Literature Empirical strategies
Data
Climate change and WTs
Heterogeneous analyses by type of WTs Second nature of WTs

Climate Change Fosters International Cooperation: Evidence from Water Treaties

by Fabien CANDAU[†], Pr. & Tchapo Gbandi[†], Ph.D.

⁺Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TREE, Pau, France.

Find the paper <u>here</u>.

Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs	
Second nature of WTs	

Motivation

- Climate change effect on water resources: an important issue
 - Agricultural production depends directly of this resource
 - Countries use to share a basin or a river
 - **The over-exploitation of the common resource may be exacerbated by climate change.**
- Thus
 - A growing body of works analyses the hydrological, political and economical reasons behind water basins management policies (Ex: Egypt vs Ethiopia)
 - The climate shocks have been neglected.
- However
 - Many findings are based on cross-sectional analysis which is problematic since many determinants of WTs are unobserved or hard to measure.
 - The lack of a time dimension impedes to analyze the behavior of agents over time since individuals and governments can adopt adaptation strategies.

Second nature of WTs	
Heterogeneous analyses by type of WTs	
Climate change and WTs	
Data	
Empirical strategies	
Literature	

What I do, what I find

- By using panel FE regression and long run difference we analyze:
 - Whether climatic shocks drive WTs.
 - □ How this effect evolves over time.
- **Thus:**
 - We use panel data.
 - We focus on weather fluctuations (temp , prec..).
 - We also revisit the economic and political determinants of WTs.
- We find that WTs are mainly climate policies.
 - □ Fluctuations in weather definitely drive WTs: more interestingly WTs appear to be an adaptation policies.
 - In contrast to the literature, only economic interdependence matters within economic and political variables.

		Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs
--	--	---

Presentation plan

- Brief literature
- Empirical strategies
- Data
- Climate change and WTs
 - Short-run effect
 - Long-differences
- Heterogeneous analyses by type of WTs
- Economic and political determinants of WTs
- Conclusion

- Dinar et al. (2010) pursue this analysis: the water supply variability (both annual runoff variability and precipitation variability) in international bilateral basins fosters international cooperation.
- Tir and Ackerman (2009):
 - How political institutions, development and water scarcity increase the likelihood of international river cooperation between contiguous riparian states?
 - WTs is drive by asymmetrical power distribution, economic interdependence, democratic governance, and water scarcity.
- **Zawahri et al. (2016)**:
 - They study factors influencing treaty design (according to their content).
- Concerning the methodology, it is derived from:
 - Climate change and conflicts literature
 - See Dell et al. 2014 for a survey.
 - See Schlenker and Roberts (2009), Burke and Emerick (2015) for the "long differences" approach).

Literature Empirical strategies	Specification
Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs	

• The most common empirical strategy to analyze WTs has been the cross-sectional approaches.

$$\Gamma_{ij} = \alpha X_{ij} + \beta Z_{ij} + \varepsilon_{ij}$$

• We propose to analyze WTs by using the following this gravity based specification:

$$WT_{ijt} = \alpha Clim_{ijt} + \beta Clim_{it} + \mu Clim_{jt} + Z_{itj} + f_{ij} + f_i + f_j + f_t + \varepsilon_{ij}$$

- We thus:
 - we directly analyze climate change effect ($Clim_{ijt}$, $Clim_{it}$, $Clim_{it}$).
 - the problem of reverse causality is not a concern here: climatic variables are exogenously determined.
 - We account for country-fixed effects and Country-pair fixed effects control for bilateral relationship, and time effects
 - The term Z_{itj} refers to a vector of bilateral variables that varies over time (economic, political and institutional variables).

26th EAERE, 2021

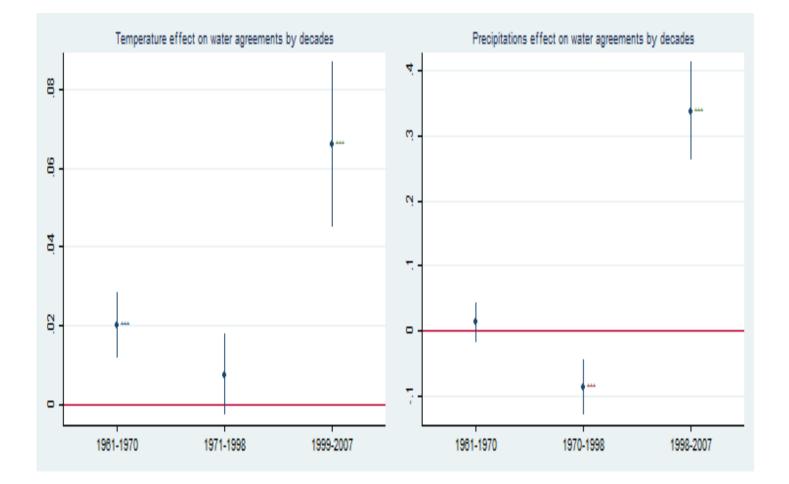
- Although:
 - By using yearly fluctuations, we are capturing the short-run effect of climate change.

