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Toward a local drift flux model for high-pressure, subcooled, convective boiling flows

. The results obtained with this original boiling flow model are then compared to an extensive experimental data set obtained on a R12/R134a experimental facility. The comparison clearly demonstrates that this new model contains the fewer necessary submodels to describe the structure of a boiling two-phase flow under pressurized water reactor conditions. Subcooled boiling is acceptably described by the model. However, for higher values of void fraction, the model always predicts a nonexistent void fraction peak near the heating wall and overpredicts the wall and liquid temperatures. This behavior may be explained by: (i) the inadequacy of the radial turbulence modeling, (ii) the use of Prandtl's analogy whose validity under boiling conditions is questionable, and (iii) too simplistic a model for the vapor generation rate.

Introduction

From an industrial point of view, boiling flows that may be encountered in PWRs under incidental operating conditions are almost entirely studied using the local time-averaged two-fluid model. Unfortunately, although being a very complete model, its implementation is often hampered mainly because of numerical constraints. We propose here a simpler model for studying and testing different physical models and closure relations for highpressure convective boiling flows. In that sense, our model can be seen as complementary to classical CFD calculation tools. This pa-per provides a thoroughly documented model where we carefully describe the physical aspects as well as the numerical method. In that way and contrary to some industrial codes where the documentation is not always clear and complete, our paper may also serve as an educative means to improve awareness of the issues amongst the newcomers in the thermal-hydraulic community. Attacking such a problem directly using commercial software packages might be extremely risky because of the challenge to analyze the results to separate the uncertainties due to the closure relationships from those due to the numerical method.

When a liquid flows along a heated wall, nucleate boiling may occur if the imposed wall heat flux is high enough. The resulting increase of the heat transfer coefficient is however limited by the Departure from Nucleate Boiling (DNB) also known as the boiling crisis . The corresponding value of the heat flux is called the critical heat flux . For a heat flux controlled process, the presence of a steam blanket on the wall results in a very sharp increase of the inlet liquid velocity V ℓ liquid velocity vector V m mixture velocity vector V v vapor velocity vector V vj local vapor drift velocity vector with respect to the mixture volume flux ( Eq. ( 4) ) We

Weber number ( Eq. ( 77) )

x local vapor mass quality ( Eq. ( 15) ) x eq local vapor equilibrium quality Y vector of unknown variables Y m vector of unknown mixture variables ( Eq. ( 60) ) Y g vector of unknowns vapor variables( Eq. ( 60 time averaging operator applied to a quantity heating surface temperature due to the decrease of the heat trans-fer coefficient. This may cause severe damages possibly including the meltdown of the wall. It is then of high priority to accurately predict the thermal-hydraulic conditions leading to the occurrence of this phenomenon. These conditions are usually determined by using empirical correlations where the critical heat flux depends on area-averaged quantities such as pressure, mass flux or equilibrium quality. For complex geometries like rod bundles, those quantities are up to now calculated using a subchannel analysis code [START_REF] Moorthi | A review of sub-channel thermal-hydraulic codes for nuclear reactor core and future directions[END_REF] . Actually, this approach has several drawbacks, among which the lack of generality of those correlations. This leads to the development of new correlations for any change in the assembly design such as the geometry of the mixing grids or the distance between these grids. A different path has been considered for several years: the Local Predictive Approach ( e.g. [START_REF] Guelfi | NEPTUNE: a new software platform for advanced nuclear thermal-hydraulics[END_REF] ). This approach consists in developing empirical critical heat flux (CHF) correlations using local ( i.e. pointwise) instead of area-averaged quantities. This lower scale strategy has two main advantages. First, it better relates the boiling crisis to the boiling flow structure. Second, it can account for parametric effects on the DNB, such as the axial shape profile or the cold wall effect, for which dedicated experiments should no longer be specifically needed. The Local Predictive Approach requires a thoroughly validated computer code for the local conditions calculations. A classical approach consists in using the twofluid model. A set of balance equations for mass, momentum, and energy is obtained by time-averaging the local instantaneous balance equations for each phase. Other equations can also be added, such as an interfacial area transport equation. Additional closure relations are needed to solve this set of balance equations. They mainly concern not only the interfacial exchange terms for mass, momentum and energy, but also the modeling of the turbulent fluxes. If the validation of most current CFD codes is generally satisfactory for single phase flows, the modeling of boiling two-phase flows under PWRs conditions could and should be improved in many ways. In particular, the liquid phase turbulence should be better modeled. Unfortunately, the two-fluid model complexity is partly caused by the number of closure relations and by their influence on the mathematical nature of the final system of equations [START_REF] Bilicki | Physical aspects of the relaxation model in two-phase flow[END_REF][START_REF] De Bertodano | Two-Fluid Model: Stability, Simulation and Chaos[END_REF] . As a result, any direct improvement inside an existing code would be very knotty. In addition, a complete validation within the thermal-hydraulic range of interest would require important instrumentation developments. In view of this, the present work neither proposes new improvements for the closure relations of existing CFD codes, nor validates some critical heat flux physical mechanisms, as suggested for example by Bricard et al. [3] .

This paper details a first attempt to model a stationary boiling flow in a simple way by identifying the necessary key parameters to consider. The model is applied to a tube of uniform circular cross section with a high length-to-diameter ratio. Boiling flows under PWR's thermal-hydraulic conditions are considered: steam-water above 10 MPa and 300 • C. In such conditions, [START_REF] François | The distribution parameter c 0 in the drift flux modeling of forced convective boiling[END_REF] have clearly shown that, whatever the void fraction from subcooled to saturated flow, the two-phase flow is a bubbly emulsion where both phases are strongly coupled. This naturally leads to consider a drift flux model using the two-phase mixture balance equations, rather than a two-fluid model using the phasic equations.

The paper is segmented as follows. Section 1 fully describes the model and completely specifies all the balance equations and associated closure relations, as well as the numerical algorithm. The experimental facility and the test matrix are detailed in Section 2 . In Section 3 , the comparison between the numerical results and the experimental data is presented. Sensitivity analyses are discussed in Section 4. Finally, the model capabilities to simulate boiling flows and perspectives for future work are given in the conclusion.

Description of the model

The local drift flux model 2.1.1. The three-dimensional local drift flux model

The three-dimensional local drift flux model is based on the local, time-averaged forms of the mixture mass, momentum, enthalpy balance equations, and the vapor phase mass balance. For steady-state conditions, these equations read ( e.g. [START_REF] Delhaye | Thermohydraulique des réacteurs, Edition révisée[END_REF] ):

• Mixture mass balance equation 1 :

∇ • ( ρ m V m ) = 0 (1)
where ρ m and V m are the mixture density and velocity vector, respectively.

• Mixture momentum balance equation:

∇ • ( ρ m V m V m ) = ρ m g -∇ p m + ∇ • τ m (2)
where g and p m are the acceleration vector due to gravity and the mixture pressure, respectively. The total mixture deviatoric stress tensor τ m includes the mixture molecular, turbulent and diffusional tensors.

