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The dynamical equation of a single magnetic moment constituted by a rigid circular current loop is derived
from the mechanical Lagrange equations of motion, introducing the Lorentz force and the damping process,
described by a well defined dissipative mechanism. It is demonstrated that magnetic inertial effects arise nat-
urally by simple mechanical considerations and superimpose onto Gilbert original dynamical equation. The
comparison with models proposed in the recent literature is drawn and discussed.

I. INTRODUCTION

The so-called Landau-Lifshitz-Gilbert (LLG) equation de-
scribes the orientational dynamics of a single magnetic dipole
or the magnetization distribution in a given ferromagnetic ma-
terial [1–3]. The first version of this equation was proposed by
Landau and Lifshitz in 1935 to study the magnetic permeabil-
ity dispersion in ferromagnetic bodies [4]

d ~M
dt

= γ ~M∧~B− γ
α

M
~M∧

(
~M∧~B

)
. (1)

Here ~M is the dipole moment, γ is the gyromagnetic ratio,
α is the damping coefficient, and ~B is the effective magnetic
induction. This equation has been modified in 1955 by Gilbert
to describe the behavior of materials with large damping [5, 6]

d ~M
dt

=
γ

1+α2

[
~M∧~B− α

M
~M∧

(
~M∧~B

)]
. (2)

While the two equations exhibit the same mathematical form,
they have a slightly different behavior, especially for large
enough values of α . However, this second-order difference
can not be appreciated with experimental measurements and
the choice between the models must be made on the basis of
theoretical arguments [7–12]. The problem is still the subject
of debate and different opinions can be found in the literature.
For instance, Ref.[11] is in favor of the Gilbert version since
it corresponds to an isotropic damping action, while Ref.[12]
opts for the Landau-Lifshitz equation being coherent with ir-
reversible thermodynamics.

Today, the LLG equation is very important since describes
the magnetization dynamics in several systems and devices
of crucial technological importance [13, 14]. A classical
application concerns the modeling of the switching state in
memory elements based on ferromagnetic materials [15, 16].
More generally, magneto-electro-elastic structures [17–20],
typically composed of piezoelectric and magnetelastic subsys-
tems, are largely investigated being promising prototypes for
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the reduction of the energetic consumption in data storage and
elaboration systems [21–23].

One of the most important feature of these systems is the
stability of the stored information over long times. This
means that thermal fluctuations must not alter the informa-
tion recorded in the memory elements [24, 25]. To perform
the analysis of this problem one can use the extension of the
LLG equation with the additional term representing the ther-
mal noise, as proposed by Brown in his pioneering works
[26–29]. This generalization converts the LLG equation in a
stochastic differential equation, or Langevin equation, which
can be typically studied through the Fokker-Planck formal-
ism [30, 31]. Several applications of this methodology can be
found in the recent literature [32–36].

The theory of the magnetization dynamics is also of cru-
cial importance to study the movement of a domain wall in
ferromagnetic materials. The first important analytical re-
sult is given by the Walker solution describing, under sim-
ple assumptions, the one-dimensional steady state motion of
a domain wall in a uniform magnetic field [37]. Because of
the many advantages such as reliability, fast operation and
low power consumption, devices based on domain walls are
widely seen as promising tools for various applications, in-
cluding data storage, sensing and logic [38–42]. Also in
this context, the question of whether Landau-Lifshitz damp-
ing or Gilbert damping provides the more natural descrip-
tion of dissipative magnetization dynamics has been reopened
[43]. It has been suggested that the Gilbert damping term is
more adapted, showing the purely energy dissipative property
also in the presence of nonconservative fields (e.g., with spin-
transfer torques) [44].

This state of affairs motivates the present readdressing
of the magnetization dynamics. We propose here an origi-
nal derivation of the corresponding equations based on the
explicit consideration of the magnetic dipole structure as a
charge distribution (first discrete and then continuous) rotating
around a given axis with an intrinsic angular frequency (circu-
lar current loop). We firstly develop a model with a fixed an-
gular velocity ω of charges. This hypothesis allows for the use
of the Lagrange formalism for rheonomic systems, where the
two-variables Lagrangian function explicitly depend on time
(via the angular frequency ω). Then, in order to obtain a more
symmetric formalism, we introduce a second model with an
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arbitrarily varying angular velocity of the charges. In this case
the system is scleronomous, but with three generalized coordi-
nates. In both cases, while the dipole structure is invariant dur-
ing the dynamics, the dipole orientation changes in response
to the external actions. Within these approaches, the Lorentz
and the damping forces can be naturally introduced without
the need to specify a scalar magnetic potential and a Rayleigh
dissipation function. This direct method allows therefore to
obtain the explicit Lorentz contribution due to the dipole re-
orientation (always neglected) and a precise description of the
damping force, defined by an explicit dissipation mechanism.
Moreover, the introduction of the realistic magnetic dipole
structure naturally generates in the final equations the inertial
terms, corresponding of the second derivatives of the orienta-
tion angles with respect to the time. It is important to remark
that these inertial terms and the Lorentz terms due to the re-
orientation are both of the order of 1/ω and therefore they
are often neglected in practical applications. Nevertheless,
the possible use of magnetic fields with extremely high fre-
quencies (at pico- and femto-second time scales) has recently
generated a wide interest for the generalization of the LLG
equation with inertial effects [45–55]. In this context, our ap-
proach yields two generalized sets of second order differential
equations for the magnetization dynamics, including the iner-
tial effects and the Lorentz terms due to the reorientation. To
get a simplified description, the concept of ideal dipole, corre-
sponding to an infinitely small size, an infinitely large electric
current, and a finite dipole moment, can be introduced through
the limit ω → ∞. In this condition, our result reduces to a set
of first order differential equations in perfect agreement with
Eq.(2). This clearly explain why the LLG equation is a first
order differential equation while the Lagrange equations are
second order differential equations, coherently to the Newton
law. Moreover, this analysis shows that the Gilbert form of
the damping is more adapted than the Landau-Lifschitz form
to describe dissipation in ferromagnetic materials.

