 6)).

Again, we compute Ψ (0,8)→(0,2) e ((1), ( 6)) = ((1), ( 6)) and thus we get

ψ ♯ := [0] + [2, 0, 1, 2, 0, 1].
Now, let us explain how one can deduce an algorithm for computing the Mullineux involution for e-regular partitions. This is based on the following elementary remark. Let λ ∈ Φ e,(0) be an e-regular partition and consider the aperiodic multisegment ψ := χ n e,(0) (λ) (recall that this is nothing but the formal sum of the segments given by the rows of the Young diagram of λ). The above theorem shows that:

m e (λ) = (χ n e,( 0 
) ) -1 (ψ ♯ ).
So now we are reduced to compute (χ n e,(0) ) -1 (ψ ♯ ). Take s ∈ A l e [0] such that l > 1 then by Proposition 2.4.1, this is an admissible multicharge. We have:

ψ ♯ = χ n e,s t • m s→s t e • (χ n e,s ) -1 (ψ)
Now µ := (χ n e,s ) -1 (ψ) is the admissible l-partition and the main problem is thus to compute m s→s t e (µ). We have already seen that this can be done in three steps:

1. Compute the crystal isomorphism Ψ s→v e (µ) = (ν 1 , . . . , ν l ) where v is very dominant (recall that this means that v = (s 1 , s 2 + ke) with ke > n -1) 2. By Proposition 3.2.2, m v→v ♯ e (ν) can be computed by applying the Mullineux map component by component. As |ν| = |λ|, if we assume that at least two components of the l-partition (ν 1 , . . . , ν l ) are non empty, all of the components are of rank < n and we know how to compute the Mullineux involution by induction.

3. Apply again a crystal isomorphism Ψ v ♯ →s t e .

In the next section, we will apply the above algorithm in the case where l = 2 and in particular show that the condition for applying our induction in step 2 is always satisfied (except in the case where s = (s 1 , s 2 ) and s 1 = s 2 .)

Combinatorial properties

In this section, we will try to find simple combinatorial ways to compute several objects that we have already defined: this concerns the admissible multicharges and multipartitions and the crystal isomorphisms.

On admissible multipartitions

If λ and µ are two partitions, we denote by λ ⊔ ν the partition obtained by concatenation (and reordering the parts if necessary).

Assume that we have an e-regular partition λ = (λ 1 , . . . , λ r ) (that is λ ∈ Φ e,(s) (n) for any s ∈ Z). Let s ∈ A l e [s]. By Proposition 2.4.1, s is an admissible multicharge. The aim of this subsection is to show that one can easily construct the associated admissible l-partition λ ∈ Φ e,s (n) such that χ n e,s (λ) = χ n e,(s) (λ) (recall that χ n e,s is always injective). To do this, one can use the algorithm developed in [START_REF] Jacon | Kashiwara and Zelevinsky involutions in affine type A[END_REF] from the datum of the multisegment χ n e,(s) (λ) or we can argue as follows. Let l ′ ∈ {1, . . . , l} be minimal such that s l ′ = s l . We construct λ by induction as follows.

If λ = ∅ then λ := ∅ and we are done. Otherwise, set

s ′ :=    (s l , . . . , s l l-l ′ +2
, s 2 + e, . . . , s l ′ -1 + e) if l ′ = 1

s if l ′ = 1
Note that we have s ′ ∈ A l e [s l ]. We denote m := λ 1 + . . . + λ e+s-s l . By induction, we have constructed the l-partition ν ∈ Φ (e,s ′ ) (nm) such that we have χ n-m e,s ′ (ν) = χ n-m e,(s l ) (λ e+s-s l +1 , λ e+s-s l +2 , . . . , λ r )

We then define λ as follows

• If we have l ′ = 1 then λ 1 = (λ 1 , . . . , λ e ) ⊔ ν l and λ j = ν j-1 if j = 1.
• Otherwise, λ 1 = (λ 1 , . . . , λ e+s-s l )⊔ν 2+l-l ′ and λ j = ν j+1-l ′ for j > 1 where the indices are understood modulo l.

