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Elastic ribbons are elastic structures whose length-to-width and width-to-thickness aspect-
ratios are both large. Sadowsky proposed a one-dimensional model for ribbons featuring a
nonlinear constitutive relation for bending and twisting: it brings in both rich behaviors and
numerical difficulties. By discarding non-physical solutions to this constitutive relation, we
show that it can be inverted; this simplifies the system of differential equations governing the
equilibrium of ribbons. Based on the inverted form, we propose a natural regularization of
the constitutive law that eases the treatment of singularities often encountered in ribbons.
We illustrate the approach with the classical problem of the equilibrium of a Möbius ribbon,
and compare our findings to the predictions of the Wunderlich model. Overall, our approach
provides a simple method for simulating the statics and the dynamics of elastic ribbons.

Keywords: boundary value problems; elastic plates; twisted rods

1. Introduction

Analyzing the equilibrium of elastic ribbons is somewhat simpler than that of elastic plates, but
ribbons inherit from some of the difficulties present in elastic plates theory. One of these difficulties
is the stress concentration caused by the near-inextensibility of the plate mid-surface, as found for
instance in the Möbius configuration of an elastic ribbon.

In 1858, A. F. Möbius introduced its celebrated one-sided surface: a ribbon twisted and closed in
such a way that its edge is a single curve. Although the Möbius strip was originally introduced as
a topological curiosity, it has given rise to a challenge in elasticity theory: what is the equilibrium
shape of a Möbius band made out of an elastic material? The energy functional governing the
equilibrium of such an elastic ribbon has been introduced by Sadowsky [1929], but it is only
relatively recently that tractable equations for the minimization of the energy have been derived,
and solved numerically, by Starostin and van der Heijden [2007]. This work initiated a surge of
interest from the applied mathematics community, see for example the book edited by Fosdick and
Fried [2015].

Two main difficulties arise when solving the equilibrium equations for ribbons numerically:
(i) they are differential-algebraic equations (DAE) and (ii) singularities are often present in its
solution. In general DAE systems are more difficult to solve than ordinary differential equations
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(ODE) and numerical integrators are less commonly found, and typically less optimized. Singular-
ities in the solutions are encountered in the Möbius problem as well as in other geometries: they
typically require the integration interval to be arranged (and sometimes broken down) manually in
such a way the singularities lies at their endpoints, as done in past analyses of the Möbius problem
[Moore and Healey, 2018; Starostin and van der Heijden, 2015].

In this paper, we address both these problems and propose a variant of the Sadowsky model
for thin elastic ribbons which takes the form of an ODE and is regularized by a small parameter.

2. equilibrium of elastic ribbons (Sadowsky model)

We consider an elastic structure having length L, width w, and thickness h with L�w� h, see
Figure 1. It is a made of a linearly elastic, isotropic material with Young's module E and Poisson's
ratio �. Its deformations are computed with a one-dimensional model based on the plate bending
rigidity D=Eh3/(12(1¡ �2)). We work in the special set of units where Dw=1 and L=1. The
extension to a generic set of units involves restoring the appropriate factors Dw and L in our
formulas, as found by a standard scaling analysis.

w

ex

ey
ez

r

s

d1

d2

d3

h

Figure 1. A ribbon with width w, thickness h is seen as a one-dimensional elastic structure with centerline
r(s) and Cosserat local frame fd1(s);d2(s);d3(s)g, parametrized with the arclength s.

The Sadowsky model for thin, inextensible ribbons is a one-dimensional theory that is formu-
lated as follows [Sadowsky, 1929; Starostin and van der Heijden, 2007; Dias and Audoly, 2015].
We denote as s the arc-length in reference configuration; it is used as a Lagrangian coordinate that
follows material cross-sections. In actual configuration, the main unknowns are the centerline r(s)
of the structure and a set of three orthonormal vectors fd1(s);d2(s);d3(s)g that capture how the
cross-section twists about the center-line. The combination of a center-line and a set of directors
defines a so-called Cosserat rod model. Effectively, the one-dimensional model is such that the
center-line is inextensible and unshearable, implying the following kinematic constraint

r 0(s) =d3(s): (1)

The evolution of the Cosserat orthonormal frame as s is varied is given by the Darboux equation

di
0(s)=u(s)�di(s) with 16 i6 3 (2)

with u(s) as the Darboux vector and f 0(s)=
df

ds
as the derivative of a generic function f(s) along

the centerline. Here, the existence and unicity of u(s) follows from the orthonormal character of
the frame of directors di(s) for any s. We work with the components fu1(s); u2(s); u3(s)g of the
Darboux vector in the directors frame,

ui(s) =u(s) �di(s):

These ui(s) are the strain measures of the rod model, for bending (i=1; 2) and twisting (i=3).

