
HAL Id: hal-03278760
https://hal.science/hal-03278760

Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

MACE: A Mobile Ad-hoc Computing Emulation
Framework

Bruno Chianca Ferreira, Guillaume Dufour, Guthemberg Silvestre

To cite this version:
Bruno Chianca Ferreira, Guillaume Dufour, Guthemberg Silvestre. MACE: A Mobile Ad-hoc Com-
puting Emulation Framework. International Conference on Computer Communications and Networks
(ICCCN), Jul 2021, Athens, Greece. �10.1109/ICCCN52240.2021.9522185�. �hal-03278760�

https://hal.science/hal-03278760
https://hal.archives-ouvertes.fr


MACE: A Mobile Ad-hoc Computing
Emulation Framework

Bruno Chianca Ferreira1, Guillaume Dufour2, and Guthemberg Silvestre3

1 ENAC, Université de Toulouse, France
bruno.chianca@enac.fr

2 ONERA, The French Aerospace Lab
guillaume.dufour@onera.fr

3 ENAC, Université de Toulouse, France
silvestre@enac.fr

Abstract. Designing and deploying mobile applications for Edge/Fog
environments is challenging. Previous studies have introduced simula-
tion and emulation tools that can help to model new applications but
fail to deliver an environment in which a system designer can emulate a
realistic deployment of such applications. We propose the Mobile Ad-hoc
Computing Framework (MACE)4 that provides features which facilitate
and accelerate the development and testing of Edge/Fog applications.
It also provides the nodes with mobility control that can be modelled
or triggered by external applications, such as a flight simulator. With
the included GUI, the user can plan deployment topologies, observe and
interact with the nodes in real-time. To demonstrate its functionalities,
two experimental evaluations were performed: one comparing the net-
work emulators and another with an off-the-shelf configuration service
running in mobile nodes. Finally, the functionality of controlling mobility
via an external application is also demonstrated.

Keywords: fog, edge, iot, emulator, framework, mobile, ad-hoc

1 Introduction

The research field in distributed systems has witnessed a recent growing inter-
est in mobile distributed computing, especially in the areas of Mobile Cloud
Computing (MCC) [1], Mobile Edge Computing (MEC) [2] and Mobile Ad-Hoc
Computing (MAC) [3]. This growth was principally driven by the adoption of
IoT, Edge and Fog applications and the market demand for low latency in the
edge. To support this research, many simulators were created [4], however, there
is a lack of emulation tools for mobile Edge/Fog computing. Some important
features are missing, such as full-scale emulated deployment where prototypes
coexist with off-the-shelf applications or more options of mobility control. Previ-
ously, containers and virtual machines together with software defined networks

4 https://github.com/brunobcfum/pymace



2 B. Chianca et al.

(SDN) emulators have enabled system designers to run several nodes of dis-
tributed computers by emulating the topology of a wired network. However,
when the application focuses on nodes running on a Mobile Ad-Hoc Network
(MANET) or a Flying Ad-Hoc Network (FANET), difficulties arise with the
mobility and the representation of nodes’ unstable connectivity. This study pro-
poses a framework that enables the emulation of mobile distributed applications
in a virtual environment, so that system designers can easily modify scenarios
and topologies composed by mobile wireless nodes.

1.1 Motivation

Even though simulation platforms are very useful in early-stage development,
emulation introduces the possibility of running software in the late development
stage, so that an emulated node can be easily substituted by a physical de-
vice. Most of the simulators require platform-specific development with custom
libraries and have as goal creating detailed models of each layer of a network
stack. In this work, the focus is not on studying the network stack itself, but dis-
tributed applications, which eliminates the need of simulating detailed network
behaviour.