It is interesting to underlying that, in constructing his equa-
tion, Gilbert himself reckoned that he could not conceive of a
mechanical analogous system that undergoes his precessional
equation, as the inertia tensor of such a system would have
only one non-zero principal moment of inertia [5, 6]. As dis-
cussed below, this point is clarified by the models proposed
here, where three positive moments of inertia can be iden-
tified. This problem was noticed in particular by Wegrowe
and co-workers who, in a long series of papers [45, 47–50],
following previous experiments regarding ultrafast magneti-
zation switching [56], proposed to complete the Gilbert equa-
tion by including inertial terms in their derivation. To this aim,
they introduced a true inertial tensor and constructed a La-
grangian which kinetic energy is that of a symmetric top with
one point fixed and the potential energy consists of the ferro-
magnetic one. They further utilized the Rayleigh dissipation
function proposed by Gilbert [5, 6] and supported by Brown
[57, 58] in order to account for damped precession. In com-
bining these concepts with the gyromagnetic relation linking
the angular momentum of the top and the magnetic moment,
they were able to demonstrate that Eq.(2) is complemented
by extra terms the importance of which rises in times scales

which are shorter than that of gyromagnetic precession by or-
ders of magnitude. At last, very recently, experimental ev-
idence of such (resonant) inertial effects were achieved [55],
and were found to occur at a probing frequency in the terahertz
region, involving charateristic time scales that cannot be de-
scribed by the classical Gilbert equation. Now, the derivation
of Wegrowe et al. [47], although strongly indicating a close
analogy between a magnetic dipole and a precessing and nu-
tating symmetric top, does not allow to definitively conclude
regarding this analogy, which is nevertheless extremely im-
portant for a qualitative understanding. Our analysis allows
for a thorough explanation of this issue and better justifies the
equation proposed by Wegrowe and co-workers.

To summarize, by meas of our approach, we clarify the fol-
lowing points concerning the dynamic equation for the mag-
netization reorientation:

1. we prove that a purely classical mechanics model is able
to reproduce the LLG behavior with three positive mo-
ments of inertia;

2. this model supports the Gilbert damping term against
the Landau-Lifschitz counterpart;

3. we show that the effect of the externally applied mag-
netic field can be directly described by the general
Lorentz force, without the necessity to introduce a
scalar magnetic potential;

4. we are able to precisely define the damping mechanism
without resting on the Rayleigh function, which is con-
venient to use but hides the real dissipative process;

5. the proposed models automatically yield the terms de-
scribing the Lorentz force due to the reorientation of the
magnetic dipole, a phenomenon always neglected;

6. importantly, the models here developed naturally lead
to the inertial terms that must be added to the classical
LLG equation to describe the specific response at pico-
and femto-second time scales;

7. in particular, the second model, when properly approxi-
mated, gives exactly the dynamic equation proposed by
Wegrowe and co-workers [45, 47–50];

8. we provide evidence that the frequency response based
on the two variants of our models and on the Wegrowe
equation is exactly the same and show the classical fer-
romagnetic resonance together with the inertial or nuta-
tion resonance.

We believe that these points are important to give a clearer
picture of the reorientation process of the magnetization vec-
tor and to get a better understanding of its underlying physics.

The paper is structured as follows. In Section II, we de-
velop the model based on a circular current loop, where the
electric charges rotate at constant angular velocity. Then, in
Section III, we propose an alternative approach, with an arbi-
trarily varying angular velocity of the charges. This second
approach shows a more elegant symmetry and allows to bet-
ter explain the dynamic equation proposed by Wegrowe and
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FIG. 1. Physical and geometrical description of the system. Panel a): discrete distribution of charge rotating around the center of the system
with angular frequency ω . Panel b): position and velocity vectors of the i-th particle with charge q0 and mass m0, and definition of the
orthonormal bases (~e1,~e2,~e3). Panel c): definition of the precession and nutation angles ϕ and ϑ , and representation of the orthonormal bases
(~λ ,~µ,~n) rigidly joined with the magnetic dipole .

co-workers. Finally, in Section IV we analyse the frequency
response obtained through the proposed models and with the
Wegrowe equation.

II. DERIVATION OF GILBERT’S EQUATION FROM THE
MOTION OF A CIRCULAR CURRENT LOOP WITH FIXED

CENTER MODEL

A magnetic dipole is typically considered as an elemen-
tary electric current flowing in a circular loop [59, 60]. Here,
to follow this idea, we initially consider a very simple mag-
netic dipole structure characterized by a sequence of N equally
spaced material points (having mass m0 and charge q0) rotat-
ing on a circular trajectory of radius R with angular frequency
ω . The angular spacing between the points is given by 2π/N
(see Fig.1a). The resulting dipole moment M can be obtained
through the classical expression M = IS, where I = Nq0ω

2π
= qω

2π

is the effective electric current in the loop, q = Nq0 is the to-
tal charge, and S = πR2 is its surface. The dipole moment is
therefore given by M = 1

2 qωR2. Also, the total mass can be
defined as m = Nm0. In order to obtain a continuous system
for the magnetic dipole, we will analyze the limiting case with
N→ ∞, q0→ 0 and m0→ 0 while keeping a finite value of q
and m. It is also important to define the classical gyromag-
netic ratio γ = q

2m , paying an important role in the dynamics
of the dipole (according to the laws of classical physics, is the
ratio of the magnetic moment to the angular momentum). We
suppose that the discrete structure of the dipole is invariant
(i.e., q0, m0, N, R, and ω are fixed in our process) whereas
the dipole plane is subject to arbitrary reorientations around
the geometrical center of the system. From the point of view
of the analytical mechanics, this is a rheonomic system since
the mechanical constraint implicates the time as an explicit
variable [61]. It means that the material points have a preex-
isting orbital motion, independent on the dipole reorientation.
It must be admitted that this is an operative assumption, which
is difficult to be justified from an energetic point of view. In-
deed, in our model, the origin of the power necessary to main-
tain the motion of the charges in the loop is not explained. Of
course, the model we are going to present is useful to describe
the dipole moment reorientation but is not able to discuss the

origin of the spin behavior of magnetized matter. One of the
difficulty comes from the fact that our model is based on clas-
sical physics whereas the origin of spin and of the magnetic
dipole must be actually discussed within quantum physics. In-
deed, the effective electric current in the loop corresponds, at
the atomic scale, to electrons spin, nucleons spin and elec-
trons orbital motions within the atom structure, and all these
phenomena can be only explained through quantum mechan-
ics. Therefore, the energetics of spins or dipoles is beyond the
scope of the present paper.