2 Inverting Sadowsky's constitutive law
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Figure 2. Sadowsky's energy surface WS(u2; u3) from equation (8). The energy surface is made up of two
symmetric wells. Level sets are shown in black, and the `forbidden' region corresponding to j� j= ju3/u2j>1
is shaded in orange (see section 4). Left: three-dimensional plot. Right: contour plot, with a level set of the
convexified functional from Freddi et al. [2016] shown in dashed blue.

Let us now turn to the analysis of stress in the ribbon. We denote as n(s) the force arising
from the internal stress transmitted across an imaginary cut made along the cross-section with
coordinate s, and m(s) the resultant moment: n(s) and m(s) are the internal force and moment,
respectively. We limit attention to ribbons made of a uniform elastic material, with uniform cross-
section geometry in the longitudinal direction. The constitutive relations connecting the bending
and twisting strains ui(s) with the components mi(s)=m(s) �di(s) of the internal moment in the
directors basis write

u1(s) = 0 (3)

m2(s) = u2

�
1¡ u3

4

u2
4

�
(4)

m3(s) = 2 u3

�
1+

u3
2

u2
2

�
: (5)

Note that these constitutive relations are non-linear, and that the stress m1 is absent from the first
one: equation (3) is a constitutive constraint expressing the fact that the elastic modulus associated
with bending the ribbon in its own plane is much larger than for the other bending mode.

The set of equations governing the equilibrium of the ribbon is complemented with the Kirchhoff
equations for the balance of force and moment,

n0(s) = 0 (6)
m0(s)+ r 0(s)�n(s) = 0: (7)

We do not consider any distributed force or moment, such as gravity or contact forces.

The equilibrium of the ribbon can be found by solving equations (1�7) with the appropriate
conditions on the boundaries s=0 and s=1.

The equilibrium problem (1�7) can be derived variationally from the constitutive constraint
u1(s)= 0 in (3) and from the strain energy functional

WS(u2; u3)=
1
2

�
u2
2+2u3

2+
u3
4

u2
2

�
; (8)

which is such that the constitutive relations (4-5) can be rewritten as mi(s) =
@WS

@ui
(u2(s); u3(s))

for i= 2; 3. This variational derivation appeared first in Starostin and van der Heijden(2007); a
presentation fully in line with the theory of non-linear elastic rods has later been proposed in Dias
and Audoly(2015).
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Figure 3. Inverting Sadowsky's constitutive relations. The surfaces are generated as parametric plots using
the bending and twisting strain (u2; u3) as parameters. The bending and twisting moments (m2; m3) on
the horizontal axes are calculated from the constitutive relation (4�5). The bending and twisting strains
(u2; u3) are used on either one of the vertical axes. The surface is colored in green if j� j< 1 and in orange if
j� j> 1, with �=u3/u2. The presence of two sheets stacked vertically shows that it is impossible to invert
the constitutive law as u2= g2

¡1(m2;m3) and u3= g3
¡1(m2;m3) in general. However, this inversion becomes

possible if the condition j� j< 1 is enforced, as shown by the layout of the green sections of the sheets.

The classical Kirchhoff rod model is recovered by changing the constitutive relations (3�5)
to mi(s) =Bi ui(s), for 16 i6 3. Contrary to the case of ribbons, these constitutive relations are
linear. The elastic constants Bi are the bending (16 i62) and twisting rigidities (i=3) of the rod.
A rod with Young's modulus E, shear modulus G=E/(2(1+ �)), and a rectangular cross-section
(width w, thickness h) has B1=Ehw3/12, B2=Eh3w/12, and B3=Gh3w/3, in the limit w�h.