T. Gbandi

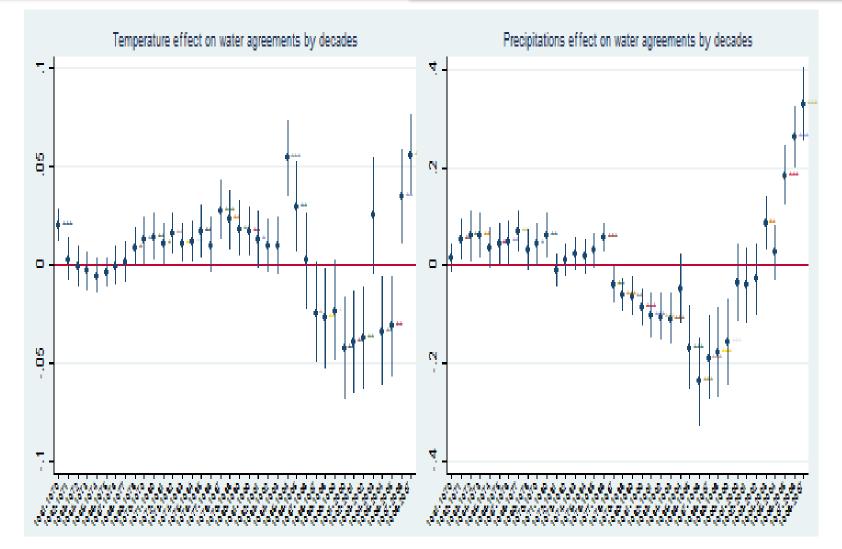
- Dependent variable:
 - Water treaties : WT_{ijt} is a dummy built from the International Freshwater Treaty Database.
- Climate variables:
 - Climate variables (temperature and precipitations) with geomatics tools.
 - Constructed by combining historical monthly weather rasters provided by WorldClim and river basin's shapefiles from McCracken and Wolf (2019).
 - Non linear effect of climate change:
 - An agriculture measure: Growing degree unit (GDU) and Killing degree units (KDU).
 - An urban point of view: Cooling Degree Units (CDU) and Heating Degree Units (HDU)
 - Precipitation above the mean: difference between monthly and the mean precipitation (over a decade) when the former is greater than the latter; and the mean precipitations minus the monthly precipitation otherwise.

Literature		(1
Empirical strategies		LP
Data	VARIABLES	
Climate change and WTs	Avg Temp in i and j	0.016
Heterogeneous analyses by type of WTs	Avg remp in rand j	(0.010
Second nature of WTs	Avg Trecip in i and j	0.030
		(0.0)
	Temp i * Temp j	(0.0.
	Precip i * Precip j	
	Temp: member with the highest CV	
	Precip: member with the highest CV	
About the "first nature" of treaties: Short run effets		
	Avg number of warmer months in i and j	
	Augusta and the initial second to its initial is	
	Avg number of rainier months in i and j	
	Avg Growing Degree Unit in i and j	
	Avg Killing Degree Unit in i and j	
	Avg Heating Degree Uniit in i and j	
	Avg Cooling Degree Unit in i and j	
	Avg Precipitation gap in i and j	

	(1)	(2)	(3)	(4)	(5)	(6)	
	LPM	LPM	LPM	LPM	LPM	LPM	
VARIABLES	Dep var: Water treaties						
Aug Tanan in i and i	0.0100***						
Avg Temp in i and j	0.0160***						
Aug Tranin in Land i	(0.0035)						
Avg Trecip in i and j	0.0304***						
Tomn i * Tomn i	(0.0101)	0.0010***					
Temp i * Temp j		(0.0010)					
Precip i * Precip j		0.0054***					
		(0.0014)					
Temp: member with the highest CV		(0.0014)	0.0106***				
remp. member with the nighest ev			(0.0029)				
Precip: member with the highest CV			0.0109				
recip: member with the ingliest ev			(0.0079)				
Avg number of warmer months in i and j			(0.0075)	0.1384***			
				(0.0193)			
Avg number of rainier months in i and j				-0.0035			
,				(0.0148)			
Avg Growing Degree Unit in i and j				. ,	0.0324***		
					(0.0052)		
Avg Killing Degree Unit in i and j					0.0233***		
					(0.0072)		
Avg Heating Degree Uniit in i and j						0.0012	
						(0.0037)	
Avg Cooling Degree Unit in i and j						0.0628***	
						(0.0064)	
Avg Precipitation gap in i and j					0.0006***	0.0007***	
					(0.0002)	(0.0002)	
Avg additional Precipitation in i and j					0.0004	0.0005	
					(0.0003)	(0.0003)	
Constant		-0.3896***	-0.1599**	-0.0143	-0.3216***		
	(0.0869)	(0.0572)	(0.0669)	(0.0127)	(0.0586)	(0.0304)	
	24.252	24.252	24.252	24.252	24.252	24.252	
Observations	24,252	24,252	24,252	24,252	24,252	24,252	
R-squared	0.318	0.319	0.317	0.318	0.318	0.320	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
country i and j FE	Yes	Yes	Yes	Yes	Yes	Yes	
Country pair FE	Yes	Yes	Yes	Yes	Yes	Yes	