• Mixture enthalpy balance equation:

ρ m V m • ∇h m = -∇ • q m + V m + α v ρ ℓ -ρ v ρ m V vj •∇ p m + μ m ( 3 
)
where h m , q m , α v , ρ ℓ , ρ v , μ m are the mixture specific enthalpy, the mixture heat flux vector, the local vapor time fraction, the liquid density, the vapor density, and the mixture energy dissipation rate per unit volume, respectively. The local vapor drift velocity vector with respect to the mixture volume flux V v j is defined as:

V v j = w V v -j = ( 1 -α v ) ( V v -V ℓ ) (4) 
where V v , V ℓ are the local vapor and liquid velocity vectors, respectively. The local mixture volume flux vector j is defined as:

j = α v V v + ( 1 -α v ) V ℓ (5)
• Vapor mass balance equation: [START_REF] Delhaye | Thermohydraulique des réacteurs, Edition révisée[END_REF] where Ŵ v denotes the vapor mass generation rate per unit volume. Defining the local vapor drift velocity vector, J vm , with respect to the mixture mass flux as:

∇ • ( α v ρ v V v ) = Ŵ v
J vm = α v ρ v ( V v -V m ) (7) 
Eq. ( 6) can be written as:

∇ • ( α v ρ v V m ) + ∇ • J v m = Ŵ v (8)

The two-dimensional local drift flux model in axisymmetric cylindrical coordinates

The model has been developed for convective boiling in a vertical, cylindrical tube of circular cross section. We have assumed that H1 : The flow is axisymmetric , Consequently, axisymmetric cylindrical coordinates are used to simplify the equations of the three-dimensional drift flux model.

• Mixture mass balance equation:

Eq. (1) yields:

1 r ∂ ∂r ( rρ m V mr ) + ∂ ∂z ( ρ m V mz ) = 0 (9) 
1 Bold face symbols represent vectors or tensors.

which can also be written as:

∂ ∂r ( rG r ) = -r ∂ ∂z ( ρ m V mz ) (10) 
where G r is the radial mixture mass flux defined as:

G r = ρ m V mr [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] • Projection of the momentum balance equation on the vertical z-axis: Assuming that H2 : The mixture pressure p m depends on z only, Eq. ( 2) gives the following scalar equation:

ρ m V mr ∂V mz ∂r + ρ m V mz ∂V mz ∂z = -gρ m - dp m dz + 1 r
∂ ∂r ( rτ mrz ) (12) which can also be written as:

∂ ∂r ( rτ mrz ) = r G r ∂V mz ∂r + r ρ m V mz ∂V mz ∂z + r gρ m + r dp m dz ( 13 
)
• Mixture enthalpy equation: Eq. ( 3) yields:

G r ∂h m ∂r + ρ m V mz ∂h m ∂z = - 1 r ∂ ∂r ( rq mr ) (14) 
• Vapor mass balance equation:

The local vapor mass quality x is defined as:

x = α v ρ v V v z α v ρ v V v z + ( 1 -α v ) ρ ℓ V ℓz (15)
As, at high-pressure, both phases are strongly coupled [START_REF] François | The distribution parameter c 0 in the drift flux modeling of forced convective boiling[END_REF] , we may assume to a first approximation that H3 : Both phases have almost the same local axial velocity , so that the local vapor mass quality x reduces at the zerothorder to the local vapor mass fraction: [START_REF] Ishii | One dimensional drift-flux model and constitutive equations for the relative motion between phases in various two-phases flow regimes[END_REF] since the mixture density ρ m is defined as: ρ m = α g ρ g + ( 1 -α g ) ρ ℓ [START_REF] Lin | Mass transfer between solid wall and fluid streams. Mechanism and eddy distribution relationships in turbulent flow[END_REF] and where we have assumed that H4 The vapor temperature is equal to the saturation temperature.

x ≃ α g ρ g α g ρ g + ( 1 -α g ) ρ ℓ = α g ρ g ρ m
From now on, each subscript v will be replaced by a subscript g to recall that the vapor is saturated. In addition, combining Eqs. ( 16) and ( 17) allows the mixture density 1

ρ m = x ρ g + 1 -x ρ ℓ (18) 
Furthermore, the combination of Eqs. ( 8) , [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] , and ( 16) leads to:

r ∂J gmz ∂z + ∂ ∂r ( rJ gmr ) = r Ŵ g -r G r ∂x ∂r -r ρ m V mz ∂x ∂z (19) 
where J gmr and J gmz are the radial and axial components of J gm . Finally, assuming that H5 : The axial derivative of the local vapor drift velocity vector can be neglected with respect to its radial derivative , Eq. ( 19) reduces to:

∂ ∂r ( rJ gmr ) = r Ŵ g -r G r ∂x ∂r -r ρ m V mz ∂x ∂z (20) 

Closure relations

As the mixture density ρ m is a function of x through Eq. ( 18) , Eqs. ( 10) , ( 13), ( 14) and ( 20) involve four main dependent variables, h m , V mz , G r , x , and five additional unknown quantities, d p m /d z, q mr , τ mrz , J gmr , Ŵ g , to be specified by closure relations.

Radial momentum flux τ mrz

For turbulent quasi-developed single phase flows, the shear stress which is transferred in the radial direction can be expressed as:

τ rz = ρν ∂ V z ∂r -ρV ′ z V ′ r ( 21 
)
where ν, V ′ z , and V ′ r are the kinematic viscosity and the turbulent components of both axial and radial velocities, respectively. The overline denotes the time-averaging operator.

By analogy with molecular diffusion, we may write:

V ′ z V ′ r = -ε M ∂ V z ∂r (22) 
where ε M is the momentum eddy diffusivity.

Assuming that the main turbulent contribution in forced convective boiling arises from the liquid phase, the mixture shear stress can be expressed as follows:

τ mrz (r) = (1 -α g ) τ ℓrz = ρ ℓ (1 -α g )(ν ℓ + ε Mℓ )
∂V ℓz ∂r [START_REF] Reichardt | Vollständige darstellung der turbulenten geschwindigkeitsverteilung in gleiten leitungen[END_REF] which can be rewritten according to H3 :

τ mrz (r) = ρ ℓ (1 -α g )(ν ℓ + ε Mℓ ) ∂V mz ∂r (24) 
The local void fraction α g can be expressed in terms of x by combining Eqs. ( 16) and ( 18) :

α g = xρ ℓ xρ ℓ + (1 -x ) ρ g ( 25 
)
As initially proposed by Sato et al. [START_REF] Sato | Momentum and heat transfer in two-phase bubble flow: I-theory[END_REF] , the momentum eddy diffusivity ε Mℓ in two-phase bubbly flow is assumed to result from the addition of two mechanisms i.e. (i) the shear turbulence ε ′ Mℓ in the liquid phase, and (ii) a bubble induced turbulence ε ′′ Mℓ :

ε Mℓ = ε ′ Mℓ + ε ′′ Mℓ ( 26 
)
• Shear induced turbulence: Following ( [23] , Eq. ( 21) ), (Sato et al. [START_REF] Sato | Momentum and heat transfer in two-phase bubble flow: I-theory[END_REF] ( Eqs. ( 9) , ( 19) and ( 20) ) suggested a momentum eddy diffusivity given by:

ε ′ Mℓ (r) = A (r) κR 6 u * 1 - r R 2 1 + 2 r R 2 ( 27 
)
where κ = 0 . 4 is the von Kármán constant and R the radius of the tube. The friction velocity u * is defined as:

u * = τ w ρ ℓ (28) 
where τ w is the wall shear stress given by the single phase flow correlation of McAdams [START_REF] Mcadams | Heat Transmission[END_REF] :

τ w = 0 . 018 Re -0 . 182 G 2 ρ ℓ (29) 
where Re and G are the Reynolds number and the mixture mass flux defined as:

Re = 2 GR μ ℓ (30) G = ˙ m π R 2 (31)
where ˙ m is the mixture mass flow rate.