3. Equilibrium as a differential-algebraic system

The equations for the statics of ribbons derived in section 2 form a non-linear boundary-value
problem with the arclength s as independent variable, i.e., a set of differential equations with
boundary conditions at both endpoints s=0 and s=1.

Specifically, equations (1�7) can be written as a differential system for 6 unknowns vectors �1
= (r, d1, d2, d3, n, m) plus two unknown scalars �2=(u2, u3) as0BBBB@

r
di
n
m

1CCCCA
0

=

0BBBB@
d3

(u2d2+u3d3)�di
0

n�d3

1CCCCA () �1
0 = f(�1;�2) (9a)

0 =

0BBBB@
@WS

@u2
(u2; u3)¡m �d2

@WS

@u3
(u2; u3)¡m �d3

1CCCCA () 0= g(�1;�2): (9b)

Due to the presence of the constraint g(�1;�2)=0, this problem is known as a differential-algebraic
problem (DAE); the component form of this DAE is spelled out in Appendix A.

A difficulty is that the constitutive relation g(�1;�2)=0 is non-linear and cannot be inverted
as �2 = g¡1(�1) , u2 = g2

¡1(m2; m3) and u3 = g3
¡1(m2; m3). This prevents from rewriting (9)

as an ordinary differential equation �1
0 = f(�1; g

¡1(�1)). By contrast, for classical elastic rods
(Kirchhoff rod model), the linear constitutive relation g(�1;�2)=0 can be inverted as u2= g2

¡1(m2;

m3) :=m2/B2 and u3= g3
¡1(m2;m3) :=m3/B3, implying that equilibrium can be rewritten as an

ordinary differential equation with 3� 6= 18 unknowns.
For thin ribbons, the impossibility to invert the constitutive relation as u2= g2

¡1(m2;m3) and
u3= g3

¡1(m2;m3) is demonstrated graphically in figure 3. This is confirmed by the calculation from

4 Inverting Sadowsky's constitutive law



appendix B, where an attempt to invert the constitutive relations leads to multi-valued `functions'
g2
¡1(m2;m3) and g3

¡1(m2;m3), and therefore fails.

Numerically, the standard method for dealing with the DAE system (9) is to augment the
differential equation �1

0 = f(�1; �2) with the differentiated form of the constraint g = 0, namely
@g

@�2
��20 =¡

@g

@�1
��10 , resulting in a ordinary differential equation with 3�6+2=20 unknowns. This

is the approach chosen by several authors, see for example [Audoly and Seffen, 2015; Moulton et
al., 2018; Kumar et al., 2021]. The drawback is that the resulting equations are complex; in the
present work we explore a simpler approach based on the remark that the constitutive law becomes
invertible when non-physical values of the strain are dismissed.

4. Inverting the constitutive law

The Sadowsky energy WS in (8) is non-convex. As noted by [Freddi et al., 2016], equations (1�7)
are therefore not sufficient to warrant equilibrium. It must be required in addition that the solution
lives in the region of the strain space where the solution is convex. The latter can be worked out
as [Freddi et al., 2016]

j�(s)j6 1 where �(s) =
u3(s)
u2(s)

: (10)

In figures, we use the color code: green for j�(s)j6 1 and orange for the `forbidden' region j� j>1.

A microscopic interpretation of the condition (10) can be found in [Paroni and Tomassetti,
2019], and a related discussion in the context of extensible ribbons is given in section 7 of [Audoly
and Neukirch, 2021]. Note that the condition (10) amounts to replacing the Sadowsky energy WS

in equation (8) with the convexified energy WF that matches WS for j� j�1 and is equal to WF(u2;

u3) = 2 u3
2 for j� j> 1 [Freddi et al., 2016]; as show in figure 2, the level sets of WF coincide with

those of WS in the allowed region j� j6 1 but differ in the `forbidden' region j� j> 1 (dashed blue
segments in figure 2). We note that having j� j> 1 would mean obtaining a negative curvature u2
with a positive applied bending moment m2.