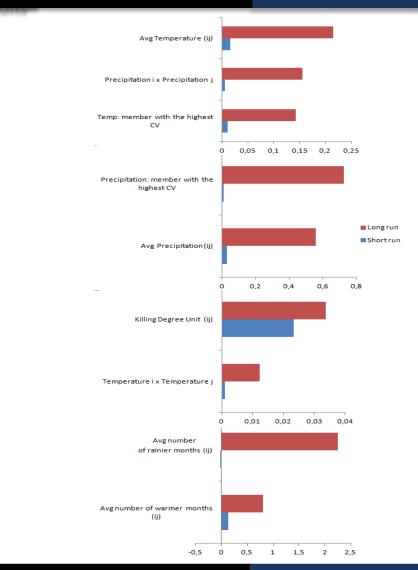

Log difference analyses: specification	Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs

- Previous results are short run effects:
- But governments can't always adjust their policy in the short run: thus the panel-FE analyses may underestimate the long-run effect of climate change.
- WTS may take time to be enforced.
- The long run effect specification (Burke and Emerick, 2015).


$$\overline{WT_{ijt2}} - \overline{WT_{ijt1}} = \alpha(\overline{Clim_{ijt2}} - \overline{Clim_{ijt1}}) + \beta(\overline{Clim_{ijt2}} - \overline{Clim_{ijt1}}) + \Delta\varepsilon_{ij}$$

- For instance: $E\overline{WT_{ijt2}}$ and $\overline{WT_{ijt1}}$ represent the average number of water treaties in the respective $t_1 = 1961 1970$ and $t_2 = 1998 2007$ periods.
- \Box $\overline{Clim_{ijt2}}$ and $\overline{Clim_{ijt1}}$ represent the average each climate variable on these two periods.
- Here we estimate the long difference change: allow to appreciate the adaptation of government.

Log difference analyses: justification/illustration	Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs
Log difference analyses: justification/illustration	Climate change and WTs Heterogeneous analyses by type of WTs



Literature		(1)	(2)	(3)	(4)	(6)	(6)
Empirical strategies		MCO	MCO	MCO	MCO	MCO	MCO
Data	VARIABLES						
Climate change and WTs							
Heterogeneous analyses by type of WTs	Avg Temp in i and j	0.0390***					
Second nature of WTs		(0.0103)					
	Avg Trecip in i and j	0.0964*					
		(0.0560)					
	Interaction: Temp i and j		0.0024***				
			(0.0004)				
	Interaction: Precip i and j		0.0299***				
			(0.0079)				
	Temp: member with the highest CV			0.0247***			
				(0.0093)			
	Precip: member with the highest CV			0.1207***			
				(0.0463)			
	Avg number of warmer months in i and j				0.1800**		
Long differences					(0.0723)		
results	Avg number of rainier months in i and j				0.5778***		
					(0.1963)		
Climate reasons of	Avg GDM in i and j (below the threshold)					0.1959***	
water agreements						(0.0217)	
	Avg KDM in i and j (Above the threshold)					0.1615***	
						(0.0226)	
	Avg HDM in i and j (Below the threshold)						-0.0483***
							(0.0112)
	Avg CDM in i and j (Above the threshold)						0.1531***
							(0.0204)
	Avg Precip in i and j (Below the threshold)					0.0082***	0.0086***
						(0.0027)	(0.0029)
	Avg Precip in i and j (Above the threshold)					-0.0047	-0.0023
						(0.0029)	(0.0032)
	Constant	0.0082	-0.0175*	0.0191**	0.0268***	-0.0721***	-0.0476***
		(0.0093)	(0.0090)	(0.0088)	(0.0045)	(0.0136)	(0.0119)
	Observations	516	516	516	516	516	516
	R-squared	0.022	0.091	0.023	0.021	0.201	0.099