The main motivation behind this work was the lack of a wireless emula-
tion software which allows designing and testing mobile distributed algorithms
and software, such as distributed coordination services, distributed data stores,
task scheduling and offloading. When designing a mobile distributed system con-
nected via wireless interfaces, new requirements arise that cannot be fulfilled by
existing tools. Section 1.2 illustrates available solutions that also intended for
IoT, Edge and Fog environments. The main features that cannot be altogether
fulfilled by any existing tool are: support of mobile wireless nodes through em-
ulation; flexibility in the creation of new topologies such as positioning of the
nodes and mobility models; scalability that allows both a higher number of nodes
and high network traffic; possibility of running applications directly in the host,
in virtual machines or containers and the ability to emulate constrained nodes;
capacity to be integrated with external software for mobility control.

1.2 State of the Art

This section presents a review of prior work relevant in the context of emulation
for Edge/Fog environments, highlighting why they cannot fully meet the require-
ments for fast, easy-to-instrument mobile distributed application development.
Table 1 shows what is, to the best of our knowledge, the current state of the art
and illustrates the features it does not cover.

FogNetSim++ [5] is a simulator built with OMNet++ that proposes an open-
source toolkit for modeling new fog applications. This simulator fails as many
others to allow that simulated applications can be directly deployed to devices
without the need for adaptation to an environment outside the OMNet++ frame-
work. In [6] the author expands the usability of FogNetSim++ by introducing a
named pipes communication channel between the simulator and the application



MACE: A Mobile Ad-hoc Computing Emulation Framework 3

Table 1: Emulators Comparison

Emulator

Functionality Distributed Mobile Applications

N
etw

o
rk

E
m

u
la

to
r

M
o
b
ilty

C
o
n
tro

l

L
in

u
x

N
a
tiv

e
A

p
p
lica

-
tio

n
s

A
R

M
V

M
s

x
8
6

V
M

s

x
8
6

C
o
n
-

ta
in

ers

E
m

b
ed

d
ed

A
p
p
lica

-
tio

n
s

E
n
erg

y
M

o
d
el

R
eso

u
rce

M
a
n
a
g
e-

m
en

t
&

S
ch

ed
u
llin

g

O
p

en
S
o
u
rce

L
a
st

C
o
m

m
it

FogNetSim++ [5] OMNet++ X X X X 3y ago

FogNetSim++ w/ NodeRed[6] OMNet++ X NodeRed X X
iFogSim [7, 8] Built-in X X X X 1y ago

Miniworld [9] CORE Possibly X X X 4y ago

Virtual Mesh [10, 11] OMNet++ X X X
MockFog [12] Cloud Infra Possibly X X Since v.2 X 7m ago

EmuFog [13] MaxiNet X X X 3m ago

EmuEdge [14] Linux veths X Android X X X 3y ago

MACE CORE X X X X X RiotOS X 1m ago

NodeRed5. The concept idealized by the author is similar to one of the goals
of this work: code once, simulate and deploy. However, MACE aims in going
a bit further by providing the option of running not only applications aimed
in IoT devices, but also VMs and containers that can run in edge clouds, or
cloudlets. iFogSim is a modular toolkit proposed in [7] that has key features
for Fog simulations such as power monitoring and resource management and is
initially based on the well-known cloud simulator CloudSim[15]. In [8], the au-
thor extended the work of iFogSim to add a data placement extension with the
goal of enabling users to experiment with different policies. Miniworld [9] uses
CORE as the network emulator and provides the possibility of deploying virtual
machines and containers as emulated nodes. However, it didn’t include mobility
models or the integration with other simulators. Another missing feature was
the possibility of running constrained nodes with QEMU, embedded operating
systems, host applications, and containers. Virtual Mesh [10, 11] had the goal
of enabling users to test their mesh network projects in an emulated environ-
ment. The user would be able to create applications to run directly in the host
operating systems, whilst the network interfaces used by the application would
be emulated in OMNet++. MockFog [12] proposes an emulation environment
deployed in existing cloud infrastructure providers to allow the configuration of
an heterogeneous environment. However, it is not suited for emulation of mobile
Ad-Hoc nodes due to the limitations in the topology definition and lack of mo-
bility control, and also cannot be used to emulate constrained devices. EmuFog
[13], like this work, uses a network emulator in order to allow the deployment of
several nodes in a controlled environment. The emulator used is MaxiNet, and
the applications are emulated in a Docker container as can be done in this work
but lack the option of adding mobility to the nodes. EmuEdge [14] is an emulator