Anyway, to better explain the system geometry, we observe
that the plane where the dipole is confined can be character-
ized by its unit normal vector~n

~n = (cosϕ sinϑ ,sinϕ sinϑ ,cosϑ), (3)

where ϕ and ϑ are the precession and nutation angles, respec-
tively (see Fig.1b and 1c). Our aim is to find the equations
governing the time evolution of ϕ and ϑ based on the external
actions applied to the magnetic dipole. On the moving plane
of the dipole, we can define a couple of unit vectors such that
they coincide with~e1 and~e2 when ϕ = ϑ = 0. We have

~λ =
∂~n
∂ϑ

= (cosϕ cosϑ ,sinϕ cosϑ ,−sinϑ), (4)

~µ =
1

sinϑ

∂~n
∂ϕ

= (−sinϕ,cosϕ,0). (5)

Therefore, (~λ ,~µ,~n) represents an orthonormal bases rigidly
bound to the loop (see Fig.1c). Now, we can introduce the
motion~ri(t) of the i-th point charge q0 as follows

~ri(t) =~λRcos(ωt + pi)+~µRsin(ωt + pi), (6)

which manifestly shows the rheonomic character of the con-
straint since the time is explicit within the terms cos(ωt + pi)
and sin(ωt + pi). Here, pi =

2π

N (i− 1) with i = 1, ...,N. Of
course, from the trajectory ~ri(t), we can also define the ve-
locity vector ~vi(t) =

d~ri
dt (see Fig.1b). Within the Lagrangian

mechanics, ϕ(t) and ϑ(t) assume the role of generalized co-
ordinates. By adopting this formalism, the motion equations
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can be written as [61]

d
dt

∂T
∂ ϑ̇
− ∂T

∂ϑ
= Qϑ with Qϑ =

N

∑
i=1

~Fi ·
∂~ri

∂ϑ
, (7)

d
dt

∂T
∂ ϕ̇
− ∂T

∂ϕ
= Qϕ with Qϕ =

N

∑
i=1

~Fi ·
∂~ri

∂ϕ
, (8)

where T = 1
2 m0 ∑

N
i=1~vi ·~vi is the kinetic energy of the particles

system, ~Fi is the total force applied to the i-th particle, and
(Qϑ ,Qϕ) are the so-called generalized forces [61]. We dis-
cuss below the physical contributions to ~Fi. We remark that
Eqs.(7) and (8) represent the most general formulation of La-
grangian mechanics where both conservative and dissipative
actions can be envisaged [61]. Now, to obtain the kinetic en-
ergy, we develop the velocity vectors as follows

~vi(t) =~̇λRcos(ωt + pi)−~λωRsin(ωt + pi)

+~̇µRsin(ωt + pi)+~µωRcos(ωt + pi). (9)

From the orthonormality properties ~λ ·~µ = 0, ~λ ·~λ = 1, ~µ ·
~µ = 1, we get by differentiation ~̇λ ·~µ +~λ ·~̇µ = 0, ~̇λ ·~λ = 0,
and ~̇µ ·~µ = 0. Hence, we simply obtain

~vi(t) ·~vi(t) =~̇λ ·~̇λR2 cos2(ωt + pi)+~̇µ ·~̇µR2 sin2(ωt + pi)

+ω
2R2 +2~̇λ ·~̇µR2 cos(ωt + pi)sin(ωt + pi)

−2~λ ·~̇µωR2. (10)

To further simplify this expression we can use the relation-
ships

~̇λ ·~̇λ = ϑ̇
2 + ϕ̇

2 cos2
ϑ , (11)

~̇µ ·~̇µ = ϕ̇
2, (12)

~λ ·~̇µ =−ϕ̇ cosϑ , (13)

~̇λ ·~̇µ = ϕ̇ϑ̇ sinϑ . (14)

We eventually get the kinetic energy in the final form

T =
1
2

m0R2
N

∑
i=1

[
ϑ̇

2 cos2(ωt + pi)+ ϕ̇
2 +ω

2

−ϕ̇
2 sin2

ϑ cos2(ωt + pi)+2ωϕ̇ cosϑ

+2ϕ̇ϑ̇ sinϑ cos(ωt + pi)sin(ωt + pi)
]
. (15)

Now, we can apply the continuous limit to this result. To do
this, we use the relation m0 = m/N and we transform the sum
into an integral over p (i.e. over the distribution of charge and
mass) by observing that d p' 2π/N. Hence, we get

T =
1
2

mR2 1
2π

∫ 2π

0

[
ϑ̇

2 cos2(ωt + p)+ ϕ̇
2 +ω

2

−ϕ̇
2 sin2

ϑ cos2(ωt + p)+2ωϕ̇ cosϑ

+2ϕ̇ϑ̇ sinϑ cos(ωt + p)sin(ωt + p)
]

d p. (16)

A straightforward integration delivers

T =
1
2

mR2
(

1
2

ϑ̇
2 + ϕ̇

2 +ω
2− 1

2
ϕ̇

2 sin2
ϑ +2ωϕ̇ cosϑ

)
=

1
4

mR2 (
ϑ̇

2 + ϕ̇
2 sin2

ϑ
)
+

1
2

mR2 (ω + ϕ̇ cosϑ)2 . (17)

~n
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FIG. 2. Instantaneous decomposition of the charge velocity~vi in the
two components tangent ~vi,‖ and perpendicular ~vi,⊥ to the instanta-
neous position of the dipole circle. The perpendicular component is
crucial for the introduction of the damping force. While Π represents
the dipole plane, Σ is the sphere circumscribed to the dipole.

This expression allows us to calculate the left hand side of the
Lagrange equations for our system as follows

d
dt

∂T
∂ ϑ̇
− ∂T

∂ϑ
(18)

= mωR2
[

ϕ̇ sinϑ +
1

2ω

(
ϑ̈ + ϕ̇

2 sinϑ cosϑ
)]

,

d
dt

∂T
∂ ϕ̇
− ∂T

∂ϕ
(19)

= mωR2
[
−ϑ̇ sinϑ +

1
2ω

(
2ϕ̈− ϕ̈ sin2

ϑ −2ϑ̇ ϕ̇ sinϑ cosϑ
)]

,

where we separated the terms proportional to ω from the oth-
ers. We will discuss this separation below. In order to com-
plete the Lagrange equations of motion, we need to elaborate
the generalized forces Qϑ and Qϕ . To do this, we assume that
the charged particles are subjected to two kinds of forces.

Firstly, we consider the Lorentz force ~Fi,L = q0~vi∧~B gener-
ated by an external magnetic induction ~B = (Bx,By,Bz). Of
course, this is an effective magnetic induction representing
many real factors: the Zeeman effect induced by an applied
magnetic field, the demagnetization effect generated by the
magnetic field created by the magnetization itself, the ex-
change effect depending of the gradients of the magnetiza-
tion, the magnetic anisotropy effect induced by the crystalline
structure of the materials, and the magnetoelastic effects gen-
erated by the interaction of magnetic and elastic fields. Typ-
ically, all these contributions are summed up through an ef-
fective energy function, which can be derived with respect to
the magnetization to give the effective magnetic induction ~B
applied to the dipole [57, 58].