Proposition 4.1.1. With this construction, we have λ ∈ Φ e,s (n) and χ n e,s (λ) = χ n e,(s) (λ). Proof. We prove the proposition by induction. The result is trivial when n = 0. Keeping the above notations, one can assume that ν ∈ Φ (e,s ′ ) (nm). First one can perform exactly the same procedure as in §2.4 for the description of the map χ n e,s to associate to λ a multisegment (even if we have -not already -proved that λ is in Φ e,s (n)). By construction, this multisegment is nothing but χ n e,(s) (λ). It is thus an aperiodic multisegment. This proves condition 3 of FLOTW l-partition for λ (see the definition in §2.2). Hence, we just need to show that the l-partition satisfies the two first points.

• If l ′ = 1, by induction, we have ν j ≥ ν j+1 for all j = 1, . . . , l -1. This implies that λ j i ≥ λ j+1 i for all j = 2, . . . , l -1 and that λ l i ≥ λ 1 i+e for all i ≥ 1 and we get that λ 1 i ≥ λ 2 i because (λ 1 , . . . , λ e ) are the greatest parts of λ and because ν l i ≥ ν 1 i+e for all i > 0.

• If l ′ = 1, by the property of FLOTW l-partitions, we have that µ := (ν l-l ′ +3 , . . . , ν l , ν 1 , . . . , ν l-l ′ +1 , ν l-l ′ +2 ) is in Φ e,v (nm) for v = (s 2 , . . . , s l ′ -1 , s l , . . . , s l , s l ) and we can thus conclude using the fact that λ 1 j = λ j if j = 1, . . . , e + ss l and λ 1 j = µ l j-(e+s-s l ) otherwise.

In the case where l = 2 (which is the case that we will mostly studied in the forthcoming sections), the multipartition λ = (λ 1 , λ 2 ) is easy to obtain. One can assume that s 1 = 0, then we have λ 1 = (λ 1 , . . . , λ e-s2 , λ 2e-s2+1 , . . . , λ 3e-s2 , . . . , λ 2ke-s2 +1 , . . . , λ 3ke-s2 , . . .) and λ 2 = (λ e-s2+1 . . . , λ 2e-s2 , λ 3e-s2+1 , . . . , λ 4e-s2+1 , . . . λ 3ke-s2+1 , . . . , λ 4ke-s2 , . . .)

Example 4.1.2. Let us take e = 4, λ = (8, 8, 6, 6, 4, 3, 3, 2, 1, 1), then the associated Young tableau (with the residues of each node marked in the associated box) is:

0 1 2 3 0 1 2 3 3 0 1 2 3 0 1 2 2 3 0 1 2 3 1 2 3 0 1 2 0 1 2 3 3 0 1 2 3 0 1 2 0 1
Take s = (0, 2, 2). Following the algorithm, we first have l ′ = 2. Then s ′ = (2, 2, 2). We have m = λ 1 + λ 2 and we need to compute ν such that

χ n-m 4,(2,2,2) (ν) = χ n-m 4,(2) (6, 6, 4, 3, 3, 2, 1, 1)
We obtain ν = ((6, 6, 4, 3), (3, 2, 1, 1), ∅) and we have λ = ((8, 8), [START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Brundan | Modular branching rules and the Mullineux map for Hecke algebras of type A[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF], (3, 2, 1, 1)).

In the case where l = 2, we have:

• If s = (0, 0), we have λ = ((8, 8, 6, 6, 1, 1), (4, 3, 3, 2)).

• If s = (0, 1), we have λ = (8, 8, 6, 2, 1, 1), [START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Brundan | Modular branching rules and the Mullineux map for Hecke algebras of type A[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF]).

• If s = (0, 2), we have λ = (8, 8, 3, 2, 1, 1), [START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Brundan | Modular branching rules and the Mullineux map for Hecke algebras of type A[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF]).

• If s = (0, 3), we have λ = ((8, 3, 3, 2, 1), [START_REF] Fayers | Regularisation, crystals and the Mullineux map[END_REF][START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF][START_REF] Brundan | Modular branching rules and the Mullineux map for Hecke algebras of type A[END_REF][START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF]).