5 https://nodered.org/about/



4 B. Chianca et al.

Fig. 1: Framework Architecture

with similar goals of creating realistic experiments. It uses Xen to create virtual
nodes and SDN for creating and managing the topologies. It allows also detailed
network tracing and also replaying traffic generated by network simulators, but
lacks good wireless and mobility implementations. It also lacks the possibility
of emulating constrained IoT nodes, focusing on Linux and Android VM nodes.
Another possibility of testing distributed prototypes in a realistic environment
is to use test beds such as IoTLab [16], which allow the download of applications
on physical embedded hardware and the observation of realistic radio behaviour.

1.3 Contribution

The main contribution of this study was to establish a framework that enables
researchers and engineers to work with all the aforementioned features in a sim-
plified way. It not only enables the study and evaluation of distributed mobile
applications, but also allows faster prototyping since it does not require addi-
tional software specific skills for designing applications. It has a GUI to facilitate
the management and supervision of scenarios and topologies composed of nodes
running as virtual machines, containers or applications running directly in the
host OS. The framework was also designed with the integration possibility of
other external tools for mobility control. The source code of this framework
is available at: https://github.com/brunobcfum/pymace 6. A demonstration of
a mobile system running an etcd [17] configuration service is presented as an
experimental evaluation in Section 3.2.

2 Proposed Framework

The proposed mobile emulation framework creates an environment composed of
different modules that can be configured according to the need and Figure 1
illustrates the main elements.

6 This software is constant evolution, and new features might be introduced in the
future that are not described in this paper.



MACE: A Mobile Ad-hoc Computing Emulation Framework 5

2.1 Network Emulator

Network emulators, unlike the network simulators, aim in mimicking the be-
haviour of the device without modelling in detail each intrinsic aspect. The
replacement of an emulated network interface by a physical one is imperceptible
by the applications. Such emulators allow the system designers to experience
a more realistic approach for the tests. They provide for the application the
perception that it is running on real hardware. For MACE two different net-
work emulators were considered, tested and are provided as options: OMNet++
together with the Emulation capability supplied by the INET Framework and
CORE. When running an emulation scenario, the user can choose between one
or another by just changing a configuration.

OMNet++ is an open-source software written predominantly in C++ that
is widely used in the academic world and has good acceptance in wireless sim-
ulation studies. OMNet++ is not intended to be a simulator, but a framework
mainly used to build network simulators. Therefore, it features several libraries
that can be coupled together to build a stack which once compiled, operates as
a simulator. Additional elements can be added to OMNet++ through third part
frameworks. The most important framework is INET, which among other things
allows the creation of emulated network interfaces when using a real-time sched-
uler. When using the OMNet++/INET emulation option, the network stack
is split so that part of the stack is emulated in the operating system itself by
creating virtual network interfaces, and part is simulated in OMNet++. The
open-source project CORE works similarly to OMNet++ when it is running
emulated interfaces, but the depiction of the wireless interface is less customiz-
able. Additionally, instead of using TAP interfaces it uses VETH interfaces,
which despite being a different technology, from the perspective of an emulated
node achieves the same results. It uses ebtables to control the connectivity in the
physical medium similar to the Unit Disk Radio module from OMNet++. Which
means that the signal attenuation is not realistically represented, so the connec-
tivity is defined by the Cartesian distance between the nodes. When there is a
need of emulating a more realistic representation of the wireless interface, taking
in consideration propagation delays and signal decay due to the specific medium
characteristics, the user can associate the emulator EMANE [18]. EMANE (Ex-
tendable Mobile Ad-hoc Network Emulator), is focused in mobile Ad-hoc net-
works and has different radio models available such as IEEE802.11abg, TDMA,
LTE and Radio Pipe.