The damping factor A (r) was initially proposed by van Driest [START_REF] Van Driest | On turbulent flow near a wall[END_REF] to account for the turbulence decrease in the vicinity of a wall. It reads2 :

A (r) = 1 -exp - ( R -r ) u * 16 ν ℓ
• Bubble induced turbulence:

In a way similar to Sato et al. [START_REF] Sato | Momentum and heat transfer in two-phase bubble flow: I-theory[END_REF] , the bubble induced turbulent diffusivity ε ′′ Mℓ is given by:

ε ′′ Mℓ (r, z) = k 2 A (r) α g (r, z) d b (r, z) 2 U b (33)
with α g (r, z) given by (25) and where d b (r, z) , U b and k 2 = 1 . 2 are, respectively, the local bubble diameter, a characteristic gasliquid relative velocity and an empirical constant based on airwater experiments.

To avoid the complexity and arbitrariness of the bubble diameter radial profile suggested by Sato et al. [START_REF] Sato | Momentum and heat transfer in two-phase bubble flow: I-theory[END_REF] , a modified Ünal correlation (Appendix A) is used to evaluate a bubble diameter scale.

Finally, the liquid-vapor relative velocity U b is calculated using the bubbly flow drift velocity proposed by Ishii [START_REF] Ishii | One dimensional drift-flux model and constitutive equations for the relative motion between phases in various two-phases flow regimes[END_REF] :

U b = √ 2 gσ (ρ ℓ -ρ g ) ρ 2 ℓ 1 / 4
(34)

Radial heat flux q mr

For turbulent, quasi-developed, single phase flows, the heat flux transferred in the radial direction can be expressed as:

q r = -λ ∂ T ∂r -ρC p V ′ r T ′ (35) 
where λ, C p , and T ′ are the thermal conductivity, the specific heat and the temperature turbulent component, respectively. By analogy with molecular diffusion, we may write:

V ′ r T ′ = -ε H ∂ T ∂r (36) 
where ε H is the thermal eddy diffusivity.

As we assumed that ( H4 ) The vapor temperature is equal to the saturation temperature , there is no heat transfer within the vapor phase. As for the turbulent momentum transfer, we propose to express the mixture turbulent heat flux as follows

q mr (r, z) = -(1 -α g )(λ ℓ + C pℓ ρ ℓ ε Hℓ ) ∂T ℓ ∂r ( 37 
)
where ε Hℓ is the liquid heat transfer eddy diffusivity.

According to Prandtl hypothesis, the liquid heat transfer eddy diffusivity will be assumed equal to the liquid momentum eddy diffusivity:

ε Hℓ ≡ ε Mℓ (38)
Expressing the mixture enthalpy h m as a function of the phasic enthalpies h ℓ and h g :

h m = x h g + ( 1 -x ) h ℓ (39)
and combining Eqs. ( 39) and (37) , the radial derivative of the mixture enthalpy reads:

∂ h m ∂r = - (1 -x ) q mr C pℓ (1 -α g )(λ ℓ + ρ ℓ C pℓ ε hℓ ) - h m -h g 1 -x ∂x ∂r (40)

Vapor radial mass flux J gmr

The vapor radial mass flux J gmr can be modeled using an analogy with Ficks law:

J gmr = -ρ m D tot ∂x ∂r (41)
where D tot is the vapor mass diffusivity in the liquid assumed to be equal to the total momentum diffusivity:

D tot = ν ℓ + ε Mℓ (42)
Eq. (41) now reads: The vapor generation rate per unit volume, Ŵ g , is given by: Ŵ g = -

J gmr = -ρ m ( ν ℓ + ε Mℓ ) ∂x ∂r (43)
q ℓi + q v i h fg (44)
where h fg is the specific enthalpy of vaporization, and where q ℓi and q v i denote the interfacial heat rate per unit volume in the liquid and vapor phases, respectively. As the vapor is assumed to be saturated ( H4 ), there is no heat transfer in the vapor phase and Eq. (44) reduces to:

Ŵ g = - q ℓi h fg ( 45 
)
The interfacial heat rate per unit volume in the liquid phase, q ℓi , can be expressed as:

q ℓi = h ℓi a i (T i -T ℓ ) (46) 
where h ℓi , a i , T i denote the interfacial heat transfer coefficient, the interfacial area concentration and the temperature of the interface, respectively. As the interface is at the saturation temperature T sat ( H4 ), this relation reads:

q ℓi = h ℓi a i (T sat -T ℓ ) (47) 
By combining Eqs. ( 47) and (45) , we obtain:

Ŵ g = h ℓi a i ( T ℓ -T sat ) h fg ( 48 
)
• The interfacial heat transfer coefficient h ℓi can be expressed using the correlation proposed by Ranz and Marshall [START_REF] Ranz | Evaporation from drops: Part II[END_REF] 3 :

h ℓi = λ ℓ d b 2 + 0 . 6 Re 0 . 5 b Pr 0 . 3 ℓ ( 49 
)
where Re b and Pr ℓ are the bubble Reynolds number and the Prandtl number for the liquid phase defined as:

Re b = U b d b ν ℓ (50)
where U b is the local bubble velocity, and:

Pr ℓ = μ ℓ C pℓ λ ℓ (51) 
where μ ℓ , C pℓ , and λ ℓ are the liquid viscosity, specific heat and thermal conductivity, respectively.

• The interfacial area concentration a i for monodisperse spherical bubbles is given by:

a i = 6 α g d b (52)

Connection with a local relaxation time:

A relaxation form of the vapor generation rate per unit volume Ŵ g present in some two-phase flow models allows a return to a thermodynamic equilibrium state with an exponential trend. Bauer et al. [START_REF] Bauer | A non-equilibrium axial flow model and application to loss-of-coolant accident analysis: the CLYSTERE system code[END_REF] used this approach for the first time to study choking conditions of adiabatic flashing flows. Bilicki and Kestin [START_REF] Bilicki | Physical aspects of the relaxation model in two-phase flow[END_REF] greatly refined this first approach and [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for one-dimensional flashing liquid flow[END_REF] used a one-dimensional homogeneous relaxation model to simulate forced convective boiling. Actually, we will show in the following that a local relaxation time θ can be extracted from Eq. (48) , which remains the key equa- tion to determine Ŵ g . We underline here that our present model does not involve any local relaxation time but can estimate it under some assumptions. First, a local vapor equilibrium quality x eq is defined by: 

x eq = h m -h f h g -h f (53)

Ŵg

Liquid x = 0 x eq < 0 None 0

x eq ≤ 0 Vapor condensation Ŵg < 0 -ρm x θ Liquid-vapor x > 0 0 < x eq < x Vapor condensation Ŵg < 0 ρm x eq -x θ 0 < x < x eq
Liquid evaporation Ŵg > 0 ρm x eq -x θ

Expressions for the local vapor generation rate per unit volume Ŵ g differ depending on the equilibrium and actual thermodynamic states and are summarized in Table 1 .