Using this, we have thus constructed a map

θ n e,s : Φ e,(0) (n) → Φ e,s (n) which associates to λ the l-partition λ constructed above (we will sometimes omit the subscript n).

Crystal isomorphisms

In this second subsection, we study in details the crystal isomorphisms restricted to the multipartitions in the image of θ e,s . in the case where l = 2. The first aim is to implify the procedure to compute it, the second is to show certain crucial properties which will show that our algorithm run. Let λ be an e-regular partition and assume that s = (0, s). We also assume that λ is non empty and that r is maximal such that λ r = 0. Let (λ 1 , λ 2 ) := θ (e,(0,s)) (λ) and consider the associated symbol with length te with t sufficiently large. It is thus of the following form : By definition of the symbol, we here have α j := λ 2 j -j+s for j = 1, . . . , ke and β j := λ 2 j -j for j = 1, . . . , ke-s. We denote (µ 1 , µ 2 ) := Ψ (0,s)→(0,s+k.e) e (λ 1 , λ 2 ) (so that, as usual, ke > n -1 and thus so that the multicharge (0, s + ke) is very dominant) Assume that λ = ∅ and that µ 2 = ∅ then the algorithm for the computation of Ψ (0,s)→(0,s+k.e) e easily shows that that this can happen if and only if Ψ (0,s)→(0,s+k.e) e is the identity. This thus implies that

α te . . . α (t
{β i | i = 1, . . . , ke -s} ⊂ {α i | i = 1, . . . , ke}
In this case, we also need to have r ≤ es. Now we have for all i = 1, . . . , ke, α i = -i + s and also β j ≤ α j for all j = 1, . . . , kes. As a consequence, we have

λ 2 1 -1 ≤ -1 + s
and thus λ 2 2 ≤ s. We conclude Proposition 4.2.1. Under the above notations, assume that µ 2 = ∅ then λ = λ 1 is an e-core.

Proof. The above discussion shows that λ has at most es non empty rows and at most s columns. This implies that the hooks of λ has at most length e -1 and thus that λ is an e-core. Now let us see what we can say if µ 1 = ∅. Before this, we show below that the image of λ under a crystal isomorphism can be quite easily computed in the case where λ is in the image of θ e,s which is the case we are interested in here.

Keeping, the above notations, for all i = 1, . . . , k -1, we have α ie = λ 2ie-sie + s and β ie-s+1 = λ 2ie-s+1 -(ies + 1). So we have α ie + ies ≥ β ie-s+1 + ies + 1 and thus α ie > β ie-s+1 .

In addition α ie+1 = λ 2ie+1-s -(ie + 1) + s and β (i+1)e-s = λ 2ie-s -((i + 1)es). So we have β (i+1)e-s + ((i + 1)es) ≥ α ie+1 + (ie + 1)s. So β (i+1)e-s + e > α ie+1 .

These calculations show that one can perform our crystal isomorphism step by steps in the "blocks" of the symbol separated by vertical lines below. First recall in Example 2.3.1 how the crystal isomorphisms Ψ (0,s ′ )→(0,s ′ +e) e can be described.

α ke . . . α (k-1)e+1 . . . α 2e . . . α e+1 α e . . . α s+1 . . . α 1 β ke-s . . . β (k-1)e-s+1 . . . β 2e-s . . . β e-s+1 β e-s . . . β 1
We see that all the calculations in the blocks are trivial except in the rightmost. and we see that the properties above are always satisfy. In particular, with the notations above, we have.