2.2 Routing Protocol

Another important component of the framework is the routing protocol to enable
the multi-hop communication between the mobile nodes. Many different proto-
cols have been created and each one of those has an advantage or specific goal
depending on the application [19, 20]. In this work the interest in upon a routing
protocol implemented for Linux, which can be used in generic applications and
work well with mobile nodes. A comparative study [21] has been made with some



6 B. Chianca et al.

of the most prominent protocols for MANETs and FANETs: AODV [22], OLSR
[23] and BATMAN [24]. BATMAN V was found to have better packet delivery
ratio with mobility and was capable of maintaining good connectivity even with
high mobility. It is also a proactive protocol which can reduce latency since it
constantly updates the best route among the nodes.

2.3 Mobility Control

The mobility module of the framework is a software capable of controlling the po-
sition of each node in the simulation via manual input or via automatic control.
The automatic control can happen via the implementation of mobility models
or via an interface to external software. The positions are fed into the network
emulator that, based in configurations of the wireless interface’s radio reach, con-
nects each node taking part in the distributed application. When using CORE
as network emulator, mobility is quite limited. By default, the only option to
add mobility is to create predefined scripts associated with each node. They,
therefore, loop through this script creating a repetitive movement. Nodes can
be initially placed with the help of a graphical interface supplied with CORE.
To avoid this limitation, it is integrated into the proposed framework the op-
tion of using a Python library7 that can be used to control the mobility of the
nodes and their position injected into the CORE emulation session. OMNet++,
on the other hand, comes with several mobility models provided by the INET
framework, so the user only needs to configure the emulation session according
to the pattern more suited to the application. Due to the proposed framework’s
modularity, other types of domain-specific simulators can potentially be used to
control the nodes’ mobility. A proof-of-concept experiment is later introduced
in Section 3 where a UAV Flight simulator is used to updated nodes’ positions
in CORE. Other works have also introduced similar functions with OMNet++
[25][26].

2.4 Distributed Mobile Applications

Running emulation scenarios instead of simulated applications on simulation
frameworks create opportunities to run distributed mobile applications in di-
verse scenarios. That consequently increases the ability to create heterogeneous
sessions by running some nodes directly on the host, and others inside virtual
machines or containers as shown in Figure 2. Each node can be tuned with
different hardware definitions such as available persistent and volatile memory
or the number of processor cores. Furthermore, it is also possible to mix nodes
running in different architectures such as x86 and ARM. The same is true when
running native applications together with others made for different operating
systems such as RiotOS[27], or other embedded OSes that can be compiled as a
host application for testing.

7 https://github.com/panisson/pymobility



MACE: A Mobile Ad-hoc Computing Emulation Framework 7

Fig. 2: Emulation Options

Linux Native Applications When running applications inside Linux names-
paces, due to the isolation, they can open sockets using the same port number.
Hence, it is possible to run any type of application that accept more than one
simultaneous instance of the process. That allows for example testing several
instances of web servers or distributed file systems. An evaluation environment
was created to run a mobile distributed experiment with etcd and more details
can be found in Section 3.2. When it is necessary to increase the level of isolation,
the application can be run as a VM or a container.

Running Virtual Machine Nodes Instead of running distributed applica-
tions directly in the host operating system, it is also possible to run guest vir-
tual machines (VM). The framework provides the option of running a VM or a
Docker container in each node where the virtual network interfaces will bridged
to the emulated one. The framework provide a simple way of managing the pre-
configure VMs images which can be x86 or ARM for embedded devices. The
overall architecture can be observed in Figure 3.

Running Embedded Operating Systems One important step of developing
distributed algorithms for heterogeneous IoT devices is the ability to test them on
different operating systems and hardware with unbalanced performance. Nowa-
days, many embedded OSes are available and RiotOS for instance, provides the
option of compiling the firmware as a x86 (native) application for testing. With
that, one can test the communication between the emulated firmware and other
nodes in the system, such as an edge server running on a virtual machine in
another node.