• If x eq ≤ 0 , the equilibrium state is a subcooled liquid state. If the actual quality x is zero, the actual state is single-phase liquid, and there is no need for evaporation or condensation to reach equilibrium. As a result, Ŵ g = 0 .

• If x eq ≤ 0 , the equilibrium state is a subcooled liquid state. Suppose the actual quality x is positive. In that case, condensation follows to bring the actual state toward a purely liquid state, i.e. to reach an equilibrium quality x eq equal to zero. In that case, the local vapor generation rate per unit volume Ŵ g is negative and is assumed to be given by:

Ŵ g = -ρ m x θ ( 54 
)
where θ is a relaxation time.

• If x eq > 0 , the local vapor generation rate per unit volume, Ŵ g , is assumed to be given by:

Ŵ g = ρ m x eq -x θ (55)
• If the true quality x is less than the equilibrium quality x eq , evaporation is needed to reach equilibrium, and Ŵ g is positive.

• If the true quality x is identical to the equilibrium quality

x eq , everything is in thermodynamic equilibrium, and there is no need to generate vapor or liquid. Consequently, Ŵ g = 0 .

• If the true quality x is greater than the equilibrium quality x eq , condensation is needed to reach equilibrium, and then Ŵ g is negative.

For x eq < 0 (last two rows of Table 1 ), Eq. (48) reads:

ρ m ( x eq -x ) θ = h ℓi a i ( T ℓ -T sat ) h fg ( 56 
)
From Eqs. (39) and (53) , we obtain the following relation:

x eq -x ≈ ( 1 -x ) C pℓ ( T ℓ -T sat ) h fg ( 57 
)
After combining Eqs. ( 56) and (57) , the relaxation time θ can be expressed as:

θ ≈ ρ m ( 1 -x ) C pℓ h ℓi a i ( 58 
)
Finally, by using Eqs. ( 16) and (52) , Eq. (58) becomes:

θ = ρ g C pℓ d b 6 h ℓi ( 1 -x ) x ≈ ρ g C pℓ d b 6 h ℓi x ( 59 
)
As our model calculates all the quantities appearing on the righthand side, the value of the relaxation time θ is entirely determined.

Final system of equations and boundary conditions

This subsection lists all the equations used in the code along with the appropriate boundary conditions. In addition, the method to calculate the thermophysical properties is specified. 

∂ ∂r ( rG r ) = -r ∂ ∂z ( ρm V mz )
Momentum shear stress [START_REF] Saha | Point of net vapor generation and void fraction in subcooled boiling[END_REF] :

∂V mz ∂r = τmrz (r) ρℓ (1 -αg )(νℓ + ε mℓ )
Radial heat flux (40) :

∂ h m ∂r = - (1 -x ) q mr C pℓ (1 -αg )(λℓ + ρℓ C pℓ ε hℓ ) - h m -h g 1 -x ∂x ∂r
System S g of the vapor equations Vapor mass [START_REF] Moorthi | A review of sub-channel thermal-hydraulic codes for nuclear reactor core and future directions[END_REF] :

∂ ∂r ( rJ gmr ) = r Ŵg -r G r ∂x ∂r -r ρm V mz ∂x ∂z
Vapor radial mass flux (43) :

∂x ∂r = - J gmr ρm ( νℓ + ε ml )
Table 3 Closure relations.

Void fraction αg (25) Momentum eddy diffusivity ε mℓ (26) Turbulent eddy diffusivity ε ′ mℓ [START_REF] Van Driest | On turbulent flow near a wall[END_REF] Friction velocity u ⋆ (28)

Wall shear stress τw (29) Reynolds number Re (30)

Damping factor A (r) 

List of equations used in the code

The system of partial differential equation, S, to be solved is summarized in Table 2 . It is divided into two subsystems S m and S g regrouping the mixture and vapor equations, respectively. Although the titles of the equations previously obtained have been kept, each equation has been slightly rearranged to display the following two solution vectors:

Y m = ⎛ ⎜ ⎜ ⎝ τ mrz q mr G r V mz h m ⎞ ⎟ ⎟ ⎠ Y g = J gmr x ( 60 
)
All the closure relations and input data are listed in Tables 3 and4 , respectively.

Thermophysical properties

The vapor thermophysical properties, including surface tension, are evaluated at saturation using the outlet pressure. The liquid thermophysical properties are evaluated at the outlet pressure and at the local liquid conditions. The NIST Tables were used for all fluid properties.

Axial boundary conditions

An isothermal liquid single phase flow enters the test section and the following axial boundary conditions at the inlet prevail:

• Radial momentum flux:

τ mrz (r, z = 0) = - r R τ w (61)
where τ w is the wall shear stress,

• Radial heat flux: q mr (r, z = 0) = 0 for any r (62)

• Radial mass flux: G r (r, z = 0) = 0 for any r (63)

• Velocity profile:

V mz (r, z = 0) = V ℓ in (r) (64)
where V ℓ in (r) is given by a standard velocity profile in single phase turbulent flow (Lin et al. [START_REF] Lin | Mass transfer between solid wall and fluid streams. Mechanism and eddy distribution relationships in turbulent flow[END_REF] or Churchill and Choi [START_REF] Churchill | A simple expression for the velocity distribution in turbulent flow in smooth pipes[END_REF] ),

• Specific enthalpy:

h m (r, z = 0) = h ℓ in (T ℓ in , p out ) (65) 
• Radial vapor drift velocity J gmr (r, z = 0) = 0 for any r (66)

• Quality x (r, z = 0) = 0 for any r (67)

Radial boundary conditions

Seven radial boundary conditions must be specified at each axial location. All of them should be expressed either on the tube axis ( r = 0 ) or at the wall ( r = R ).

The following conditions must be met on the tube axis:

⎧ ⎪ ⎨ ⎪ ⎩ τ mzr (0 , z) = 0 q mr (0 , z) = 0 G r (0 , z) = 0 J gmr (0 , z) = 0 (68) 
However, it is not possible to express conditions for V mz (0 , z) , h m (0 , z) and x (0 , z) . This impossibility will be circumvented by a specific procedure described in Section 2.4 , that will also allow the pressure gradient d p m /d z to be determined. In addition, the following conditions must be met on the tube wall :

⎧ ⎪ ⎨ ⎪ ⎩ V mz (R, z) = 0 q mr (R, z) = -q w G r (R, z) = 0 J gmr (R, z) = 0 (69)

Numerical algorithm

Let us assume that Y m (r, z k ) and Y g (r, z k ) are known at level z k for any r between 0 and R . The main objective of the numerical algorithm is to determine Y m (r, z k +1 ) and Y g (r, z k +1 ) at level z k +1 , for any r between 0 and R . The algorithm involves three steps.