β ′ e-s + e > β e-s+1 + e Now, take the right end of our first symbol:

α e . . . α s+1 α s . . . α 1 β e-s . . . β 1
We already know that β e-s + e > α 1 . Assume that we have λ 1 j = 0 so that β j > -j. Then we claim that this implies that we have β j ≥ α s+j-1 . To do this, note that we have:

β j ≥ β j-1 + 1 ≥ . . . ≥ β e-s + (e -s -j) > α 1 -s -j. Now we have α 1 ≥ α 2 + 1 ≥ . . . ≥ α s+j-1 + (s + j -2). So β j > α s+j-1 -2
The only problem may appear if β j = α s+j-1 -1 and this implies that all the inequalities above are in fact equalities. We thus have:

β j = β j-1 + 1 = . . . = β e-s + (e -s -j),
and

α 1 = α 2 + 1 ≥ . . . = α s+j-1 + (s + j -2) = β j + s -j -1 = β j-1 + s -j = . . . = β e-s + e -1.
This case implies that we have an e-period in the sense of [START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF]Def. 2.2]. Such property is impossible for Uglov l-partitions by [START_REF] Jacon | A combinatorial decomposition of higher level Fock spaces[END_REF]Prop. 5.1]. This discussion implies that, under the notations above, if we have β j > -j then we must have β ′ j > -j so that the associated part of the partition is also non zero. By a direct induction, we thus deduce: Proposition 4.2.2. Let 0 < s < e and let λ be an e-regular partition and (λ 1 , λ 2 ) := θ (e,(0,s)) (λ). Assume that (µ 1 , µ 2 ) := Ψ (0,s)→(0,s+k.e) e (λ 1 , λ 2 ) for k >> 0 (so that (0, s + k.e) is very dominant, see §2.2). Then

|µ 1 | = 0.
Remark 4.2.3. In the case where s = 0, the above discussion also shows that if (λ 1 , λ 2 ) := θ (e,(0,0)) (λ) then Ψ (0,s)→(0,k.e) e (λ 1 , λ 2 ) = (∅, λ) for k >> 0. As a consequence, this choice of multicharge cannot be used to get our recursive algorithm to compute the Mullineux involution because then it would require the computation of m e (λ) ... to compute m e (λ).

The algorithm

Let λ = (λ 1 , . . . , λ r ) be an e-regular partition of rank n. We can now present a recursive algorithm for computing m e (λ). First by Remark 3.2.1, one can assume that λ is not an e-core. The algorithm now consists in the following steps:

1. Choose 0 < s < e and consider the bipartition (λ 1 , λ 2 ) := θ (e,(0,s)) (λ). 3. By induction, we know m e (µ 1 ) and m e (µ 2 ) and we can thus compute: (κ 1 , κ 2 ) := Ψ (0,-s+ke)→((0,e-s) e (m e (µ 1 ), m e (µ 2 )).

4. We have m e (λ) = θ -1 (e,(0,e-s)) (κ 1 , κ 2 ). Note that in principle, one can choose an arbitrary multicharge s instead of (0, s) (as soon as the second point at the end of subsection 3.3 is satisfied) but the complexity of the algorithm for the computation of the crystal isomorphism from s to a very dominant multicharge increases. However, It is not unreasonable to expect that some particular multicharge can lead to interesting fast new algorithms.

Steps 1 and 2

It follows from Section 4.2 that the first two steps can be both implemented by the process below. Let 0 < s < e and set s = (0, s). We set λ[1] = (λ 1 , . . . , λ e-s ) and λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] = (λ e-s+1 , . . . , λ r ), we write the Young tableau of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] with the associated contents and just below, the Young tableau of λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] with the associated contents with respect to the multicharge (0, s). Now, starting with the first part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF], consider the content of the rightmost box, say c. In λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF], we consider the rightmost boxes and we take the one with the greatest content which is less than c, say c ′ . Then we remove the boxes of the first part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] with content greater than c ′ into this part in λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] (in other words, we move the "truncated first row" containing the boxes grater than c to the row in λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF]).

λ[1] 0 1 2 
It is clear that we still have a partition. Then, we do the same for the second part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] and so on until we reach the last part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF]. If this is not possible we switch to the second part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF], and we continue this process until we reach the last part of λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF].

In our example, we must remove the boxes in bold in the first partition above, and add the boxes in bold in the second partition below. We then collect all the parts of λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] that are above the smallest part we have modified, in a partition µ. So here µ = [START_REF] Ford | A proof of the Mullineux conjecture[END_REF][START_REF] Chriss | Representation theory and complex geometry[END_REF][START_REF] Bowman | The many graded cellular bases of Hecke algebras[END_REF]. The new partition λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] is given by the remaining parts and we add e to the contents of all the boxes in it. We then move the step above and continue the process until we cannot do anything. The remaining parts of λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] are added to µ. Then the partition λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] is the first component of Ψ (0,s)→(0,s+k.e) e (λ 1 , λ 2 ) and µ is the second.