8 B. Chianca et al.

Fig. 3: Virtual Machine Architecture

3 Experimental Evaluation

Since the network emulator is an important component of the framework, some
tests were run to assess the maximum performance that can be expected from
them and build a baseline for further assessments. For that, benchmarks were
taken with iperf3 [28]. The reasoning was to inject different traffic flows in a
topology and measure the throughput and losses. All the tests were performed
in the computer described in Table 2. The experimented topology is composed
of nine nodes symmetrically displaced and with an equidistant one-hop distance
between each other. Figure 4 illustrates the topology. An emulated wireless Ad-
Hoc network with the parameters set as illustrated in Table 3 was created in
OMNet++ and in CORE.

3.1 Throughput

For measuring the throughput, the worse case was considered. Flows were cre-
ated traversing the maximum distance available in the topology, between the
nodes in the diagonal extreme corners. When using OMNet++, the real-time



MACE: A Mobile Ad-hoc Computing Emulation Framework 9

Table 2: Test Platform
Processor Manufacturer / Model: AMD / Ryzen 7 1700
Number of cores 8 (16 Threads)
Cache L1,L2,L3 768kB, 4MB, 16MB
Memory 16GB DDR4
Emulator OMNet++ 5.6.1 and CORE 7.2.1
Operating System Linux Mint 20 x86 64bits
Routing Protocol B.A.T.M.A.N V[24]

Fig. 4: Symmetrical topology

scheduler needs to keep up with processing all the packets in the whole topol-
ogy. Furthermore, the scheduler must run in only one thread, and as seen in
Figure 5(a), when there are too many packets it cannot keep up. Even when
injecting throughput below the theoretical expected based in the configuration,
it can deliver less than 2Mbps. So, all injected flow beyond this threshold is
ultimately dropped, with losses reaching almost 100% when injecting 100Mbps.
CORE on the other hand, could keep up to the injected flow whilst keeping the
error rate fixed in the configured value of 1% per hop as can be seen in Figure
5(b).

Table 4: etcd Parameters
Key size 8 Bytes

Value size 256 Bytes

etcd version 3.4.13

Fixed leader Node 3



10 B. Chianca et al.

Table 3: Emulation parameters
Setting OMNet++ CORE

MTU 1500B 1500B

Interface ExtUpperIeee80211Interface N/A

MAC Ieee80211Mac N/A

Management Ieee80211MgmtAdhoc N/A

Op Mode AC N/A

Bitrate 433.3Mbps 433.3Mbps

Number of antennas 6 N/A

Delay N/A 1300us

Jitter N/A 5 us

Error rate N/A 1

(a) OMNet++ (b) CORE

Fig. 5: Measured throughput traversing the topology

3.2 Distributed Mobile Applications with etcd

etcd [17] is a distributed key-value store which has a broad acceptance among
system designers and is by tools largely used in production such as a configu-
ration service for Kubernetes. It provides strong consistency among the nodes
by using Raft as consensus protocol [29] and can be used by any application
that requires consistent key-value store. For this proof of concept, the proposed
framework is used to create an emulation session where etcd is deployed in
namespaces using ramdisks as storage units. Etcd has available in their website
baseline performance figures8, alongside a benchmark tool that can run in any
deployed system. Since the traffic flow when testing etcd is too high, only CORE
could be used and the testing platform and settings are the same already shown
in Table 2 with the topology presented in Figure 4. The tests were performed
with the same parameters as stated on their website and shown in Table 4.

It is possible to see that the results are below the baseline, which is expected
considering the high latency configured in CORE for the links. Reducing the
latency to 300us instead of 1300us increased the average queries per second to

8 https://etcd.io/docs/v3.4.0/op-guide/performance/



MACE: A Mobile Ad-hoc Computing Emulation Framework 11

Table 5: etcd Results
1 con. 1 cli. Baseline 1300us 300us 300us mob.

Average QPS 583 231 567 40

Average Latency 1.6ms 43ms 18ms 24ms

100 con. 1000 cli. Baseline 1300us 300us 300us mob.