Secondly, we introduce a damping force describing the ef-
fective viscous drag acting opposite to the reorientation mo-
tion of the dipole plane Π. We precisely describe the dissi-
pation mechanism as follows. At a given time t, we have a
given orientation of Π identified by ~n or, equivalently, by ϕ

and ϑ (see Fig.2). At that time t, each charge velocity ~vi can
be decomposed in the two components tangent, ~vi,‖, and per-
pendicular, ~vi,⊥, to the instantaneous position of the dipole
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circle (see Fig.2). Indeed, while each particle velocity is tan-
gent to the sphere Σ circumscribed to the dipole, it is not tan-
gent to the dipole circle because it is in motion (ϑ̇ 6= 0 and
ϕ̇ 6= 0). Now, since we want to describe the damping of the
dipole motion and not of the particle motion, we apply a drag
force opposite to the perpendicular component of each instan-
taneous particle velocity. Hence, we define the damping force
~Fi,D = −k0~vi,⊥ = −k0(~vi ·~n)~n, where ~n is defined in Eq.(3).
This is a phenomenological approach able to effectively rep-
resent all the microscopic processes responsible for the over-
all dipole damped motion. The two forces can be summed to
give ~Fi = ~Fi,L + ~Fi,D. In conclusion, we have to calculate the
following contributions to the generalized forces

Qϑ ,L = q0

N

∑
i=1

~vi∧~B ·
∂~ri

∂ϑ
, (20)

Qϑ ,D =−k0

N

∑
i=1

(~vi ·~n)
(
~n · ∂~ri

∂ϑ

)
, (21)

Qϕ,L = q0

N

∑
i=1

~vi∧~B ·
∂~ri

∂ϕ
, (22)

Qϕ,D =−k0

N

∑
i=1

(~vi ·~n)
(
~n · ∂~ri

∂ϕ

)
, (23)

which can be summed to give

Qϑ = Qϑ ,L +Qϑ ,D, (24)
Qϕ = Qϕ,L +Qϕ,D. (25)

While the exact expressions of the quantities in Eqs.(20)-(23)
are given in Appendix A, we perform here the continuous
limit of these generalized forces. By recalling that q0 = q/N
and that d p' 2π/N in Eqs.(A1)-(A2), a straightforward inte-
gration, as before, yields the following results for the compo-
nents related to the Lorentz force

Qϑ ,L =
qωR2

2
~λ ·~B+

qϕ̇R2

2
cosϑ~λ ·~B, (26)

Qϕ,L =
qωR2

2
sinϑ~µ ·~B− qϑ̇R2

2
cosϑ~λ ·~B, (27)

where we used the definitions of ~λ and ~µ given in Eqs.(4)
and (5), respectively. Concerning the damping terms given in
Eqs.(A3)-(A4), we define k = NK0 and we get the continuous
limit as

Qϑ ,D =−1
2

kR2
ϑ̇ , (28)

Qϕ,D =−1
2

kR2
ϕ̇ sin2

ϑ . (29)

We have now all the explicit terms to write down the Lagrange
equations for the dipole time evolution. The left hand sides are
summarized in Eqs.(18) and (19) while the right hand sides are
given in Eqs.(26)-(29), which can be summed as in Eqs.(24)

and (25). Hence, Eqs.(7) and (8) can be finally written as

mωR2
[

ϕ̇ sinϑ +
1

2ω

(
ϑ̈ + ϕ̇

2 sinϑ cosϑ
)]

=
qωR2

2

[
~λ ·~B+

ϕ̇

ω
cosϑ~λ ·~B

]
− 1

2
kR2

ϑ̇ , (30)

mωR2
[
−ϑ̇ sinϑ +

1
2ω

(
2ϕ̈− ϕ̈ sin2

ϑ −2ϑ̇ ϕ̇ sinϑ cosϑ
)]

=
qωR2

2

[
sinϑ~µ ·~B− ϑ̇

ω
cosϑ~λ ·~B

]
− 1

2
kR2

ϕ̇ sin2
ϑ . (31)

By straightforward simplifications, we get

ϕ̇ sinϑ +
1

2ω

(
ϑ̈ + ϕ̇

2 sinϑ cosϑ
)

= γ

[
~λ ·~B+

ϕ̇

ω
cosϑ~λ ·~B

]
−αϑ̇ , (32)

−ϑ̇ sinϑ +
1

2ω

(
2ϕ̈− ϕ̈ sin2

ϑ −2ϑ̇ ϕ̇ sinϑ cosϑ
)

= γ

[
sinϑ~µ ·~B− ϑ̇

ω
cosϑ~λ ·~B

]
−αϕ̇ sin2

ϑ , (33)

where we introduced the gyromagnetic ratio γ = q
2m and

the Gilbert damping coefficient α = k
2mω

. This is the main
achievement of the present Section and represents the set
of dynamical equations for the reorientation of the mag-
netic dipole subjected to external magnetic field and damp-
ing. These equations have been obtained without any form of
approximation, starting from the basic assumptions reported
above. We further observe that three parameters γ , α and ω

completely control these dynamical process.
It is important to observe that the obtained equations con-

tain some terms that are proportional to 1/ω . These terms can
be explained as follows. The terms proportional to 1/ω in the
left hand side of Eqs.(32) and (33) are responsible for the in-
ertial behavior of the magnetic dipole and are indeed related
to the second derivatives of precession and nutation angles ϕ

and ϑ . On the other hand, the terms proportional to 1/ω in
the right hand side of Eqs.(32) and (33) represent the Lorentz
force generated by the reorientation of the dipole plane Π. In-
deed, such a reorientation produces a charge velocity not re-
lated to ω but rather to ϕ̇ and ϑ̇ . All these kind of terms can
be typically neglected for real microscopic dipole or, equiva-
lently, for the so-called ideal dipole. An ideal magnetic dipole
is indeed characterized by ω → ∞ and R→ 0, but with a fi-
nite value of M = 1

2 qωR2. It means that we have a magnetic
dipole with an infinitely small size and an infinitely large elec-
tric current, so that to have a finite dipole moment. In other
words, to deal with an ideal dipole, we have to suppose that
ω � ϑ̇ and ω � ϕ̇ . Equivalently, the intrinsic rotation of
the charged particles is much faster than the reorientation pro-
cess of the dipole plane. Concerning the damping process, the
ideal dipole is characterized by the limiting values k→ ∞ and
ω → ∞, performed by taking a finite value for the damping
coefficient α = k

2mω
.