λ[1] 0 1 2 3 4 5 1 0 1 2 3 2 1 0 1 2 λ[2]
λ[1] 0 1 2 3 4 5 1 0 1 2 3 2 1 0 1 2 λ[2] 2 3 4 1 2 0 1
It becomes :

λ[1] 0 1 2 3 4 1 0 1 2 2 1 0 λ[2] 2 3 4 5 1 2 3 0 1 2 1 
We have now µ = (9, 7, 6, 4, 3, 3), and we the above process:

λ[1] 0 1 2 3 4 1 0 1 2 2 1 0 λ[2] 3 
gives :

λ[1] 0 1 2 3 1 0 1 2 1 0 λ[2] 3 4 2
and then µ = (9, 7, 6, 4, 3, 3, 2, 1). There is nothing we can do now. the bipartition we are searching for is ((4, 3, 3), ((9, 7, 6, 4, 3, 3, 2, 1))

Step 3 and 4

At this stage, we have computed (µ 1 , µ 2 ) := Ψ (0,s)→(0,s+k.e) e (λ 1 , λ 2 ) . By induction, we thus know (ν 1 , ν 2 ) := (m e (µ 1 ), m e (µ 2 )) and we must do the reversed process as the one above to get our bipartition: Ψ (0,-s+ke)→((0,e-s) e (ν 1 , ν 2 ). This is done as follows.

We write the Young tableau of ν 1 with the associated contents for each box, and just below, the Young tableau of ν 2 with the associated contents charged by kes where k is sufficiently large (that is, the content of the box (a, b) is ba + (kes)). Keeping the above example, we have by induction m 4 (4, 3, 3) = [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] and m 4 (9, 7, 6, 4, 3, 3, 2, 1) = (14, 7, 7, 3, 3, 1). So we consider the bipartition (( 10), [START_REF] Jacon | On the one dimensional representations of Ariki-Koike algebras at roots of unity[END_REF][START_REF] Chriss | Representation theory and complex geometry[END_REF][START_REF] Chriss | Representation theory and complex geometry[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF][START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] and the multicharge is (0, 3). At each step, starting from the bottom of ν 2 , we see if one can remove boxes from ν 2 to add it to ν 1 as in the subsection above (except that we remove the box from the other partition). Note that ν 1 need to always have the same number of rows so we only add the possible boxes in the es rows of ν 1 . Then we remove e from all the contents of the boxes of ν 2 . In the example, we have nothing to do so we remove e from all the contents of the second partitions and again one more time. At the end, the concatenation (and reordering the parts if necessary) of the two partitions we get must be m e (λ). In our example, we obtain ((17), (9, 7, 6, 3, 3)) so that m e (λ) = (17, 9, 7, 6, 3, 3).

ν

Example

Let us keep our running example λ = (10, 8, 7, 5, 4, 4, 3, 2, 1, 1), l = 2 and e = 4 but this time, we take s = 2. The first two steps will give: Assume that the cardinality of the e-rim of λ is m. The truncated e-rim of λ is by definition the set of nodes (i, j) in the e-rim of λ such that (i, j -1) is also in the e-rim of λ. If e does not divide m, we add also the node (r, x) in the e-rim of λ such that (r, x -1) is not in the e-rim. We now define λ to be the partition obtained by removing the truncated e-rim from λ. It is easy to see that this partition is e-regular with rank strictly less than the rank of λ. Example 6.1.2. Let e = 3 and λ = [START_REF] Fayers | Regularisation, crystals and the Mullineux map[END_REF][START_REF] Brundan | A new proof of the Mullineux Conjecture[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF][START_REF] Bessenrodt | On residue symbols and the Mullineux conjecture[END_REF]. The truncated e-rim is given by the nodes marked by a star.