Average QPS 44 341 7 184 11 172 4432

Average Latency 22ms 137ms 85ms 224ms

11172, and the average latency was reduced to 85ms. Mobility was then added
with the random walk model provided by a third part library. As seen in Ta-
ble 5, with mobility there is a considerable decrease in performance, with lower
throughput and higher latency. The mobility can also be controlled by an exter-
nal agent related to the specific application domain. To test this, the emulator
was connected to an open-source UAV flight simulator. Paparazzi[30] is an au-
topilot developed for fixed and rotary wing UAVs, and when using Paparazzi, all
the UAVs are controlled by the ground station via radio commands. However,
Paparazzi is also suited with a flight simulator where the radio link between
the UAVs and the ground station is replaced by a UDP sockets communicating
via pprzlink9. MACE also includes a proxy for the pprzlink that can capture all
packets exchanged between the simulated UAVs and the ground station. As a
result, the emulator can capture in real-time, the simulated GPS position of the
UAVs and update the emulated topology.

4 Future work and Limitations

One of the main limitations in this work were the issues when running OM-
Net++ as the network emulator. When increasing the number of packets, the
emulator cannot keep up with the traffic even though the computer processor
usage doesn’t reach it’s limit. That could indicate that it’s code can be poten-
tially enhanced to achieve better results. Another observation was that when
using CORE, the BATMAN routing protocol requires more than 20 seconds for
the routes to converge, so that traffic can start flowing. When using OMNet++
on the other hand, it requires less than 2 seconds. In future improvements of
the MACE framework, new functions useful when experimenting with Edge/Fog
infrastructure are still to be added: cost model, automatic application migra-
tion and energy model. Also, to increase scalability, we plan to explore CORE’s
feature of running distributed emulation sessions.

5 Conclusions

This work introduced the MACE emulation framework, which is aimed on Edge/-
Fog application development and with particular focus on Mobile Ad-hoc Com-

9 A communication protocol developed for serializing Paparazzi communication.



12 B. Chianca et al.

puting. It is built on top of network emulators, delivering functionalities that
enable fast application prototyping, instrumentation and emulated deployment.
The main functionalities were demonstrated by experimenting with an off-the-
shelf distributed configuration service, and showed how an emulated environment
can be deployed in order to enable reproducible research with mobile distributed
computing. The source code of this framework is available at:
https://github.com/brunobcfum/pymace.

References

1. H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend and per-
spectives,” 2012 2nd International Conference on Digital Information and Com-
munication Technology and its Applications, DICTAP 2012, pp. 195–202, 2012.

2. H. Elazhary, “Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT,
IoT cloud, fog, mobile edge, and edge emerging computing paradigms:
Disambiguation and research directions,” Journal of Network and Computer
Applications, vol. 128, no. November 2018, pp. 105–140, 2019. [Online]. Available:
https://doi.org/10.1016/j.jnca.2018.10.021

3. I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, “Mobile ad
hoc cloud: A survey,” Wireless Communications and Mobile Computing, 2016.

4. A. Markus and A. Kertesz, “A survey and taxonomy of simulation environments
modelling fog computing,” Simulation Modelling Practice and Theory, vol. 101, p.
102042, 2020, modeling and Simulation of Fog Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X1930173X

5. T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid, and S. U. Khan,
“Fognetsim++: A toolkit for modeling and simulation of distributed fog environ-
ment,” IEEE Access, vol. 6, pp. 63 570–63 583, 2018.

6. F. Fam, D. F. S. Santos, and A. Perkusich, “Integrating an IoT Application Mid-
dleware with a Fog and Edge Computing Simulator,” 2020.

7. H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques in the
internet of things, edge and fog computing environments,” Software: Practice
and Experience, vol. 47, no. 9, pp. 1275–1296, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

8. M. I. Naas, J. Boukhobza, P. Raipin Parvedy, and L. Lemarchand, “An extension
to ifogsim to enable the design of data placement strategies,” in 2018 IEEE 2nd
International Conference on Fog and Edge Computing (ICFEC), 2018, pp. 1–8.

9. N. Schmidt, L. Baumgärtner, P. Lampe, K. Geihs, and B. Freisleben, “Mini-
world: Resource-aware distributed network emulation via full virtualization,” in
2017 IEEE Symposium on Computers and Communications (ISCC), Jul. 2017,
pp. 818–825.

