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Abstract—Generating music with long-term structure is one
of the main challenges in the field of automatic composition.
This article describes MorpheuS, a music generation system.
MorpheuS uses state-of-the-art pattern detection techniques to
find repeated patterns in a template piece. These patterns are then
used to constrain the generation process for a new polyphonic
composition. The music generation process is guided by an
efficient optimization algorithm, variable neighborhood search,
which uses a mathematical model of tonal tension to derive
its objective function. The ability to generate music according
to a tension profile could be useful in a game or film music
context. Pieces generated by MorpheuS have been performed in
live concerts.

I. INTRODUCTION

Automated composition has made great strides in the past
few decades since the advent of computers. One of the
biggest remaining challenges in the field of automatic music
composition is the crafting of long term structure. Most
computer-generated music sounds good in the short term, but
lacks recurring and developing themes, and long-term form.
In [1], the authors developed an efficient variable neighbor-
hood search (VNS) metaheuristic that generates music with
a given semiotic structure (e.g. ABABBC). This research
showed that considering music generation in an optimization
context offers a viable way of constraining, and thus ensuring,
structure. This paper expands the earlier work to polyphonic
music, adding to the system a pattern detection algorithm and
a computational model for musical tension. In the resulting
system named MorpheuS, the pattern detection algorithm [2]
finds reoccurring note patterns in a template piece. These
patterns are then used to constrain structure in a newly gener-
ated piece. An early prototype by Screene and Wiggins [3]
attempts to combine detected patterns with generation by
Markov models. Because of the recursive nature of the pattern
computation, their approach requires non-standard hierarchical
models. Further research is needed on how to construct these
models and best generated from them. Our research avoids this
problem by using an optimization approach that constrains the
patterns. MorpheuS generates music according to a tension
profile that can be computed from the template piece or
specified by a user. Tension shapes our experience of music
listening; it is especially relevant in the context of film or game
music. Figure 1 displays an overview of MorpheuS’ functional

architecture. The system can be used to generate polyphonic
music of any type or genre.
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Fig. 1: Overview of MorhpeuS’ architecture.

The next two sections give an overview of the tension
model and pattern detection module. Section IV defines music
generation formally as an optimization problem, and then
describes the optimization algorithm. The final sections discuss
the computational and musical results.

II. QUANTIFYING TENSION

The experience of tension is an intrinsic part of music
listening. The authors have developed a mathematical model
for quantifying tonal tension [4] based on the spiral array,
a three-dimensional model of tonality [5]. To calculate tonal
tension, a piece is first segmented into equal-length segments.
The notes from each segment are mapped to a “cloud” of
points in the spiral array. The model includes three measures
of tension: cloud diameter, which captures the dispersion
(dissonance) of the notes in tonal space; cloud momentum,
which quantifies the degree of tonal change between clouds;
and, tensile strain, which captures the tonal distance from the
cloud center the global key.



III. PATTERN DETECTION

MorpheuS uses two greedy compression algorithms, COSI-
ATEC and SIATECCompress, to detect patterns in a template
piece [2]. Both algorithms discover repeated patterns such as
themes and motives. Starting from a point-set representation
of the score, they compute a compressed encoding in the form
of a set of translational equivalence classes of maximal-length
patterns (MTP TECs). Figure 2 shows an example COSIATEC
output. The algorithm clearly detects the two main patterns
that alternate between the right and left hand in the first and
second bar.

(a) First two bars of Bach’s 20th prelude (Book II).

(b) Patterns detected with COSIATEC [2]
.

Fig. 2: COSIATEC applied to a short musical excerpt.

COSIATEC generates a strict partitioning of the input
dataset, whereas patterns may share points in SIATECCom-
press. SIATECCompress achieved 45% precision and 60%
recall on the thematic analysis task, and may potentially be
more useful in the music analysis context [6].