Step 1 ( Fig. 1 ): For a given r, the system S m of the mixture equations ( Table 2 )

is solved to obtain Y m (r, z k +1 ) , the derivative ∂ Y m /∂z being evaluated by a first order backward finite difference scheme as follows:

∂ Y m ∂z z k +1 = Y m,k +1 -Y m,k z ( 70 
)
Solving S m to obtain Y m (r, z k +1 ) requires the knowledge of ρ m , α g and x . As ρ m and α g depend on x , it is enough to specify a value of x . A first guess is to take the value at z k :

x (r,

z k +1 ) ≃ x (r, z k ) (71) 
As a result, we obtain a system of five ordinary differential equations in r solved with a Runge-Kutta method. This method requires the knowledge of all the boundary conditions at a single point, r = 0 or r = R . We will choose r = 0 . Eq. (68) give the conditions at r = 0 for τ mrz , q mr , G r , and J gmr . However, we do not have any conditions at r = 0 for V mz (r, z k +1 ) and h m (r, z k +1 ) , but we can use the radial boundary conditions (69) on the tube wall and three iterative procedures to force V mz (R, z k +1 ) , G r (R, z k +1 ) and q mr (R, z k +1 )

to satisfy their respective conditions (69) . The first loop iterates on V mz to obtain V mz (R ) = 0 , whereas the second one iterates on the pressure gradient d p m /d z to obtain G r (R ) = 0 . Finally, the third one iterates on h m to obtain q mr (R ) = -q w , the resulting value of each iteration being re-injected each time at the beginning of the first iteration on V mz .

Step 2 ( Fig. 2 ):

The boundary condition J gmr (R, z k +1 ) = 0 will allow the determination of x (r, z k +1 ) and its comparison to the first guess x (r, z k ) .

The following procedure was adopted.

For a given r, the system S g of the vapor equations is solved to obtain Y g (r, z k +1 ) , the derivative ∂ Y g /∂z being evaluated by a first order backward finite difference scheme as follows:

∂ Y g ∂z z k +1 = Y g,k +1 -Y g,k z ( 72 
)
We then obtain a system of two ordinary differential equations in r solved with a Runge-Kutta method. No boundary conditions exist for x , but we know that J gmr (R, z k +1 ) = 0 , which implies an iteration on x such that this condition be satisfied. Let us denote by

x 1 (r, z k +1 ) this new value of x .
Step 3 ( Fig. 3 ): If the area average < x 1 k +1 > is almost identical to the area average < x k > , or more precisely if

< x 1 k +1 > -< x k > < x k > < 0 . 01 (73) 
we obtain the approximate solutions:

Y g (r, z k +1 ) , and Y m (r, z k +1 )

If not, we take a new estimate for x (r, z k +1 ) as follows:

x 2 (r,

z k +1 ) = 1 2 x 1 (r, z k +1 ) + x (r, z k ) (74) 
that is reintroduced into Step 1 for a new calculation.

The DEBORA facility and the test matrix

Due to the high cost of high-pressure steam-water experiments, Refrigerants R12 and R134a have been widely used for simulating the operating conditions of pressurized water reactors (PWRs). Due to their physical properties it is indeed possible to reproduce the reactor flow conditions at much lower pressures and heat fluxes.

Scaling criteria

The control parameter ranges in R12 or R134a are determined by the following scaling criteria ( [START_REF] Garnier | Local measurements on flow boiling of refrigerant 12 in a vertical tube[END_REF] ):

• Same heating wall area S ch to flow area S p ratio to determine the system geometry:

S ch S p water ≡ S ch S p R 12 /R 134 a ( 75 
)
which reduces to the length to diameter ratio for a circular cross section.

• Same vapor/liquid density ratio to determine the system pressure : • Same Weber number, We, to determine the mass flux G :

ρ f ρ g water ≡ ρ f ρ g R 12 /R 134 a (76)
G 2 D ρ f σ water ≡ G 2 D ρ f σ R 12 /R 134 a ( 77 
)
• Same boiling number, Bo, to calculate the corresponding wall heat flux q w : q w G h fg water ≡ q w G h fg R 12 /R 134 a (78)

• Same equilibrium area-averaged inlet quality x eq,in to determine the inlet temperature:

x eq, in water ≡ x eq, in R 12 /R 134 a (79

) or h l,in -h f h fg water ≡ h l,in -h f h fg R 12 /R 134 a ( 80 
)
These similarity criteria lead to the flow characteristics of R12 and R134a listed in Table 5 . By combining Eqs. ( 75) , ( 78) and (80) , we get the following relation:

• Same outlet equilibrium quality:

( x eq, out ) water = ( x eq, out ) R 12 /R 134 a (81) 

Table 5

Water operating conditions and corresponding R12 or R134a flow characteristics. Corresponding ranges are calculated using the scaling criteria given by Eqs. ( 75 

Experimental facility

The DEBORA experimental facility using R12 or R134a, was designed and constructed at CEA/Grenoble [START_REF] Garnier | Local measurements on flow boiling of refrigerant 12 in a vertical tube[END_REF] . The control parameters of this loop are:

• The exit pressure p out ,

• The mass flow rate and, consequently, the mass flux G , • The wall heat flux q w , • The inlet temperature and, consequently, the equilibrium quality X eq,in .

These control parameters are imposed within the range corresponding to PWR incidental flow characteristics ( Table 5 ).

The test section is a 3.5 m long, electrically heated, vertical 316L stainless steel tube whose inner diameter is 19.2 mm ( Fig. 4 ). A two-sensor optical probe and a thermocouple (diameter 250 μm) can be displaced along a diameter at the end of the heated length. A more detailed description of the optical probe and the corresponding signal processing method can be found in [START_REF] Garnier | Local measurements on flow boiling of refrigerant 12 in a vertical tube[END_REF] ).

The following local quantities are determined from the phase indicator function:

• Void fraction α v ,

• Interfacial area concentration a i , • Bubble center flux, Q c , defined as the number of bubble centers passing per unit time through a unit area of the tube cross section, • Bubble Sauter mean diameter d b • Interface velocity which is assumed to be equal to the gas velocity V v .

Depending on the tests, the radial profiles of the liquid temperature as well as the wall temperatures are also determined.

Typical test cases

Five tests, whose thermal-hydraulic parameter ranges are given in Table 6 , have been performed.

The first one sp0 corresponds to a single phase flow condition, whereas the last four tests, denoted tp1 to tp4, correspond to twophase flow conditions. Those conditions are typical of the working conditions that can be encountered in nuclear power plants.

For the sp0 test, only the radial liquid temperature profile has been determined, whereas for tests tp1 to tp4, the radial distributions of liquid temperature, vapor velocity and void fraction distributions have been determined.

In order to compare our numerical calculations with the experimental results, it is necessary to obtain the mixture velocity from the vapor velocity measurements. As mentioned in the introduction, we assume that both phases are mechanically strongly coupled so that we can write:

V ℓ = K 1 V g ( 82 
)
where K 1 is a constant calculated using the mixture mass balance equation.

The experimental mixture velocity can then be expressed as:

V mz,exp (r ) = [ 1 -α g (r) ] ρ ℓ K 1 + α v (r ) ρ g ρ m V v (r ) (83) 
Table 6 shows that the values of K 1 are close to 1. This result confirms the validity of the assumption concerning the mechanic coupling between both phases.