10. R. Gantenbein, “Virtual Mesh : An Emulation Framework for Wireless Mesh Net-
works in OMNet++,” Master Thesis of the Philosophical-scientific Faculty of the
University of Bern, 2010.

11. T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An emulation framework
for wireless mesh and ad hoc networks in OMNeT++,” Simulation, vol. 87, no.
1-2, pp. 66–81, 2011.



MACE: A Mobile Ad-hoc Computing Emulation Framework 13

12. J. Hasenburg, M. Grambow, E. Grünewald, S. Huk, and D. Bermbach, “Mockfog:
Emulating fog computing infrastructure in the cloud,” in 2019 IEEE International
Conference on Fog Computing (ICFC), 2019, pp. 144–152.

13. R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emufog: Ex-
tensible and scalable emulation of large-scale fog computing infrastructures,” in
2017 IEEE Fog World Congress (FWC), 2017, pp. 1–6.

14. Y. Zeng, M. Chao, and R. Stoleru, “Emuedge: A hybrid emulator for reproducible
and realistic edge computing experiments,” in 2019 IEEE International Conference
on Fog Computing (ICFC), 2019, pp. 153–164.

15. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“Cloudsim: A toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms,” Softw. Pract. Exper., vol. 41,
no. 1, p. 23–50, Jan. 2011. [Online]. Available: https://doi.org/10.1002/spe.995

16. C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-Gibollet,
F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne, “Fit iot-lab: A large
scale open experimental iot testbed,” in 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT), 2015, pp. 459–464.

17. etcd, 2020 (accessed October, 2020). [Online]. Available: https://etcd.io/
18. EMANE Emulator, 2020 (accessed October, 2020). [Online]. Available:

https://github.com/adjacentlink/emane/wiki
19. O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque, and M. S. Hossain,

“Routing in flying ad hoc networks: Survey, constraints, and future challenge per-
spectives,” IEEE Access, vol. 7, pp. 81 057–81 105, 2019.

20. J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks:
a survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6–28, 2004.

21. B. Sliwa, S. Falten, and C. Wietfeld, “Performance evaluation and optimization
of b.a.t.m.a.n. v routing for aerial and ground-based mobile ad-hoc networks,” in
2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp.
1–7.

22. C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in
Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems
and Applications, 1999, pp. 90–100.

23. P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,
“Optimized link state routing protocol for ad hoc networks,” in Proceedings. IEEE
International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for
the 21st Century., 2001, pp. 62–68.

24. B.A.T.M.A.N, 2020 (accessed October, 2020). [Online]. Available:
https://www.open-mesh.org/projects/batman-adv/wiki

25. E. A. Marconato, M. Rodrigues, R. M. Pires, D. F. Pigatto, L. C. Q. Filho, A. S. R.
Pinto, and K. R. L. J. C. Branco, “AVENS – A Novel Flying Ad Hoc Network
Simulator with Automatic Code Generation for Unmanned Aircraft System,” pp.
6275–6284, 2017.

26. Veins The open source vehicular network simulation framework., (accessed
October, 2020). [Online]. Available: https://veins.car2x.org/

27. RiotOS, 2020 (accessed October, 2020). [Online]. Available: https://riot-os.org/
28. iPerf, 2020 (accessed October, 2020). [Online]. Available: https://www.iperf.fr-en
29. L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact of

etcd deployment on kubernetes, istio, and application performance,” Software:
Practice and Experience, vol. 50, no. 10, pp. 1986–2007, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2885



14 B. Chianca et al.

30. G. Hattenberger, M. Bronz, and M. Gorraz, “Using the Paparazzi UAV System for
Scientific Research,” in IMAV 2014, International Micro Air Vehicle Conference
and Competition 2014, Delft, Netherlands, Aug. 2014, pp. pp 247–252. [Online].
Available: https://hal-enac.archives-ouvertes.fr/hal-01059642