As shown by figure 3, it is possible to invert the constitutive law if one limits attention to the
green portions of the surfaces, where the condition j� j6 1 holds. Closed-form expressions for the
inverse constitutive law u2=u2

?(m2;m3) and u3=u3
?(m2;m3) are obtained as follows. We start by

introducing �= �2=(u3/u2)
2 and a=m2/m3. Expressing a using equations (4) by (5), we obtain

2 a �=1¡�. Squaring both sides of this equation yields �2¡ 2� (2 a2+1)+1=0. This equation
has two real and positive roots �? and �??, which are such that 0<�?6 16 �??. The condition
j� j � 1 implies �= �26 1 and shows that the correct root is �?. This yields, after some algebra

�?(m2;m3) = 1+2 a2¡ 2 a4+ a2
p

with a=
m2

m3
(11)

u2
?(m2;m3) =

m2

(1¡�?) (1+�?)
(12)

u3
?(m2;m3) =

m3

2 (1+�?)
: (13)

Note the existence of a discontinuity in u2
?(m2;m3) at m2=0 when m3=/ 0, which corresponds to
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crossing the forbidden region shown in orange in the figures. The inverse constitutive law (12�13)
yields the green surface shown in figure 4, which coincides with the green portions appearing in
figure 3.

Using the inverse constitutive law (11�13), it is now possible to eliminate u2 and u3 from the
differential system (9), which then takes the form of an ordinary differential equation (ODE),

0BBBB@
r
di
n
m

1CCCCA
0

=

0BBBB@
d3

(u2
?d2+u3

?d3)�di
0

n�d3

1CCCCA () �1
0 = f?(�1) (14)

The order of the differential equation is 18.

By formally setting �?= 0 in equations (12�13), one recovers the inverse constitutive laws
u2
?=m2 and u3?=m3/2 applicable to a classical Kirchhoff rod having B3/B2=2. By introducing a

homotopy coefficient � (06 �61) and by replacing �? with ��? in equation (12�13), it is therefore
possible to continuously change the constitutive law, from a Kirchhoff rod model with B1=1,
B2=1, and B3=2 to Sadowsky's ribbon model, as shown in Appendix C. This makes it possible
to treat both the Sadowsky and Kirchhoff models using the same computer code.

5. Illustration: Möbius strip

We illustrate this approach by solving the equilibrium of a Möbius strip, i.e., a ribbon that is
twisted by half a turn and closed into a loop. The differential equation �10= f?(�1) in (14) is solved
on the interval 06 s6 1/2, together with 18 scalar boundary conditions

r(0)=0 n(0) �d1(0)=0 m(0) �d1(0)= 0
d1(0)=ex d2(0)= ey d3(0)= ez

r

�
1
2

�
� ei=0 (i=x; y) d1

�
1
2

�
� ex=0 d3

�
1
2

�
� ex=0:

(15)

The boundary conditions at s=1/2 reflect the flip-symmetric nature of the solution, as assumed
in previous works [Domokos and Healey, 2001; Starostin and van der Heijden, 2007; Mahadevan
and Keller, 1993; Moore and Healey, 2018]. A simple shooting procedure, presented in the sup-
plementary material, yields the components of n(0) and m(0) in the Cartesian frame as (nx(0);
ny(0); nz(0))=(0;43.5;42.1) and (mx(0);my(0);mz(0))= (0;2.01;¡8.87), as well as solution on the
interval 06s61/2. The solution on the other interval 1/26s061 is then generated by symmetry,
using u2(s0)=¡u2(1¡ s0) and u3(s0)=+u3(1¡ s0).

In figure 4a, the solutions u2(s) and u3(s) are plotted. The point s= 1/2 is a discontinuity
where u2 flips sign while u3 remains continuous. At the discontinuity, ju2((1/2)�)j= ju3(1/2)j,
implying that �(s) jumps from +1 at s=(1/2)¡ to ¡1 at s=(1/2)+. In the space (u2; u3) shown in
figure 4b, the discontinuity causes a jump across the forbidden region, as shown by the grey arrow.
In the space (m2; m3; u2) it causes a jump from one green sheet to the other, see figure 4d. The
equilibrium imposes that the components m2(s) and m3(s) of the internal moment are continuous
at the discontinuity.