The liquid temperature T ℓ (r, z) is obtained from the computed liquid specific enthalpy h ℓ (r, z) by : 1. interpolating NIST data if the liquid is subcooled, 2. using the following relation :

T ℓ (r, z) = T sat (p out ) + h ℓ (r, z) -h f (p out ) C pf (p out ) (84) 
if the liquid is superheated.

Comparison between the experimental data and the numerical simulations

All the numerical simulations have been computed using an optimized ten axial meshes grid. For all these calculations, momentum and energy balances have been checked by comparing the computed mass flow rate and the mean outlet specific enthalpy (obtained by integration of the radial profiles) with the experimental values. All these balances are satisfied within ±0.1 %.

Single phase flow results

Figure 5 compares computed and experimental results for the single phase case sp0. Figure 5 a shows a good agreement between the experimental and calculated liquid temperature radial profiles at the exit of the tube. Figure 5 b shows the axial evolution of the computed wall temperature and its comparison with the experimental wall temperatures, and the wall temperature predicted by Gnielinski [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] . This correlation is described in Appendix C and was chosen because its validity range covers our experimental conditions. The wall temperature T w,Gn is obtained by:

T w,Gn = T ℓ, 1 D (z) + q w D λ ℓ Nu Gn (85)
where Nu Gn is the Nusselt number obtained from Gnielinski [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] and T L, 1 D (z) is the mean liquid temperature obtained by a one-dimensional heat balance. The thermophysical properties in Eq. ( 85) are calculated at the mean liquid temperature in the pipe cross section.

For z > 0 . 25 m, the wall temperatures calculated by the model linearly depend on the axial coordinate and show a good agreement with theory despite a small overestimation of about 1.5 • C can be observed. This behavior may be explained by the uncertainties of Gnielinski's correlation but may also results from our choice of the reference temperature for calculating the thermophysical properties.

For z < 0 . 25 m, the wall temperature seems to deviate from the calculated value, which may probably be explained by the thermal development of the flow. Figure 5 c compares the wall shear stress calculated using the iterative scheme described in Section 2.4 to the wall shear stress obtained with the correlation of [START_REF] Mcadams | Heat Transmission[END_REF] for the case of a single phase flow. There is a good agreement (relative error of ±7%).

Boiling flow results

This section presents the results obtained for boiling tests tp1 to tp4 Table 6 . One should notice that there is no correlation for the Onset of Nucleate Boiling in our model. The transition from single to two-phase flow naturally results from rounding errors occurring in the single-phase part of the flow. As a matter of evidence, we checked that the value of the void fraction was lower than 10 -5 but not equal to zero in the calculated single-phase part of the flow.

First, the values of the liquid-vapor relative velocity U b and bubble diameter scale d b are calculated at the outlet conditions of the test section ( Table 7 ) by using :

• Eq. (34) for U b , • Eq. (87) for d b (Appendix A), Figure 6 compares measured and computed profiles for void fraction, liquid temperature and mixture velocity at the test section exit for boiling flow tests tp1 to tp4. One should notice the scales of the vertical axes which intensify the perception of the differences between calculated and experimental values.

The void fraction profiles are compared with the experimental profiles in Fig. 6 a which shows significant differences not only in the values of the void fraction but also in the shape of the profiles near the heated wall.

Figure 6 b shows also discrepancies between calculated and measured liquid temperature profiles. The local model underestimates the liquid temperature in the center of the tube and predicts a large ( ≈ 2 mm) liquid superheated region near the heated wall. If the existence of such a zone is widely agreed upon by different authors, its thickness is generally thought to be much smaller. [START_REF] Friedel | Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[END_REF] , and (e) Wall temperature : The subscripts refer to [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] and [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] , respectively.

The agreement between experimental and computed mixture velocity profiles ( Fig. 6 c) is good except near the wall where the calculated mixture velocity is always underestimated.

Axial evolutions of the wall shear stress are presented in Fig. 6 d where the values obtained using Friedel's correlation [START_REF] Friedel | Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[END_REF] are also plotted. This correlation is described in Appendix B. There is a good agreement between the computed values of the wall shear stress and the values predicted by the Friedel's correlation. The discrepancies ranged from 7% to 25% which is consistent with the uncertainty of Friedel's correlation.

Similarly, the computed wall temperatures ( Fig. 6 e) are overestimated compared to the wall temperatures predicted by the correlation of [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] . The wall temperature decrease beyond z = 2 m indicates the onset of nucleate boiling. Figure 7 presents the radial profiles of the main variables at different axial locations for the tp4 test. As shown in Fig. 7 a, the mixture enthalpy increases with the axial location until it reaches and overtakes (for z > 1 . 5 m) the liquid saturated enthalpy. This location seems to correspond to the onset of nucleate boiling (ONB) and is consistent with the predictions of [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] .

The void fraction ( Fig. 7 b) increases with the axial coordinate, the maximum void fraction remaining located near the heating wall.

The vapor mass flow rate J gmr is shown on Fig. 7 c. It remains negative for any radial location, which indicates that the vapor always flows from the heated wall toward the tube center.

We can observe on Fig. 7 d that the axial mixture velocity increases with the axial coordinate. This acceleration is due to the mixture density decrease which results from liquid temperature and from the void fraction increase in the boiling layer.

Figure 7 e shows that the radial mixture velocity V mr always remains negligible compared to the axial velocity and becomes negative when boiling occurs.

Finally, the mixture shear stress ( Fig. 7 f) is also impacted by the void fraction. The shear stress deviates more from a linear relation with the radial coordinate as the void fraction increases.

Sensitivity studies

This section examines the results of several sensitivity studies performed on the tp1 test. The liquid temperature profiles, the wall temperature and the mixture axial velocity profiles are not strongly affected by the axial meshing, but the void fraction profiles appear to be more sensitive to the number of axial meshes. A 20 mesh axial discretization seems to be required to reach the convergence. However, this meshing refinement increases a lot the calculation time. This work focused more on the physical aspects than numerical ones. As the absolute uncertainty for void fraction measurement using optical probes (estimated to ± 0.02), choosing ten axial meshes is an acceptable compromise between the computation time and the accuracy of the numerical simulations. 

Sensitivity to axial meshing

Sensitivity to the liquid-gas relative velocity U b

The velocity scale U b is one of the key parameter that controls the bubble-induced turbulence in the model of [START_REF] Sato | Momentum and heat transfer in two-phase bubble flow: I-theory[END_REF] . By increasing the velocity scale by a factor of ten, the momentum and the energy transfer from the wall to the center of the tube are greatly increased. This leads to a decrease of the wall temperature, to the increase of wall shear stress and, consequently, to the sharpening of the mixture velocity distribution in the vicinity of the wall ( Fig. 9 a to 9 c). On the contrary, when U b is set to zero, turbulence is only generated by single phase mechanisms and both the wall shear stress (τ w = -7 . 06 Pa) and wall temperature (T w = 89 . 7 • C) are approaching values that are predicted using the single phase correlations of [START_REF] Mcadams | Heat Transmission[END_REF] ( τ w = -7 . 06 Pa) and [START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] ( T w = 89 . 5 • C).