The meaning of the ideal dipole approximation character-
ized by ω→∞ can be appreciated by considering the paradig-
matic magnetic dipole constituted by a hydrogen Bohr atom
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with one electron and one proton. In this case, we have
q = e = 1.6× 10−19C, m = me = 9.1× 10−31Kg, and the
dipole radius R coincides with the Bohr radius a0 given by

a0 =
4πε0h̄2

mee2 ' 0.5×10−10m. (34)

Moreover, the Bohr theory allows the determination of the
electron orbital velocity as

ve =
e2

4πε0h̄
' 2.1×106ms−1, (35)

also corresponding to the fine-structure constant (∼ 1/137)
times the speed of light in vacuum c = 299792458m/s. The
Bohr radius and the electron velocity can be used to directly
calculate the angular frequency as follows

ω =
ve

a0
=

mee4

(4πε0)2h̄3 ' 4.2×1016s−1. (36)

Therefore, we observe that for this magnetic dipole, ω as-
sumes a very large value, confirming the validity of the ideal
dipole hypothesis. To conclude, we can also determine the
dipole moment of the electron rotation as

M =
evea0

2
=

eh̄
2me
' 9.2×10−24Am2, (37)

corresponding to the so-called Bohr magneton. We can state
that for such a system, the ideal dipole approximation is valid
if the frequency f of the applied magnetic induction ~B is much
lower than ω/(2π) ∼ 1016s−1. Consequently, the inertial ef-
fect in the magnetization reorientation can be appreciated only
with very large frequencies of the applied magnetic field. We
remark that neglecting the terms of the order 1/ω in Eqs.(32)
and (33) transforms the second order Lagrange equations in a
set of first order differential equation. This is coherent with
the classical forms of the LLG equation, as generally used in
micromagnetism [26, 27]. As discussed in the Introduction,
the problem of the inertial effect in the dynamics of mag-
netization has been investigated in recent literature [45–55].
In these works, an evolution equation for the magnetization
has been proposed. However, it is not completely consistent
with our Eqs.(32) and (33). Indeed, in the previously proposed
equation, the terms corresponding to the Lorentz force gener-
ated by the reorientation dynamics [our 1/ω terms in the r.h.s.
of Eqs.(32) and (33)] have been completely neglected and the
purely inertial terms are similar but not coinciding with ours.
The origin of the differences between our approach and previ-
ous works is due to the fact that in Refs.[45–55] the intrinsic
rotational motion of the charge defining the magnetic dipole is
not considered as a basic assumption and therefore the inertial
and Lorentz forces are introduced in a different way. An alter-
native approach useful to better draw a comparison with the
equation proposed by Wegrowe and co-workers is discussed
in the next Section.

Anyway, if we neglect the terms of the order of 1/ω in
Eqs.(32) and (33), we get the simplified relations

ϕ̇ sinϑ = γ~λ ·~B−αϑ̇ , (38)
ϑ̇ =−γ~µ ·~B+α sinϑϕ̇. (39)

This is a first-order system of differential equations, which is
not written in normal form. To obtain its normal form, we
can substitute ϑ̇ from Eq.(39) into Eq.(38) and, reciprocally,
ϕ̇ sinϑ from Eq.(38) into Eq.(39). This procedure eventually
yields

ϕ̇ sinϑ =
γ

1+α2

(
~λ ·~B+α~µ ·~B

)
, (40)

ϑ̇ =
γ

1+α2

(
α~λ ·~B−~µ ·~B

)
. (41)

These polar forms of the equations for the magnetization
dynamics have been largely used in different applications
[62, 63]. To conclude, it is not difficult to prove that Eqs.(38)
and (39) are equivalent to the first form (implicit) of the LLG
equation

d ~M
dt

= γ ~M∧~B− α

M
~M∧ d ~M

dt
, (42)

while Eqs.(40) and (41) are equivalent to the second form (ex-
plicit) of the LLG equation

d ~M
dt

=
γ

1+α2

[
~M∧~B− α

M
~M∧

(
~M∧~B

)]
. (43)

To directly prove these equivalences, it is sufficient to con-
sider that ~M = M~n and use the definition of~n given in Eq.(3).
From this result we deduce that the Gilbert damping process
appears to be more adapted to describe the magnetization dy-
namics than the Landau-Lifshitz counterpart since it has been
obtained from a purely mechanical model. Notice that with
the above formulation, it is difficult to close the equations of
motion for ~n accounting for inertial effects when ω → ∞, as
all second order derivatives are, at first glance, wiped out by
such a limiting process. Thus, the purpose of the next section
is to demonstrate that, in the same limit ω → ∞, a closed-
form equation for ~n can be found that includes second-order
derivatives, and therefore of magnetic inertial effects simi-
lar with those which have been experimentally evidenced re-
cently [55].

III. MAGNETIC INERTIA CORRECTED GILBERT
EQUATION FROM THE CIRCULAR LOOP MODEL

The main equations derived in the previous Section, namely
Eqs.(32) and (33) are able to describe all effects produced by
an external magnetic field on a magnetic dipole. However, as
alluded to in the previous section their form is not symmetric
and it is difficult, if not impossible, to obtain a dynamic equa-
tion written only in terms of the vector~n or ~M, as expected to
get a generalization of the classical LLG equation. So, we de-
scribe here an alternative approach eventually yielding a more
symmetric formalism and giving a rigorous justification of the
Wegrowe equation.

As before, we consider the moving frame defined by
(~n,~λ ,~µ), constituting a convenient basis which is rigidly
bound with the rotating loop. Now, the rotational frequency
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of the charges is arbitrarily varying and we can write their po-
sitions as

~ri(t) =~λRcos(ψ(t)+ pi)+~µRsin(ψ(t)+ pi),

(44)

where ψ̇ represents the arbitrary angular velocity of the
charges. Notice that here, the constraints are holonomic
and time-independent. However, this does not fundamentally
change the basic analysis conducted in the previous section.
The kinetic energy of the system in the form

T =
mR2

4
(ϑ̇ 2 + ϕ̇

2 sin2
ϑ)+

mR2

2
(ψ̇ + ϕ̇ cosϑ)2, (45)

which is consistent with Eq.(17) by replacing ψ̇ by ω in
Eq.(45). Here again, we introduced m = Nm0 and we per-
formed the continuum limit, in exactly the same fashion as
discussed in the previous section. Written in this form, the
kinetic energy is identical to that of a symmetric top with one
point fixed, with principal moments of inertia I1 = I2 =mR2/2
and I3 = mR2 [61]. This point definitively shows that the clas-
sical mechanics is able to mimic the magnetization dynam-
ics with three positive moments of inertia. Now, the gener-
alized coordinates are three in number, namely (q1,q2,q3) =
(ϕ,ϑ ,ψ) as it must for a symmetric top with one point fixed,
and the generalized velocities are (q̇1, q̇2, q̇3) = (ϕ̇, ϑ̇ , ψ̇). Be-
fore writing the equations of motion, we also write the total
force to which the charges are subjected. This is given by the
Lorentz force combined with the damping force