Let us now turn to the periodicity condition at the s=1 endpoint. As the Möbius strip is not
orientable, the directors d1 and d2 are opposite to each other there, di(1) =¡di(0) for i= 1; 2.
Even though the Darboux vector u is continuous, u(1) = u(0), the non-orientability creates an
apparent jump in the bending and twisting strains ui(1)=¡ui(0) for i=1; 2, materialized by the
second arrow in figures 4b,d.

6 Inverting Sadowsky's constitutive law
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Figure 4. Möbius solution predicted by Sadowsky's model. The solution is only computed for s2 (0; 1/2)
(plain curves), and symmetry is used to plot the s2 (1/2;1) domain (dashed curves). (a) At the discontinuity
s=1/2, the curvature strain u2(s) changes sign, while the twisting strain u3(s) is continuous. (b) Parametric
plot in the (u2; u3) plane, showing that the solution lies entirely in the region �(s)� 1 (green background).
(c) Three-dimensional rendering of the Möbius solution, including the generatrices (dotted lines). (d) The
parametric plot of the solution in the (m2;m3; u2) space falls on the green surface predicted by the inverse
constitutive law (12).

We have recovered the solution of the Möbius problem predicted by the Sadowsky model,
that appeared in previous works, using a simple, constraint-free formulation (14). The singularity
s= 1/2 has been placed at an endpoint of the mathematical domain s 2 (0; 1/2) on which we
solved the boundary-value problem (15). In this happy but somewhat peculiar situation, there is no
discontinuity inside the simulation domain (0;1/2). In general, however, the solutions of Sadowsky
model may feature interior discontinuities, and they must be taken care of by means of special jump
conditions, see [Freddi et al., 2016] as well as section 7 in [Audoly and Neukirch, 2021]. Interior
discontinuities may appear under various loading conditions, and have been reported by [Huang
et al., 2020; Charrondière et al., 2020]. As the position of an interior discontinuity is not known a
priori in the absence of symmetry, dealing with them requires additional work.

6. Smoothing discontinuities

In this section, we present a method that avoids dealing with interior discontinuities. We observe
that the inverse constitutive law u2=u2

?(m2;m3) in equation (12) can be regularized as follows

u2
?(m2;m3; ") =

m2

(1¡�?+ ") (1+�?)
: (16)

We have introduced a small regularizing parameter " > 0 in the denominator, such that the Sad-
owsky model is recovered in the limit "! 0. This regularization corresponds to going from the
discontinuous surface shown in figure 4c, to the smooth one shown in figure 5c for "= 0.01. Note
that this regularized constitutive law suppresses interior discontinuities, but puts an end to the
variational nature of the model.

Sébastien Neukirch, Basile Audoly 7
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Figure 5. Solution of the regularized Sadowsky model from section 6 for "=0.01 (solid blue curves) for a
Möbius band, and comparison to the Wunderlich model (dashed black curves). The points W� are where
the solution of the regularized Sadowsky model enters or exits the forbidden zone j� j> 1. (a) Bending and
twisting strain, ui(s). (b) Parametric plot in the (u2; u3) plane. (c) Parametric plot in the (m2; m3; u2)

space, and comparison with the regularized constitutive law (16) (surface) (d) Convergence of the value
u2(0) predicted by the regularized Sadowsky model (blue curve) to that predicted by the original Sadowsky
model (red). The data for the Wunderlich solution is taken from [Starostin and van der Heijden, 2015], see
the green curve of their Figure 7, with w/L= 0.2/�.

For the Möbius problem, it is now possible to solve the differential system (14) on the entire
interval s 2 (0; 1). Using the smoothed constitutive law (16) for u2 and the original constitutive
law (13) for u3, together with the clamped boundary conditions

r(0)=0 d1(0)= ex d2(0)= ey d3(0)= ez
r(1)=0 d1(1) �d2(0)= 0 d2(1) �d3(0)= 0 d3(1) �d1(0)= 0;

(17)

we did obtain the solution of the regularized problem over the entire interval s 2 (0; 1) directly,
by a shooting method. The initial values for "= 0.01 were obtained numerically as (nx(0); ny(0);
nz(0))= (0; 43.1; 43.0) and (mx(0);my(0);mz(0))= (0; 2.15;¡8.65). This solution is shown by the
solid blue curves in figure 5. Details on the numerical solution are provided in the supplementary
material.