IV. OPTIMIZATION PROBLEM

MorpheuS uses an optimization approach in its music
generation to constrain global structure, which is formulated
as repeated patterns, and fit music to a tension profile. This
section formally defines the music generation process as a
combinatorial optimization problem.

a) Variables: MorpheuS takes a template piece as in-
put and treats its rhythm and dynamics as constants in the
generated piece. The aim of the algorithm is to find a set of
pitches, x, for each note of the template piece that satisfies
the constraints and minimizes the objective function.

b) Objective function: The objective is to find a solution
x that most closely fits the tension profile. The tension profile
of a solution x consists of three parts: Ti(x), for each of the
three tension measures i ∈ {0, 1, 2} described in Section II.
The target tension profile Ti(t) can be based on the template
piece t, or it can directly inputted by the user. The distance
between the desired tension and that of a solution x is
measured by the Euclidean distance between the two signals:

Di(x) =
√

(Ti(x)− Ti(t))2. (1)

The objective function is the sum of the distances for each of
the three tension measures:

D(x) =

2∑
i=0

Di(x). (2)

The aim of the optimization algorithm is thus to minimize the
distance D(x).

c) Hard constraints: The patterns detected on the tem-
plate piece by the algorithms described in Section III serve
as hard constraints for the pitches, x. This creates recurring
patterns that serve as themes and motives. The algorithm
only has to decide on new pitches for the original occurrence
of a pattern, and can automatically set the pitches in other
repetitions of the pattern. This reduces the number of variables
in the set x for which the algorithm has to find new values
and this makes the algorithm more computationally effective.

A further hard constraint is the pitch range for each hand.
The lowest and highest pitch for each hand follows that of the
template piece. All pitches within the set range are allowed.

d) Soft constraints: The user can fix certain pitches of
notes in the rhythmic template if desired. An additional term
was added to the objective function D(x) from Equation 2
to constrain the pitch (pitch(nj)) of j notes to a set pitch
(setpitch(nj)). The resulting objective function for a current
piece x thus becomes:

D′(x) = D(x) +

j∑
j=0

a× C(nj), (3)

where

C(nj) =

{
0, if pitch(nj) = setpitch(nj)

1, otherwise

and a is an arbitrary large number.

V. VARIABLE NEIGHBORHOOD SEARCH ALGORITHM

This section outlines the role metaheuristics have played in
music generation then describes MorpheuS’ VNS algorithm.

A. Metaheuristics and music

Solving the optimization problem defined in the previous
section is a computationally complex task, since the number of
possible solutions increases exponentially with the number of
notes in the template piece. Limited research exists on solving
the music generation problem with exact methods such as
integer programming [7], since these systems face challenges
such as running out of physical computer memory before a
solution is found. Metaheuristic optimization techniques offer
a valid alternative to exact algorithms. They do not guarantee
an optimal solution, but use a variety of strategies to reach a
good solution in a reasonable amount of time [8].

Metaheuristics are typically grouped into three classes [9].
The first class consists of population-based metaheuristics
(evolutionary algorithms, path relinking,. . . ), whereby a set of
solutions (population) are combined to create new ones. In mu-
sic, the first genetic algorithm was developed in 1991 by [10].
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The second class of metaheuristics are the constructive meta-
heuristics, which build solutions from their constituent parts,
such as GRASP and ant colony optimization. The first ant
colony algorithm applied to a music generation problem was
developed in 2007 to harmonize baroque music [11]. Lastly,
algorithms that iteratively improve a single solution (e.g. tabu
search and variable neighborhood search (VNS)) form the
group of local search algorithms [9]. Local search techniques
have, for instance, been used at IRCAM to solve music
constraint problems [12] and by the first author, who developed
the first VNS to generate counterpoint [13].

B. Variable Neighborhood Search

Variable neighborhood search, or VNS, has been applied to
a wide range of combinatorial problems [14], including vehicle
routing [15] and project scheduling [16]. [14] found that, for
several of these problems, VNS outperforms existing heuristic
algorithms and is computationally efficient. MorpheuS’ im-
plementation of VNS expands on the first author’s previous
work [13] to handle complex polyphonic music, detected
patterns and tension profiles.
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Fig. 3: VNS algorithm as implemented in MorpheuS.