~Fi = ~Fi,L +~Fi,D = q0~vi∧~B− k0(~vi ·~n)~n. (46)

Then, we write the Lagrange equations as [61]

d
dt

∂T
∂ q̇k
− ∂T

∂qk
=

N

∑
i=1

~Fi ·
∂~ri

∂qk
, k = 1,2,3. (47)

By introducing the gyromagnetic ratio γ = q
2m = q0

2m0
, the ap-

parent damping constant k = Nk0 and using the discrete to
continuous limit to evaluate the sums in Eq.(47), we explicitly
obtain the Lagrange equations

d
dt
(2ϕ̇− ϕ̇ sin2

ϑ +2ψ̇ cosϑ)

= 2γψ̇ sinϑ~µ ·~B−2γϑ̇ cosϑ~λ ·~B− k
m

ϕ̇ sin2
ϑ , (48)

ϑ̈ + ϕ̇ sinϑ(ϕ̇ cosϑ +2ψ̇)

= 2γψ̇~λ ·~B+2γϕ̇ cosϑ~λ ·~B− k
m

ϑ̇ , (49)

and
d
dt
(ψ̇ + ϕ̇ cosϑ) =−γϑ̇~λ ·~B− γϕ̇ sinϑ~µ ·~B. (50)

We set now

Ω = ψ̇ + ϕ̇ cosϑ . (51)

From Eq.(50), we may write

γϑ̇~λ ·~B =−γϕ̇ sinϑ~µ ·~B− Ω̇, (52)

and this result can be substituted in the first Lagrange equation
given in Eq.(48). After straightforward algebra we get

ϕ̈ sinϑ +2ϑ̇ ϕ̇ cosϑ −2Ωϑ̇ =− k
m

ϕ̇ sinϑ +2γΩ~µ ·~B, (53)

ϑ̈ − ϕ̇
2 sinϑ cosϑ +2Ωϕ̇ sinϑ =− k

m
ϑ̇ +2γΩ~λ ·~B, (54)

while we also have Eq.(50), viz.

Ω̇ =−γϑ̇~λ ·~B− γϕ̇ sinϑ~µ ·~B. (55)

In order to handle the inertial terms, we consider now the vec-
tor ~J defined by

~J =~n∧ d2~n
dt2

= (ϑ̈ − ϕ̇
2 sinϑ cosϑ)~µ− (ϕ̈ sinϑ +2ϑ̇ ϕ̇ cosϑ)~λ

= Jµ~µ + Jλ
~λ . (56)

Then, we may write Eqs.(53) and (54) as

−Jλ −2Ωϑ̇ =− k
m

ϕ̇ sinϑ +2γΩ~µ ·~B, (57)

Jµ +2Ωϕ̇ sinϑ =− k
m

ϑ̇ +2γΩ~λ ·~B. (58)

This form exhibits a complete symmetry and can be further
developed as follows

−Jλ −2ψ̇

(
1+

ϕ̇ cosϑ

ψ̇

)
ϑ̇

=− k
m

ϕ̇ sinϑ +2γψ̇

(
1+

ϕ̇ cosϑ

ψ̇

)
~µ ·~B, (59)

Jµ +2ψ̇

(
1+

ϕ̇ cosϑ

ψ̇

)
ϕ̇ sinϑ

=− k
m

ϑ̇ +2γψ̇

(
1+

ϕ̇ cosϑ

ψ̇

)
~λ ·~B. (60)

These equations must be combined with Eq.(50). Indeed, we
remark that Eqs.(59) and (60) completely describe the mo-
tion of~n, the unit normal to the loop, if the dynamics of ψ is
known. However, for the description of the magnetic moment
dynamics, we can consider the value of ψ̇ large (with respect
to ϑ̇ and ϕ̇) and constant since the modulus of the magnetic
moment and the damping coefficient should be considered as
constant parameters. This is accomplished if

ψ̇ = ω (61)

where ω is a constant (the same considered in the previous
Section). This choice is actually legitimate since the damping
force does not play any role in Eq.(50). With this hypothesis,
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the motion of~n is governed by the couple of equations

−Jλ −2ω

(
1+

ϕ̇ cosϑ

ω

)
ϑ̇

=− k
m

ϕ̇ sinϑ +2γω

(
1+

ϕ̇ cosϑ

ω

)
~µ ·~B, (62)

Jµ +2ω

(
1+

ϕ̇ cosϑ

ω

)
ϕ̇ sinϑ

=− k
m

ϑ̇ +2γω

(
1+

ϕ̇ cosϑ

ω

)
~λ ·~B, (63)

where ω is a constant representing the angular frequency of
the charges rotation (nutation frequency). The set of Eqs.(62)
and (63) represents our second proposed model for the mag-
netization dynamics. Its form is more elegant and symmetric
than the one given in Eqs.(32) and (33). Moreover, it allows
to draw a comparison with the dynamic equation recently pro-
posed by Wegrowe and co-workers.

Actually, a further simplification can be introduced by as-
suming that

ϕ̇ cosϑ � ω or ϕ̇ � ω. (64)

The last two equations become

−Jλ −2ωϑ̇ =− k
m

ϕ̇ sinϑ +2γω~µ ·~B, (65)

Jµ +2ωϕ̇ sinϑ =− k
m

ϑ̇ +2γω~λ ·~B. (66)

Finally, redefining the dimensionless damping constant

α =
k

2mω
, (67)

and introducing the time constant τ by

τ =
1

2ω
, (68)

we easily obtain

−τJλ − ϑ̇ =−αϕ̇ sinϑ + γ~µ ·~B, (69)

τJµ + ϕ̇ sinϑ =−αϑ̇ + γ~λ ·~B, (70)

or, equivalently, the equation for~n in the form

d~n
dt

= γ~n∧~B−α~n∧ d~n
dt
− τ~n∧ d2~n

dt2 , (71)

which is equivalent to Eqs.(65) and (66) and represents the
equation of motion for the magnetic dipole proposed in recent
literature by Wegrowe and co-workers [45–50]. Of course, in
the noninertial limit defined by ω → ∞ or τ → 0, we obtain
again the simplified form

d~n
dt

= γ~n∧~B−α~n∧ d~n
dt

, (72)

which is the Gilbert’s equation for the dynamics of the mag-
netization direction. As a conclusion, we can state that the
equation of Wegrowe and co-workers can be obtained as an
approximation (with ϕ̇ � ω) of the exact equations of mo-
tion governing the dynamics of a circular current loop, in turn
given by that of a symmetric top with one point fixed with
well-identified moments of inertia.