Note that the equilibrium equations (7), together with the periodic conditions for r(s) in (17)
suffice to warrant that both n(s) and m(s) are periodic. Replacing the condition x(1) = 0 with
n1(0)=0 helps the numerical resolution of the BVP by removing its s invariance.

The convergence of the solution of the regularized problem towards the solution of the original
Sadowsky problem for "!0 is checked in figure 5d, where the value of u2(0) is plotted as a function
of ". The limiting value u2;S

0 = 3.3866 predicted by the original Sadowsky model is recovered
asymptotically for "! 0.

From figure 5c, it appears that the solution still switches from the upper green layer to the
lower green layer across the mid-point s=1/2 but this transition now takes place smoothly. As
shown in figure 5b, the regularized solution does enter the region j� j>1 that was forbidden in the
original Sadowsky model, near the smoothed discontinuity s=1/2.

8 Inverting Sadowsky's constitutive law



In figure 5, this solution is also compared to the solution of the more accurate�but also
numerically more challenging�Wunderlich model, governed by the functional

WW(u2; u3)=WS(u2; u3)
1
� 0w

log
�
2+ � 0w
2¡ � 0w

�
(18)

where �(s)=u3(s)/u2(s) and with w/L= 0.2/�, see [Wunderlich, 1962]. The Wunderlich energy
WW includes a gradient term � 0(s) that regularizes the discontinuities found in Sadowsky model: the
Wunderlich solutions feature an inner layer near s=1/2. The detailed features of the inner layer of
the Wunderlich solution are different from those of the regularized Sadowsky model, as shown by
a comparison of the dashed black and solid blue curves near s=1/2 (see in particular figure 5b).
This could be expected from the fact that the Wunderlich model is designed to resolve the boundary
layer accurately, the original Sadowsky model ignores it, and the regularized Sadowsky model
provides a convenient but non-principled regularization. Still, the main point is that away from
the smoothed discontinuity at s= 1/2, the solutions to the Sadowsky and Wunderlich models
are similar [Starostin and van der Heijden, 2015; Kumar et al., 2021]: this can be seen here by
comparing Figures 4 and 5.

7. Conserved quantities

We return to the original (non-regularized) Sadowsky model. Invariants have been extensively
studied in Kirchhoff rods. In both Kirchhoff rods and ribbons that are free of any external load,
the quantities n(s) and n(s) �m(s) are constant: this follows directly from the equations of equilib-
rium (6�7). There exists yet another conserved quantity, introduced as a Hamiltonian by Kehrbaum
and Maddocks [1997] and derived in Starostin and van der Heijden [2015] for ribbons. It is defined
through a Legendre transformation WLeg of the strain energy WS:

W ?(m2;m3; u2; u3) = m2u2+m3u3¡WS (u2; u3)

WLeg(m2;m3) = sup
u2;u3

W ?(m2;m3; u2; u3) (19)

H(n;m) = WLeg(m2;m3)+n3:

The Hamiltonian H is a conserved quantity: it satisfies dH

ds
= 0 for any s, when evaluated on an

equilibrium solution. In the equations above, ni=n �di, and mi=m �di denote the components
of the internal force and moment in the directors basis.

In equation (19), we consider the case where the supremum over (u2; u3) is attained, i.e., it is
a maximum of W ?: this implies that @W?

@u2
=0 and @W?

@ u3
=0, which yields exactly the constitutive

relations (4) and (5). As discussed in Section 3, for every value of (m2; m3), there are two corre-
sponding solutions (u2; u3) by the constitutive relations; this leads to the two sheets in the three-
dimensional plots. The solution set (u2; u3) that actually achieve the maximum in (19) is precisely
that given by (12) and (13). We can then explicitly calculate WLeg and find

WLeg(m2;m3)=
1
8

�
m2
2

p
+ m2

2+m3
2

p �
2

(20)

In terms of u2 and u3, this quantity evaluates toWLeg=
1

2
u2
2 (1+

u3
2

u2
2)
2=WS, as noticed in [Starostin

and van der Heijden, 2015]. The explicit expression of WLeg(m2;m3) in equation (20) has not been
reported in the literature to the best of our knowledge.