λ[1] 0 1 2 

⋆ ⋆ ⋆ ⋆ ⋆

So the partition λ is (6, 3, 3, 2). Now we define a map X e : Φ (e,(0)) → Φ (e,(0)) recursively as follows. We define X e (∅) = ∅ and if λ ∈ Φ (e,(0) (n) with n = 0 then X e (λ) is obtained by adding a column of length n -| λ| to X e ( λ).

Theorem 6.1.3 (Xu). We have X e = m e .

We here give a new proof of this Theorem using the crystal isomorphisms.

Example 6.1.4. We keep the above example. We can compute X 3 (6, 3, 3, 2) = (8, 2, 2, 1, 1), now we have exactly 5 nodes in the truncated 3-rim of λ so X e (7, 4, 2, 2) is obtained by adding a column of length 5 to (8, 2, 2, 1, 1) and we get X 3 (8, 5, 3, 3) = (9, 3, 3, 2, 2).

Relation with crystal isomorphisms

We will see in this subsection that Xu's algorithm is equivalent to ours in the case where we choose s = e -1.

For λ an e-regular partition, we denote by λ the partition obtained by removing the truncated p-rim as in Xu's algorithm. We denote by r the number of boxes in the truncated p-rim. Proposition 6.2.1. We have Ψ (0,e-1)→(0,e-1+ke) e

• θ e,(0,e-1) (λ) = (r, λ) (k >> 0)

Proof. We denote λ[2] = (λ 2 , . . . , λ e ). We begin with the two first steps of our algorithm which are described in §5.1. Assume first that one cannot add any "truncated row" of λ 1 in λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF]. This means that there exists k > 0 such that λ k+1k + e -1 = λ 1 -1 and we have the following partitions: Then the partition (λ 2 , . . . , λ k+1 ) corresponds to the partition (λ 1 , . . . , λ k ) with the very first truncated e-rim removed. If λ k+1 = 0 then we are done and λ 1 is the number of nodes in the truncated p-rim minus 1. In this case the number of elements in the associated e-rim is not e. Otherwise we get e boxes in the associated rim and we must go to the second step of our algorithm.

λ[1] 0 
Assume that one can add a truncated row of length r. Assume that the row is added in the part λ k+1 . Then the partition (λ 2 , . . . , λ k+1 ) corresponds to the partition (λ 1 , . . . , λ k ) with a truncated e-rim removed. If λ k+1 is non zero. Note that the length of the truncated p-rim is ek. By induction, the first ek nodes of the partition λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] will not moved in our algorithm We can thus just argue by induction by replacing λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] with the partition λ [START_REF] Ariki | Representations of Quantum Algebras and Combinatorics of Young Tableaux[END_REF] -(ek) to find λ [START_REF] Ariki | The modular branching rule for affine Hecke algebras of type A[END_REF] and take into account that we must add ek (the length of the truncated p-rim) to the partition we obtain at the end of our algorithm. Note that the content of the leftmost node in our first partition will be now ek and the contet of the leftmost node of the second partition (ek)e -1 so the induction can be done.

On the other hand, we now have the following result: Proposition 6.2.2. We have Ψ (0,1)→(0,1+ke) e

• θ e,(0,1) (λ) = (m e (t), λ -1) where t is the length of the first column of λ (k >> 0) Proof. We use the algorithm described in subsection 5.2, using these notations, we are in the following configuration:

λ The first partition is the Mullineux image of the partition ((k + 1)(e -1) -(-s -2 + e + 1)) = (kek + s). The second partition we get in the algorithm is λ -1 which is exactly what we wanted.

Let us now explain in which way our two algorithms are equivalent in the case where we choose s = (0, e -1). Let λ be an e-regular partition and recall the 4 steps of our algorithm at the beginning of §5.

1. By Proposition 6.2.1, after the two first steps of our algorithm, we obtain (r, λ) where r is the number of boxes in the truncated rim.

2. By induction, we know m e ( λ) and the third step of our algorithm consists in the computation of the image of (m e (r), m e ( λ)) with respect to Ψ (0,1+ke)→(0,1) e (for k >> 0).