Figure 3 shows a system diagram of the VNS algorithm
as implemented in MorpheuS. The algorithm first assigns
uniformly random pitches to each note to obtain an initial
solution x. Then it iteratively searches locally for a solution
with a lower D′(x) value by making small changes (called
moves) to the current solution. The three types of moves used
by MorhpeuS are displayed in Figure 4. They are change1:
change the pitch of one note any other allowed pitch; swap:
swap the pitch of any two notes; and, changeSlice: change the
pitch of 2 notes in a vertical time slice to any other pitch.

The set of all solutions x′ that can be reached from the
current solution with only one move is referred to as the
neighborhood N(x). A first descent strategy, which selects
the first feasible element from the neighborhood that improves
the current solution, was implemented to further speed up

Fig. 4: The three types of moves used by the VNS algorithm.

the VNS. The algorithm iteratively searches through a local
neighborhood, until no further feasible solution can be found,
at which point it has arrived at a local optimum and switches to
a different type of neighborhood (e.g. swap move) [17]. When
no further improvement can be found in any neighborhood, the
VNS perturbs the current solution by randomly re-assigning
12% of the pitches. This strategy was shown to work in [1]
and allows the search to resume.

An acceleration strategy was implemented that forces the
moves to be applied chronologically from the start to the end
of the piece. The algorithm goes through each note, starting in
the beginning of the piece, and tries to apply a move. When
a particular move is successful, this affects the tension profile
only in its immediate vicinity; therefore, the algorithm will
only backtrack 4 time slices to resume the search. This strategy
significantly improves the speed of the optimization.

VI. RESULTS

The VNS algorithm described above was applied with
Bach’s Prelude No. 1 in C major in his Well-tempered Clavier
(Book I) as a template. Figure 5 shows how the value of the
objective function evolves each time a move is performed. The
objective function value of the initial solution is extremely
high, meaning that the solution is poor, but improves quickly
with each iteration. While the improvements slow down after a
while, the dashed “peaks”, which represent the perturbations,
show that the algorithm is able to escape from local optima.
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Fig. 5: Evolution of objective function values over time during
a run of the VNS algorithm.

The original, initial, and final musical scores are displayed
in Figure 6 together with their cloud diameter tension profiles.
The initial (random) solution displayed in Figure 6b clearly
displays some of the original patterns, which were detected
using COSIATEC and hard constrained during generation.
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Without a tension constraint, the fairly eclectic combination
of notes of the initial solution results in tension ribbons that
are significantly different from those of the original piece. The
result after 1 iteration of the VNS is shown in Figure 6c. The
piec type or genre. e is now much more tonal, and has a tension
profile that resembles the original piece.

A piece generated by MorpheuS using the same method but
based on Haydn’s Sonata in Eb, Hob XVI:45 (finale) has been
performed at the Center for New Music in San Francisco and
the TENOR conference in Cambridge. The reader is invited
to listen to MorhpeuS’ compositions online1.

While the music sounds promising and contains reoccurring
patterns, there is still room for improvement. Some future
research directions include adding constraints for playability,
and imposing statistical properties of particular music styles.

VII. CONCLUSION

MorpheuS uses an efficient variable neighborhood search
optimization algorithm to generate polyphonic music with
recurring themes and tension profiles. Patterns detected in a
template piece must recur in the generated music, which must
also follow a designated tension profile. The ability to generate
according to a tension profile could be useful in a game of film
music context. The output of MorpheuS is promising and has
been performed on multiple occasions around the world. In
future research, the authors aim to make the algorithm even
more efficient. The quality of the musical output could also be
improved by imposing more constrains such as those related
to playability and to statistical properties of a style of music.
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[13] D. Herremans and K. Sörensen, “Composing first species counterpoint
with a variable neighbourhood search algorithm,” Journal of Mathemat-
ics and the Arts, vol. 6, no. 4, pp. 169–189, 2012.

[14] N. Mladenovic and P. Hansen, “Variable neighborhood search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.
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