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1 Purpose

Computational anatomy focuses on the analysis of the human anatomical vari-
ability. Typical applications are the discovery of differences across healthy and
sick subjects and the classification of anomalies. A fundamental tool in computa-
tional anatomy, which forms the central focus of this paper, is the computation
of point correspondences across volumes (3D images) such as Computed To-
mography (CT) volumes, for multiple subjects. More specifically, we consider
automatically detected keypoints and their local descriptors, computed from
the image or volume patch surrounding each keypoint. Theses descriptors are
essential because they must be discriminant and repeatable [5,10]. Learned de-
scriptors based on Convolutional Neural Networks (CNN) have recently shown
great success for 2D images [4]. However, while classical 2D image descriptors
were extended to volumes [1], recent learning-based approaches have been lim-
ited to 2D detection and description. The extension to 3D descriptors was only
proposed in [6], in the context of image retrieval. We propose a methodology to
construct these learned volume keypoint descriptors. The main difficulty is to
define a sound training approach, combining a training dataset and a loss func-
tion. In short, we propose to generate semi-synthetic data by transforming real
volumes and to use a triplet loss inspired by 2D descriptor learning. Our exper-
imental results show that our learned descriptor outperforms the hand-crafted
descriptor 3D-SURF [1], a 3D extension of SURF, with similar runtime.

2 Methods

Our first goal is to create a reference dataset defining keypoint correspondences
between multiple volumes. In 2D, these correspondences can be established using
Structure-from-Motion [3]. In 3D medical images, keypoints could be defined as
anatomical landmarks placed by medical experts. However, no such large anno-
tated dataset is publicly available. We thus propose to create a semi-synthetic
reference dataset by transforming real volumes.
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2.1 Constructing a semi-synthetic dataset

We use two subsets from the Visceral dataset [9]. The first subset, named Gold,
contains 20 CT volumes, each annotated with about 40 landmarks. The second
subset, Silver, contains 60 CT volumes without landmarks.

In order to generate new volumes, we estimate the probability density of
possible inter-volume transformations, and sample from this density to warp CT
volumes and define keypoint correspondences. We first compute inter-volume
local affine transformations in the least-squares sense. For each landmark in each
volume of the Gold subset, we use the landmark, its three closest landmarks
and the four corresponding landmarks in another volume to estimate a local
transformation. When the landmark and its three neighbours are almost collinear
(e.g. vertebral landmarks), the least-squares problem is ill-conditioned and we
therefore discard the transformation. Thus we obtain at most Lk(k− 1)/2 affine
transformation matrices of size 4× 4, where L = 40 is the number of landmarks
and k = 20 is the number of volumes. The Pearson test shows that the elements
of these matrices are independent, allowing us to sample each element from its
distribution independently. We apply Kernel Density Estimation (KDE) to these
matrices to estimate the density of inter-volume transformations. Student’s t-
test shows that a Gaussian Kernel is a good fit for the KDE. We estimate the
kernel bandwidth via Scott’s rules. To generate our semi-synthetic dataset, we
sample transformations from this density and apply them to volumes in the Silver
subset. More specifically, for a sampled transformation t and a silver volume Vi,
we obtain the volume V t

i . We detect the keypoints in Vi and V t
i using 3D-SURF

and obtain two keypoint sets Pi and P t
i . Note that 3D-SURF is both a detector

and a descriptor. We then apply the inverse transform t−1 to the keypoints from
V t
i . Finally we use a k-d tree to construct the set of corresponding keypoints

between the volumes as the set of pairs: (p ∈ Pi, q ∈ t−1(P t
i )), whose p to

q distance is lower than 8 mm. This threshold was chosen to obtain a large
number of correct correspondences.

2.2 Training the descriptor with the triplet loss

We learn a descriptor CNN mapping a 3D patch of 103 voxels surrounding a
keypoint to a descriptor vector. Recent work in 2D has shown that learning de-
scriptors using triplets yields better results than using pairs [8]. Triplet learning
requires forming triplets of patches {a, p, n} where a is an anchor, p a positive
representing a different patch of the same class as a, and n a negative repre-
senting a patch of a different class. In our case a and p are two patches around
corresponding keypoints from different volumes and n is a patch around a dif-
ferent keypoint. The aim is to optimize the CNN parameters in order to bring
a and p close together in descriptor space and to push n away from a. Thus the
triplet loss is defined by L(a, p, n) = max(‖f(a)−f(p)‖2−‖f(a)−f(n)‖2+α, 0),
where f(·) is the CNN and α the margin parameter.

Our CNN is defined by two 3D convolution layers, one maxpooling layer
between the convolutions, and a fully-connected layer which gives the final de-
scriptor. The network architecture is illustrated by Figure 1. Passing a patch of
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Fig. 1. Architecture of our CNN and the triplet-loss. The input patches are 103 voxels.
The CNN has two convolutions with tanh activation, one maxpooling and a fully-
connected layer. The triplet {a, p, n} is passed through the network, and descriptor
vectors are fed to the triplet loss.

size 103 through this CNN gives us a descriptor vector of the desired size. We
use a size of 48 for direct comparability with 3D-SURF.

3 Results

Data split. We divide the Silver dataset into training and validation subsets.
The training data consist of 55 subjects with 10 transformed volumes each,
following our procedure of semi-synthetic data generation. The validation data
consist of 5 subjects with 10 transformed volumes each. For testing, we use the
Gold subset with 20 subjects and the associated anatomical landmarks.
Training. Optimization is performed via Stochastic Gradient Descent, with a

batch size of 1000 patches, a learning rate of 0.1, a momentum of 0.9, a weight
decay of 10−6 and a loss margin of 0.2. We also use online triplet mining to find
the best triplets for learning. Our CPU-based implementation uses the PyTorch
library. The training of a single epoch with 106 triplets takes about 30 minutes
and approximately 10 GB of memory on a Linux 64-bit platform running on an
Intel Xeon 2.6 GHz CPU. Our model is light enough to be trained on the CPU;
using the GPU did not significantly reduce training time.
Evaluation. We evaluate the descriptor using two different metrics. The first

metric is the false positive rate at point 0.95 of true positive recall (FPR95) [7].
We compute FPR95 based on descriptor distances of randomly selected 105

keypoint pairs with 50% corresponding and 50% non corresponding pairs. A low
FPR95 indicates good results. The second metric is the mean landmark distance
calculated on ground-truth landmarks in Gold volumes after registering them to
a common space using the keypoint-based FROG registration algorithm [2]. For
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comparison, we replace the 3D-SURF descriptor used in this algorithm with our
learned descriptor. Low mean distance between landmarks indicates good results.
Table 1 shows that the proposed descriptor yields better results in terms of both
FPR95 and mean landmark distance compared to the 3D-SURF descriptor.

Type of descriptor FPR95 Mean landmark distance

3D-SURF 0.077 8.74
Learned 0.022 8.54

Table 1. Performance comparison of the 3D-SURF and our learned descriptors.

4 Conclusions and future work

Our results, although preliminary, show that a learned 3D descriptor, trained
on semi-synthetic data, can outperform a carefully hand-crafted one. We intend
to further explore these promising results by extending our training dataset
and conducting more experiments. Future research will address training a 3D
keypoint detector.
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