3. By Proposition 6.2.2 that we apply to µ = m e (λ), we have Ψ (0,1)→(0,1+ke) e

• θ e,(0,1) (µ) = (m e (t), µ -1) (where t is the length of the first column of µ) so m e (λ) is the partition obtained by adding a row of length r to m e ( λ) as in Xu's algorithm.

The above result thus shows that Xu's algorithm indeed computes the Mullineux involution. Remark 6.2.3. In [START_REF] Brundan | A new proof of the Mullineux Conjecture[END_REF], Brundan and Kujawa gave another interpretation of the Xu's algorithm using the representation theory of the supergroup GL(n|n). It would be interesting to understand the connection wof this work with ours.

Remark 2 . 2 . 1 .Example 2 . 2 . 2 .

 221222 If s ′ and s ′′ are both very dominant multicharges in the same orbit then Ψ s→s ′ e is the identity. Assume that e = 3. Take s = (0 + 3Z, 1 + 3Z). Take n = 3, then, we have Φ 3,(0,1) (3) = {(∅, (3)), ((1), (1, 1)), ((1), (2)), ((2), (1)), ((2, 1), ∅), ((3), ∅)} Φ 3,(0,4) (3) = {(∅, (3)), ((1), (1, 1(), ((1), (2)), ((2), (1)), (∅, (2, 1)), ((1, 1), (1))} Φ 3,(1,0) (3) = {((3), ∅), ((1), (1, 1)), ((1), (2)), ((1, 1), (1)), ((2, 1), ∅), ((2), (1))} = Φ 3,(4,0)

  , defined as follows. Let λ ∈ Φ (e,s) (n), then there exists a unique µ ∈ Φ (e,v) (n) such that (D λ s ) γ ≃ D µ v , and we set m s→v e (λ) = µ.

  (3) = (2, 1), m 3 (1.1) = (2), we obtain m (0,4)→(0,5) e Φ 3,(0,1) (3) → Φ 3,(0,5) ), (1)) → ((1, 1), (1)) ((1, 1), (1)) → ((2), (1)) ((1), (2)) → ((1), (1, 1))Now combining with our cristal isomorphism in Example 2.3.2, we for example obtain m

2 .

 2 Compute (µ 1 , µ 2 ) := Ψ (0,s)→(0,s+k.e) e (λ 1 , λ 2 ) for k >> 0. By Propositions 4.2.1 and 4.2.2, we now that |µ 1 | < n and |µ 2 | < n.

  ν

  Assume that (s 1 , s 2 ) ∈ Z 2 with s 1 ≤ s 2 . In the next sections, we will be particularly interested in the computation of Ψ

			m, we have:
	Ψ s→σ.s e	= Ψ x2.....xm.s→σ.s e	• . . . • Ψ s→xm.s e
	Example 2.3.1. (s1,s2)→(s1,s2+e) e	

  s+1 . . . α 1 β te-s . . . α (t-1)e-s+1 . . . β 2e-s . . . β e-s+1 β e-s . . . β 1

	-1)e+1	. . . α 2e	. . . α e+1	α e	. . . α

  + e . . . β 2e-s+1 + e β 2e-s + e . . . β e+1 . . . β e-s+1 + e . . . α ′

	After one step of the crystal
	isomorphism we get
	0 . . . α ke . . . α (k-1)e+1 . . . e -1 . . . β 3e-s 1 α 2e . . . α e+1 β ′ e-s . . . β ′ 1

  Then we can add a box of content 10 and we subsract e from all the contents. We then successively obtain the following bipartitions.