IV. FREQUENCY RESPONSE

We investigate now the characteristic frequency response
corresponding to the proposed models, since it is the feature
typically investigated with standard experimental approaches.
It means that we apply a uniform and constant bias field ~B0 to
the magnetic dipole, with an additive time-varying small per-
turbation δ~B, and we observe the resulting dipole motion. To
simplify the notation, we define the vector~x=(ϕ,ϑ), describ-
ing the magnetization orientation. In response to the applied
field, we can observe a preferential fixed direction identified
by ~x0 = (ϕ0,ϑ0), perturbed by a small time-varying quantity
δ~x. In previous Sections, we discussed three different ver-
sions of the equations describing the noninertial dynamics of
magnetization: (i) Eqs.(32) and (33), obtained by considering
a uniformly rotating distribution of charge; (ii) Eqs.(62) and
(63), obtained through a symmetric top with one point fixed;
(iii) Eqs.(69) and (70), which represent a simplification of the
second form for high values of ω (coinciding with the equa-
tion proposed by Wegrowe and co-workers). These three sets
of equations can be cast into the following general form

f1(~x,~̇x,~̈x,~B) = 0, (73)

f2(~x,~̇x,~̈x,~B) = 0, (74)

where f1 and f2 are suitable functions representing any of the
three models above. We describe here an ad hoc procedure of
linearization for this arbitrary system of differential equations.
To begin, we can substitute the assumed hypotheses~x =~x0 +
δ~x and ~B= ~B0+δ~B in Eqs.(73) and (74), eventually obtaining

f1(~x0 +δ~x,δ~̇x,δ~̈x,~B0 +δ~B) = 0, (75)

f2(~x0 +δ~x,δ~̇x,δ~̈x,~B0 +δ~B) = 0. (76)

Since the applied perturbation δ~B and the resulting perturba-
tion δ~x are supposed to be small with respect to ~B0 and ~x0,
respectively, we can develop previous equations to the first
order as follows

f1(~x0,0,0,~B0)+
∂ f1

∂~x
·δ~x+ ∂ f1

∂~̇x
·δ~̇x

+
∂ f1

∂~̈x
·δ~̈x+ ∂ f1

∂~B
·δ~B = 0, (77)

f2(~x0,0,0,~B0)+
∂ f2

∂~x
·δ~x+ ∂ f2

∂~̇x
·δ~̇x

+
∂ f2

∂~̈x
·δ~̈x+ ∂ f2

∂~B
·δ~B = 0, (78)

where the partial derivatives are calculated for ~x =~x0, ~̇x = 0,
~̈x = 0 and ~B = ~B0. Now, we clearly have that f1(~x0,0,0,~B0) =

0 and f2(~x0,0,0,~B0) = 0, since~x0 is the magnetization direc-
tion induced by ~B0 when the perturbations are not applied.
To make this procedure more effective, we suppose that the
perturbation of the applied magnetic induction is given by the
sinusoidal oscillation

δ~B = Re
{
~beiΩBt

}
, (79)

where ΩB is the angular frequency and ~b is the correspond-
ing complex amplitude (phasor). Here Re{z} stands for the
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real part of the complex number z. Of course, also the angles
perturbation follows a similar time evolution

δ~x = Re
{
~aeiΩBt

}
, (80)

with the same angular frequency and where ~a is its complex
amplitude (phasor). It means that we are in a sinusoidal steady
state regime. While the applied phasor~b = (bx,by,bz) ∈C3 is
known, the resulting phasor ~a = (aϕ ,aϑ ) ∈ C2 is unknown
and it can be determined as follows. By using Eqs.(79) and
(80) in Eqs.(77) and (78), we easily obtain(

∂ f1

∂~x
+ iΩB

∂ f1

∂~̇x
−Ω

2
B

∂ f1

∂~̈x

)
·~a+ ∂ f1

∂~B
·~b = 0, (81)(

∂ f2

∂~x
+ iΩB

∂ f2

∂~̇x
−Ω

2
B

∂ f2

∂~̈x

)
·~a+ ∂ f2

∂~B
·~b = 0, (82)

which is a system of two linear equations in the two unknown
components of the vector ~a. This vector ~a can be simply
obtained by calculating all the partial derivatives needed in
Eqs.(81) and (82), starting from the mathematical expressions
of f1 and f2, and by solving the linear system. To simplify
the calculation, we fix ~B0 = (B,0,0), i.e. we suppose the the
bias filed is applied to the x-direction of the reference frame.
Of course, this assumption does not limit the generality of the
following achievements. The interesting point is that we get
exactly the same result for the three models proposed and dis-
cussed previously. It means that Eqs.(32) and (33), Eqs.(62)
and (63), and Eqs.(69) and (70) yield the same vector ~a given
by

aϕ =
2ωγ

(
2iΩBωbz−2byγBω−2ibyΩBαω +byΩ2

B
)

D
,

(83)

aϑ =
2ωγ

(
2iΩBωby +2bzγBω +2ibzΩBαω−bzΩ

2
B
)

D
,

(84)

where

D = 4Ω
2
Bω

2−4γ
2B2

ω
2−8iγBω

2
ΩBα

+4γBωΩ
2
B +4Ω

2
Bα

2
ω

2 +4iΩ3
Bαω−Ω

4
B, (85)

which is a fourth degree polynomial in the applied angular
frequency ΩB.

The quantities aϑ and aϑ are used as follows to obtain the
fluctuations of the direction ~n. To begin, we can write ~n =
~n0 + δ~n, where ~n0 is identified by ~x0 = (ϕ0,ϑ0). Concerning
the perturbation we can assume that

δ~n = Re
{
~νeiΩBt

}
, (86)

where ~ν is the complex amplitude associated to δ~n. Then, a
simple use of Eq.(3) leads to the first order relations

νx =−sinϕ0 sinϑ0aϕ + cosϕ0 cosϑ0aϑ , (87)
νy = cosϕ0 sinϑ0aϕ + sinϕ0 cosϑ0aϑ , (88)
νz =−sinϑ0aϑ . (89)
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FIG. 3. Frequency response of the system with a varying value of
the applied magnetic induction B. We adopted the parameters γ =
1.76×1011s−1T−1, B = 0.1,0.2,0.3,0.4,0.5T, α = 0.1 and ω = 1×
1012s−1. The arrow indicates the increasing values of B.
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FIG. 4. Frequency response of the system with a varying value of
the intrinsic frequency ω . We adopted the parameters γ = 1.76×
1011s−1T−1, B = 0.25T, α = 0.1 and ω = 1.6×1011,2.5×1011,4×
1011,6.3×1011,1×1012s−1. The arrow indicates the increasing val-
ues of ω .