Sensitivity to the friction velocity u *

The single phase friction velocity u * is an important parameter that controls the turbulent contribution arising from the single phase phase flow shear-induced turbulence. Thus, as shown on Fig. 9 b and 9 c, increasing u * by a factor ten increases the mixing transport and flattens out the mixture and temperature distributions in the flow core. According to this behavior, the wall temperature decreases. Nevertheless, as u * controls the van Driest wall damping factor ( Eq. ( 32) ), the temperature and velocity gradients at the wall become more important, which consequently induces a high rise of the calculated wall shear stress τ w . Hence, Fig. 9 a shows that, for such a value of u * , no vapor is produced due to improved energy turbulent transport. When u * decreases, opposite behaviors are observed: the velocity and temperature distributions become less flat whereas the wall temperature and void fraction increase due to the weakening of mixing mechanisms in the flow core.

Sensitivity to the bubble diameter scale d b

The bubble diameter scale d b is an important parameter that influences the bubble-induced turbulence ( Eq. ( 33) ) and the interfacial heat transfer coefficient hli ( Eq. ( 49) ). Presumably, increasing the diameter scale d b should increase the momentum and energy transfers between the wall and the center of the channel. Consequently, the void fraction next to the wall should decrease, whereas it should increase in the core region.

However, Fig. 10 a shows that the void fraction in the core region does not change appreciably. Accordingly, the expected increase of the void fraction in the core region does not occur due to decreased interfacial heat transfer. In the core region, turbulence is probably the dominating effect. However, the liquid temperature radial profile and the wall temperature axial change seem insensitive to the diameter scale. So does the mixture velocity, which seems to be weakly sensitive to the diameter scale, the wall shear stress τ w varying between 7.82 Pa and 8 Pa when the diameter scale is divided or multiplied by a factor of 2.

Sensitivity to the energy turbulence model

As mentioned in Section 4.2 the present turbulent model predicts rather well the liquid temperature distribution in single phase flow but is unable to accurately calculate this distribution in the case of a boiling flow. In particular, the wall temperature is overestimated.

According to Eq. (37) , the liquid temperature distribution is primarily controlled by the energy eddy viscosity ε Hℓ . This term has been modeled assuming classical Prandtl's analogy was still valid for boiling flows. A possible explanation for the wall temperature systematic overestimation may be the underestimation of the turbulent transfer term near the heated wall. In a new approach, [START_REF] Gueguen | Structure modelling of high-pressure convective boiling flows with the eddy viscosity concept and the homogeneous relaxation model (HRM)[END_REF] postulated that the energy and the momentum turbulent mixing mechanisms may differ under boiling conditions. They assumed that two different regions can be defined within the flow: (i) a wall region next to the heated wall where the mixing velocity scale is the bubble rise velocity U b and (ii) a core region , where the velocity scale is G/ ρ m .

Following this assumption, the energy eddy viscosity induced by the vapor bubbles is estimated by the following expressions:

ε ′′ Hℓ (r) = α g (r) d b × G ρ m for 0 ≤ | r| ≤ R -e U b for | r| > R -e ( 86 
)
where e is the thickness of the wall region. In order to check the sensitivity of the model to the thickness e , three calculations have been performed with three different values of this thickness : (i) e = d b which is the value recommended by Gueguen et al. [START_REF] Gueguen | Structure modelling of high-pressure convective boiling flows with the eddy viscosity concept and the homogeneous relaxation model (HRM)[END_REF] , e = 0 . 9 R and e = 0 . 8 R . The single phase eddy viscosity ε ′ Hl is keep equal to ε ′ Mℓ . Figure 11 presents the results of the calculations for case tp4. If the change in the turbulence model hardly affects the void fraction profile, it seems to have a higher impact on the wall temperature as well as on the liquid temperature profile. The tworegions model only overpredicts the wall temperature by 3 • C instead of 14 • C obtained with the initial turbulence model in comparison to the wall temperature predicted by Frost and Dzakowic [START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] .

The liquid temperature distribution flattens out in the core region with the increase of thickness e and gets closer to the measured one near the tube center. In the wall region, temperature gradients are more important due to the smaller velocity scale compare to the velocity scale in the core region. Also, the wider the wall region thickness, the higher the wall temperature. These results show that the approach proposed by Gueguen et al. [START_REF] Gueguen | Structure modelling of high-pressure convective boiling flows with the eddy viscosity concept and the homogeneous relaxation model (HRM)[END_REF] improves the model predictions of the thermal aspects.

Conclusions and future work

A new model for describing the structure of boiling flows under PWR's conditions has been developed. It uses an axisymmetric local time-averaged approach and consists in a system of seven differential equations which is numerically solved by an original algorithm. This algorithm is based on the decomposition of the general system into two subsystems respectively related to the mixture and the vapor phases.

The input parameters of the model are the experimental controlled parameters, i.e. the outlet pressure p out , the inlet temperature T ℓin , the wall heat flux q w and the mass flux G . A set of closure relations is added to the system of balance equations, in particular for the bubble diameter d b , the bubble relative velocity U b and the single phase friction velocity u * .

Simulations have been performed and compared to DEBORA's experimental data bank. The results should be considered as preliminary. The proposed model is a starting point and requires several improvements. However, it contains the fewer submodels nec-essary to describe the structure of forced convective boiling under PWR's conditions.

The sensitivity studies to physical sub-models showed that the most sensitive parameters are the bubble diameter d b which directly affects the local vapor generation rate Ŵ g and consequently the void fraction α, and the turbulent parameters U b , and u * . Also, this present article focused on the physical aspects more than numerical ones. In the future, a more quantitative study of the numerical aspects will be performed, including the effect of the axial meshing, to ensure meshing convergence and minimize the computing time. It should strengthen the robustness of the code.

Two main limitations of the model have been identified :

• For high void fraction, the model is unable to accurately describe the liquid temperature distribution within the tube. In particular, it overpredicts the wall temperature by more than 10 • C and the thickness of the superheated layer. Assuming that the turbulent mechanisms for energy and momentum transfer from the wall to the flow core are distinct in boiling flow, a new model of turbulence, based on [START_REF] Gueguen | Structure modelling of high-pressure convective boiling flows with the eddy viscosity concept and the homogeneous relaxation model (HRM)[END_REF] has been tested. The temperature radial profiles and particularly the wall temperature are better predicted. It might indicate that the well admitted Prandtl's analogy hypothesis is no longer valid in boil-ing flow. Some additional numerical tests will be required to definitely conclude.

• The model always predicts a maximum for the void fraction at the heated wall. However, experimental evidence shows that when the equilibrium quality x eq increases, the void peak may move from the heated wall toward the tube center. Under its current form, the proposed model is unable to reproduce such behavior. Possible ways of obtaining better predictions could be to account for a radial distribution for the bubble diameter and to consider a refinement of the modeling of the void radial migration by improving the gradient law for the radial vapor mass flux.

It is hoped that this model will be considered as reproducible and replicable as defined by the [START_REF]Academies of sciences, engineering, and medicine, Reproducibility and Replicability in Science[END_REF] .

∂
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 1 Fig. 1. Numerical algorithm: Step 1 .

Fig. 2 .

 2 Fig. 2. Numerical algorithm: Step 2 .

  flux G (kg •. m -2 •. s -1 ) 1000 to 5000 1000 to 5000 Heat flux q w (MW •. m -2 ) 0.5 to 3 0.05-0.20 Inlet temperature T ℓ in ( • C) 50 to 320 20 to 80 Equilibrium outlet quality x eq, out (-) -0.25 to 0.25 -0.25 to 0.25

Fig. 3 .