		ν 1
		0 1 2 3 4 5 6 7 8 9 10
		ν 2
		15 16 17 18 19 20 21 22 23 24 25 26 27 28
		14 15 16 17 18 19 20
		13 14 15 16 17 18 19
		12 13 14
		11 12 13
	and then:	ν 1
		0 1 2 3 4 5 6 7 8 9 10 11
		ν 2
		3 4 5 6 7 8 9 10 11 12 13 14 15 16
		2 3 4 5 6 7 8
		1 2 3 4 5 6
		0 1 2
		1 0 1
	and then:	ν 1
		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
		ν 2
		3 4 5 6 7 8 9 10 11
		2 3 4 5 6 7 8
		1 2 3 4 5 6
		0 1 2
		1 0 1
		1
		0 1 2 3 4 5 6	7 8 9
		ν 2
		15 16 17 18 19 20 21 22 23 24 25 26 27 28
		14 15 16 17 18 19 20
		13 14 15 16 17 18 19
		12 13 14
		11 12 13
		10

  -3 . . . λ e-1 -(e -1) e -2 . . . λ 2e-1 -(e -1) . . . . . . . . . and now, we have to perform the algorithm for the following configuration of partitions:Now, we come to the last step, assume that s is maximal such that λ ke-k+s = 0 (so that kek + s is the length of the first column of λ). Then, we are in the following configuration where we have an addable k + 1-node in the second partition.

	λ[1]	λ[1]								
	0	0	1	1	. . .	2	. . .	3		. . .	. . .	. . . λ ke-k+1 + k -1 λ e
	1	1	0	0	. . .	1	. . .	2	. . . λ ke-k+2 + k -2	λ e+1 -1
	. . .	. . .	. . .	. . .	. . .	. . .	. . .	. . .				. . .
	e -2 . . . s -1 . . .	. . .	. . . λ ke-k+s + k -s λ 2e-2 -(e -2)	
	s	. . . k -s -1						
	λ[2] 1 . . . 0 e -2 . . . k -(e -1) 2 . . . . . . . . . . . . . . . . . . . . . . . . λ[2] ′		. . . λ 2 -2		λ 1 -1
	and we obtain for λ[1]:								
						0	. . .	. . .			k
						1	0	. . .		k -1
	λ[1] 0 1 . . .	1 0 . . .	. . . s -1 . . . . . . 2 1 s . . . k -s -1 . . . . . . k -s . . . . . . . . . . . . . . . . . .	. . . k + 1 -s . . . . . . . . .	. . . λ e+1 -1	λ e
	e -2 . . .	. . .	λ 2e-2 -(e -2)		
	λ[2] ′								
		2			. . .		. . .		λ 2e-1 + 1
		1 . . .		. . . . . .	. . . . . .		λ 2e			
	e -2 . . . λ 3e-3 -e + 3 . . . . . . . . .				
	which thus leads to	[1]								
		0 1 λ[1] . . . 0 e -2 . . . 1 0 . . . 1 1 0 . . . . . .		2 1 . . . 2 . . . 1 . . .		3 2 . . . 3 λ e-1 -(e -1) 2 . . .	. . . . . . λ 2 -2 . . . . . . . . . λ 2e-1 + 1 λ 1 -1 . . . . . . λ 2e . . .
		λ[2] e -2 . . .	. . .		λ 3e-3 -e + 3	
	1 0 λ[2] ′ . . . 2 1 e -3 . . . 2 . . . . . . . . . . . . . . . e -2 . . . λ 2e-1 -(e -1) . . . . . . . . . . . . . . . . . . . . . . . . . . . e -2 . . . λ 2e-2 -(e -2) e -3 . . . λ 3e-2 -(e -2) . . . The first step of our algorithm thus gives: . . . . . . . . .	. . . λ e+1 -1 . . . λ e+1 -1 . . . λ 2e-2 -(e -2)	λ e λ e

e e -2 . . . k -(e -1)

s 2 + λ 2 1 -1 s 2d + λ 1 d+s1-s2 . . . s 1 + λ 1 1 -1.

To describe Xu's algorithm, we will need some additional combinatorial definitions. Let λ = (λ 1 , . . . , λ r ) be an e-regular partition with λ r = 0. The rim of λ is the subset of the Young diagram of λ consisting in the (i, j) such that (i + 1, j + 1) is not in[λ]. The e-rim is now the subset {(a 1 , b 1 ), . . . , (a m , b m )} of the rim of λ which is obtained by following the rim of λ right to left and top to bottom, and moving down one row every time the number of nodes we have is dividible by e. Example 6.1.1. Let e = 3 and λ = (7.4.2.2). The e-rim is given by the nodes marked by a star. ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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