For the Möbius solution from section 8, for instance, we find the value of the invariant as
H = 57.5.
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8. Conclusion

We have shown that the two main issues associated with Sadowsky's model for elastic ribbons,
namely the differential-algebraic nature of the equilibrium equations and the singularity arising at
inflection points (u2(s)=0) can both be overcome by using a regularized and inverted constitutive
relation. We have illustrated our approach on the Möbius configuration, and have shown that the
regularized model converges toward Sadowsky's model when the regularization parameter goes
to zero. We note that other ways to regularize Sadowsky's equations have been used [Sano and
Wada, 2019] but they only postpone the occurrence of the singularity which eventually arises for
large enough strain. We have compared the equilibrium solution found with our model to the
solution found with Wunderlich's model and we have shown that they only differ in the region
where the singularity occurs: in Wunderlich's model the twist strain (u3) is forced to vanish at
the singular point (where u2! 0) in order to leave the ratio �(s) = u3(s)/u2(s) finite, while this
is not the case in our approach. Besides, equilibrium equations in Wunderlich's model comprise
a differential equation for the ratio �(s) that can prove delicate to handle numerically: see for
example Moore and Healey [2018] where a special fix has been introduced to lessen the numerical
stiffness and be able to cross the singular event. By contrast, our approach has no such difficulties
and crossing singular points is easy. In future work, it will be interesting to analyze equilibria
featuring multiple singularities [Huang et al., 2020] and singularities for ribbons possessing natural
curvature [Charrondière et al., 2020] using our model.
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Appendix A. Statics in components form

The differential equations (9a) governing the equilibrium can be spelled out in components as

x0= d3x n1
0 =n2u3¡n3u2

y 0= d3y n2
0 =n3u1¡n1u3

z 0= d3z n3
0 =n1u2¡n2u1

d3x
0 =u2 d1x¡u1 d2x m1

0 =m2u3¡m3u2+n2
d3y
0 =u2 d1y¡u1 d2y m2

0 =m3u1¡m1u3¡n1
d3z
0 =u2 d1z¡u1 d2z m3

0 =m1u2¡m2u1
d1x
0 =u3 d2x¡u2 d3x d2x

0 =u1 d3x¡u3 d1x
d1y
0 =u3 d2y¡u2 d3y d2y

0 =u1 d3y¡u3 d1y
d1z
0 =u3 d2z¡u2 d3z d2z

0 =u1 d3z¡u3 d1z:

(21)

As explained in section 3,

� for classical Kirchhoff rods, the inverse constitutive relations ui(s)=mi(s)/Bi can be inserted
directly, which yields an ordinary differential equation of order 18;

� for a Sadowsky ribbon, one option is to complement these equations with the 3 constitutive
relation (3�5), which yields a DAE with 21 unknowns.

Appendix B. Multi-valued inversion

After some algebra, the constitutive relations (4�5) can be inverted as

u2 (m2;m3) =
�
4

m3
4 m2

2+m3
2

p�
m2
2+m3

2+m2 � m2
2+m3

2
p �

2 (22a)

u3 (m2;m3) =
1
4

m3
3

m2
2+m3

2+m2 � m2
2+m3

2
p (22b)
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where �=�1= sign(u2 (s=0)). See also Borum [2018] for alternate, equivalent expressions.
The plot in Figure 3 has been generated as parametric plot, as explained in the legend, but it

is also possible to generate it using the formulas above: the existence of two sheets corresponds to
the choice of �=�1 in the formulas above.

Appendix C. Homotopy from rods to ribbons

We use the homotopy coefficient �2 (0; 1) and replace �? with ��? in (12�13) to continuously pass
from a rod model (having B1=1, B2=1, and B3=2) to a ribbon model:

u2
?(m2; m3; "; �) =

m2

(1¡ � (�?¡ ")) (1+ � �?)

u3
?(m2;m3; �) =

m3

2 (1+ � �?)

(23)

with �=0 for rods, and �=1 for ribbons.
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