Н

Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs

Visual comparison: Short run effects vs Long differences results

Heterogeneous analysis according to the content of WTs

	(1)	(2)	(3)		(1')	(2')	(3')
	Likelihood of water agreements						
	Short run results				Long run results		
	Water quality & an Water quantity	Economic development	Environ-ment protection		Water quantity & an Economic Er		Environment protection
	LPM	LPM	LPM		LPM	LPM	LPM
Avg Temp in i and j	0.0035*	0.0155***	0.0104***		0.0874***	0.0901*	0.0363***
	(0.0020)	(0.0021)	(0.0027)		(0.0298)	(0.0536)	(0.0087)
Avg Trecip in i and j	0.0322***	0.0580***	0.0055		-0.6762***	-0.0298	-0.0323
	(0.0084)	(0.0061)	(0.0092)		(0.1625)	(0.3734)	(0.0419)
Constant	-0.1524***	-0.4927***	-0.1883***		0.0784***	0.2215***	-0.0192**
	(0.0511)	(0.0518)	(0.0714)		(0.0236)	(0.0492)	(0.0075)
Observations	24,252	24,252	24,252		516	516	516
R-squared	0.404	0.247	0.086		0.044	0.003	0.043
Year FE	Yes	Yes	Yes		No	No	No
country i and j FE	Yes	Yes	Yes		No	No	No
Country pair FE	Yes	Yes	Yes		No	No	No

Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs	Rational, literature & variables
Literature	

- The scarcity of the resource can be balanced with efficient markets and well functioning institutions.
- But political and socioeconomic variables analyses exhibits some caveats.
- Thought, it is important to take a look to these factors for two reasons:
 - Compare the results to that from the literature.
 - Even if climates matter, it is good to know in which socio-economic conditions WTs emerge.
- Political and socioeconomic factors .
 - Joint democracy: (polity-2 from PoiltyIV value is above 6, Brochmann, 2012).
 - Peace history: (Dinar et al., 2011; Brochmann, 2012). Build from COW, International Water Events Database
 - Alliance ties: formal alliances among states (including mutual defense pacts, non-aggression treaties and ententes; data from COW).
 - Power distribution
 - (i) Composite Index of National Capability of "strongest state" as a proportion of the dyad-year total capabilities (Hensel et al., 2008; COW); (ii) Highest GDP on lowest GDP by dyad; (3) Highest GDP per-capita on the lowest GDP per-capita by dyad.
 - **Economic interdependency:** (M+X)/GDP (Dinar, 2010; Sigman, 2004; FMI-DOTS and WDI).
 - Dyad shared river: dummy from Peace Research Institute Oslo (PRIO).

Literature Empirical strategies Data Climate change and WTs Heterogeneous analyses by type of WTs Second nature of WTs

<u>Results</u>

About the "second nature" of treaties: economic and political determinants of WTs

	(1)	(2)	(3)	(4)
	LPM	LPM	LPM	LPM
VARIABLES		Dep Var : Water treaties		
Joint democracies	-0.0004	0.0005	0.0007	-0.0000
	(0.0114)	(0.0114)	(0.0112)	(0.0114)
Economic interdepedance (Trade)	0.0024***	0.0023***	0.0025***	0.0023***
	(0.0009)	(0.0009)	(0.0009)	(0.0009)
Economic power (Highest GDP on lowest GDP by dyad)	0.0100		0.0096	0.0102
	(0.0078)		(0.0078)	(0.0078)
Welfare power (Highest GDP per capita on lowest GDP per capita by dyad)		0.0098		
		(0.0073)		
Power distribution	-0.0019	-0.0027	-0.0023	-0.0027
	(0.0197)	(0.0193)	(0.0196)	(0.0198)
Alliance ties	-0.0034	-0.0051	-0.0064	-0.0054
	(0.0179)	(0.0177)	(0.0174)	(0.0174)
Number of peacefull years (regarding Bilateral Militarised interstate disputes)	-0.0006***	-0.0006***		
	(0.0002)	(0.0002)		
Number of peacefull years (regarding Bilateral Water disputes)			-0.0024**	
			(0.0011)	
Number of peacefull years (regarding Bilateral negative Water events)				-0.0006
				(0.0008)
Constant	0.0996***	0.1100***	0.0999***	0.0951***
	(0.0369)	(0.0346)	(0.0353)	(0.0359)
Observations	8,259	8,259	8,259	8,259
R2	0.288	0.288	0.288	0.288
Year FE	Yes	Yes	Yes	Yes
country i and j FE	Yes	Yes	Yes	Yes
Country pair FE	Yes	Yes	Yes	Yes
*** p<0.01, ** p<0.05, * p<0.1				
Source: Author's calculations. Standard errors adjusted for clustering at the c	ountry pair le	evel.		

Literature
Empirical strategies
Data
Climate change and WTs
Heterogeneous analyses by type of WTs
Second nature of WTs

Conclusion

- Climates change drives cooperation over water resources.
- WTs are adaptation policies.
- But only economics interdependence matter in explaining WTs .
- Obviously the effectiveness of these international agreements remain unknown.
- But, it is comforting to observe that governments look for these solutions by cooperating more between them
 regarding the forthcoming stress of common water resources due to climate change.

Thanks