 3 Fig. 3. Numerical algorithm: Step 3 .

Fig. 4 .

 4 Fig. 4. DEBORA test section (adapted from Garnier et al. [12] .

Fig. 5 .

 5 Fig. 5. Single phase flow sp0: (a) Liquid temperature profile at the tube outlet, (b) Axial evolution of the wall temperature ( T sat = 86 . 8 • C), and (c) Axial evolution of the wall shear stress.

Fig. 6 .

 6 Fig. 6. Comparison between simulations and experimental results at the exit of the test section: (a) Void fraction profile, (b) Liquid temperature profile ( T sat = 80 . 5 • C), (c) Axial mixture velocity profile, (d) Wall shear stress compared to[START_REF] Friedel | Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[END_REF] , and (e) Wall temperature : The subscripts refer to[START_REF] Gnielinski | New equations for heat and mass transfer in turbulent pipe and channel flow[END_REF] and[START_REF] Frost | An extension of the method of predicting incipient boiling on commercially finished surfaces[END_REF] , respectively.

Fig. 7 .

 7 Fig. 7. Axial evolutions of mixture radial profiles for test tp4: (a) Enthalpy , (b) Void fraction , (c) Vapor mass flux , (d) Axial velocity , (e) Radial velocity V mr = G r /ρm , and (f) Shear stress .

Fig. 8 .

 8 Fig. 8. Influence of the meshing on the computed profiles -Comparison of results obtained for 1, 5, 7, 10, 15 and 20 meshes for test tp1: (a) Void fraction , (b) Liquid temperature ( T w corresponds to the computed wall temperature), (c) Axial mixture velocity .

Figure 8

 8 Figure8presents the void fraction, the liquid temperature and the mixture velocity radial profiles obtained for different number of axial meshes.The liquid temperature profiles, the wall temperature and the mixture axial velocity profiles are not strongly affected by the axial meshing, but the void fraction profiles appear to be more sensitive to the number of axial meshes. A 20 mesh axial discretization seems to be required to reach the convergence. However, this meshing refinement increases a lot the calculation time. This work focused more on the physical aspects than numerical ones. As the absolute uncertainty for void fraction measurement using optical probes (estimated to ± 0.02), choosing ten axial meshes is an acceptable compromise between the computation time and the accuracy of the numerical simulations.

Fig. 9 .

 9 Fig. 9. Sensitivity to turbulence parameters U b and u * for run tp1 (subscript 0 refers to the initial values of U b and u * ) (a) Void fraction profile, (b) Liquid temperature profile ( T w corresponds to the wall temperature), (c) Mixture velocity profile ( τw corresponds to the wall shear stress).

Fig. 10 .

 10 Fig. 10. Sensitivity to the bubble diameter scale d b for run tp1 (a) Void fraction profile, (b) Liquid temperature profile, (c) Mixture velocity profile.

Fig. 11 .

 11 Fig. 11. Sensitivity of numerical results to turbulence mode for case tp4 ( 1 zone refers to results obtained with Eq. (38) for ε HL , 2 zones refers to results obtained with Eq. (86) for ε HL ) (a) Void fraction (b) Liquid temperature ( T w corresponds to the computed wall temperature), (c) Axial evolution of the wall temperature .

Table 1

 1 Expressions of the local vapor generation rate per unit volume Ŵg .

	Actual state	x eq	Phase change

Table 2

 2 System of partial differential equations, S, to be solved.System S m of the mixture equations Mixture z-momentum (13) :

Table 4

 4 Input data.

	(32)	Bubble diameter scale d b (87)
	Relative velocity U b (34)	Prandtl analogy (38)
	Mixture enthalpy h m (39)	Vapor generation rate Ŵg (48)
	Interfacial heat transfer h ℓi (49)	Bubble Reynolds number Re b (50)
	Prandtl number Pr ℓ (51)	Interfacial area concentration a i (52)
	Mixture density ρm (18)	
	Tube radius R	
	Acceleration due to gravity g
	Mass flux G	
	Wall heat flux q w
	Outlet pressure p

out Liquid inlet temperature T ℓ in

Table 6

 6 DEBORA's experimental conditions and coefficient of proportionality K 1 . L is the heated length. x eq, out is the equilibrium quality at the outlet of the test section.

	Test	Fluid	p out	G	T ℓ in	q w	x eq,out	L	K 1
			bar	kg •. m -2 •. s -1	• C	kW •. m -2	-	m	-
	sp0 tp1 tp2 tp3 tp4	R12 R134a R134a R134a R134a	26.2 26.6 26.6 26.6 26.6	5009 1961 1963 1961 1970	30.8 74.8 68.0 65.9 63.6	73.9 39.5 85.4 100.3 116.2	-0.49 -0.0064 -0.0064 -0.0046 -0.0006	3.5 2.5 2.5 2.5 2.5	N/A 0.989 0.917 0.95 0.93

Table 7

 7 Calculated values of the bubble diameter d b and liquid-gas relative velocity U b scales at the exit of the test section.

	Test	d b ( μm)	U b (cm/s)
	tp1	183	8.1
	tp2	193	7.1
	tp3	192	7.6
	tp4	197	6.4

(32) 2 Actually, van Driest constant is 26 but Sato et al. chose 16 without any apparent justification.

The correlation was actually proposed by Frossling[START_REF] Frössling | The evaporation of falling drops (in German)[END_REF] with a coefficient 0.552 instead of 0.6.
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Appendix A. The bubble diameter scale

A bubble diameter scale can be obtained by slightly modifying the dimensional correlation proposed by Ünal [START_REF] Ünal | Maximum bubble diameter, maximum bubble growth time and bubble growth rate during the nucleate flow boiling of water up to 17.7 MN.m -2[END_REF] to calculate a bubble detachment diameter using SI units:

where d b is in m and p out in Pa. The factor a is defined as:

whereas the factor b is given by:

Introducing a Stanton number St defined as:

the factor b can be rewritten as:

Considering flows with a Péclet number greater than 70,0 0 0, [START_REF] Saha | Point of net vapor generation and void fraction in subcooled boiling[END_REF] suggested a Stanton number equal to 0.0065 for the onset of significant void. As a result, we obtain a factor b equal to:

Finally, accounting for the DEBORA experimental conditions, the factor φ is defined as:

Appendix B. The two-phase pressure drop [START_REF] Friedel | Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[END_REF] The two-phase flow frictional pressure drop dP dz F is given by:

where dP dz F L 0 and φ 2 L 0 respectively denote the pressure drop of a single phase flow having the same mass flow rate as the studied two-phase flow and the two-phase friction factor calculated by means of the following equation:

where:

with:

and:

x being the vapor mass quality and the thermophysical properties being assumed to evaluated at saturation. The friction coefficients C fg0 and C f ℓ 0 are calculated by using [START_REF] Churchill | Friction equation for all fluid flow regimes[END_REF] :

where A and B are defined as: The friction factor f is obtained from a correlation which has also been developed by the same author: f = [ 0 . 79 ln ( Re ) -1 . 64 ] -2 (107) for 30 0 0 ≤ Re ≤ 5 × 10 6 .