Therefore, we obtain from Eqs.(83) and (84) the following
simplified expressions based on the assumption ~B0 = (B,0,0)

νx = 0, (90)
νy = aϕ , (91)
νz =−aϑ . (92)

We study the behavior of νz when only by 6= 0 and when only
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FIG. 5. Frequency response of the system with a varying value
of the damping factor α . We adopted the parameters γ = 1.76×
1011s−1T−1, B = 0.25T, α = 0.01,0.06,0.11,0.16,0.21 and ω =
1×1012s−1. The arrow indicates the increasing values of α .

bz 6= 0 and we eventually get

νz

by

∣∣∣∣
bx=bz=0

=−4iγω2ΩB

D
, (93)

νz

bz

∣∣∣∣
bx=by=0

=−
2ωγ

(
2γBω +2iΩBαω−Ω2

B
)

D
, (94)

where D is the polynomial defined in Eq.(85). These re-
sults represent the frequency response of the system and they
are shown in Figs.3,4 and 5. In all plots we can see a first
resonance that can be identified with the classical ferromag-
netic resonance and a second resonance that can be ascribed
to the inertial effects taken into consideration in our mod-
els. Indeed, in Fig.3, we can observe that only the first reso-
nance frequency is shifted with an increasing polarizing field
B, which is the classical behavior of the ferromagnetic reso-
nance. Moreover, from Fig.4, we deduce that only the second
resonance is shifted with an increasing value of ω , which is
the characteristic frequency describing the inertial effects. Fi-
nally, in Fig.5, we can observe the effect of the damping fac-
tor on the resonances behavior and we conclude that a smaller
damping induces sharper resonance mechanism while a larger
damping produces a smoother resonance response. This is
true for both the ferromagnetic and the inertial resonances.
The existence of the second resonance peak due to the inertial
effect has been experimentally confirmed in Ref.[55], where it
has been observed in ferromagnetic thin films at a frequency
of approximately 0.6 THz.

The fact that the three studied models exhibit exactly the
same frequency response means that the mathematical differ-
ences among them do not generate different physical behav-
iors. This is true, at least, for the results concerning the reso-
nance behavior of the frequency response. A further analysis
should be conducted in order to compare the complete time

evolution of the magnetization for the three models with ex-
perimental data. We leave this point to further investigations.

V. CONCLUSIONS

In this work we readdressed the problem of mimicking
the dynamics of a magnetic dipole subjected to a damping
force and an external magnetic field from purely classical
concepts. While the classical approaches are based on the
Landau-Lifshitz equation and on its Gilbert refinement, re-
cent experimental and theoretical investigations have shown
the need to extend these theories to include inertial effects. To
this aim, we propose here to consider a magnetic dipole as a
circular current loop and we obtain its quantitative description
through the Lagrangian mechanics.

It is important to place this dipole structure in the context of
previous approaches. The idea of using the mechanical anal-
ogy between a magnetic dipole and a spinning top has been
efficiently developed by Gilbert in order to derive the equa-
tion that bears his name [5, 6]. The corresponding dipole
can be called Gilbert magnetic dipole in order to be distin-
guished from the Ampère magnetic dipole. This latter is de-
fined by a loop in which the electric current is confined (see
e.g. Ref.[50]). This dichotomy has been proposed by D. J.
Griffiths [64], who proved that the two dipoles are equivalent
in the sub-relativistic regime of the electromagnetism. The
dipole structure proposed here is a sort of intermediate ver-
sion of the two systems above. Indeed, we exploited the cur-
rent loop of the Ampère dipole combined with the possibility
to rotate its plane through external actions, as in the Gilbert
case. In this sense, the electromagnetic and the mechanical be-
havior are coupled to eventually obtain the dynamic equation
with the inertial effects. While the Ampère magnetic dipole is
classically used to determine the magnetic field produced by
a dipole (by defining the dipole moment M = IS), here we use
the current loop to evaluate the forces applied from an external
magnetic field to the dipole itself. Since our dipole is free to
rotate, these forces produce the reorientation, whose dynam-
ics can be studied by the classical mechanical laws. We can
also remark that the idea of merging the Gilbert and Ampère
visions can open new perspectives concerning the full electro-
magnetic and mechanical analysis of the problem (based on
the Maxwell and Lagrange equations). As a matter of fact,
the Lagrangian function for the system can be adopted in the
context of the electrodynamics in order to study the most gen-
eral time-dependent situation.

Here, we followed two different lines. In the first one, we
supposed a constant angular frequency for the electric charges
rotating in the loop and we dealt with a rheonomic system
with two degrees of freedom. In the second one, we supposed
an arbitrary angular frequency for the charges by obtaining a
holonomic and time-independent system with three degrees of
freedom. In both cases we firstly introduced a discrete distri-
bution of charges and we performed the limit towards a con-
tinuous structure in a second step. The effect of the magnetic
field is directly introduced through the Lorentz force without
using the magnetic scalar potential. Moreover, the dissipa-
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tive process is defined by a specific damping force without the
need to introduce a Rayleigh dissipation function, but rather
asking for this phenomenological damping force not to brake
the orbital motion of the charges inside the loop (so that the
current intensity inside the loop is maintained constant). This
point allows a better understanding of the dissipative mecha-
nism with a clearer definition of the force that opposes the ori-
entation of the magnetic dipole in an externally applied mag-
netic field. Importantly, the proposed models naturally lead to
extra terms with respect the classical LLG equation, charac-
terizing two important phenomena: (i) the inertial effect that
can be observed for high values of the frequency of the ap-
plied magnetic field; (ii) the effect of the Lorentz force gen-
erated by the reorientation of the dipole plane, which is usu-
ally neglected in previous models. While the first proposed
model, with constant angular frequency of the charges, con-
tains these two terms, its mathematical form is not symmetric
and it is therefore difficult to draw a comparison with the re-
sults of the recent literature. For this reason, we introduced
a refined treatment, with an arbitrary angular frequency, and
we obtained a more elegant and symmetric form for the dy-
namical equations. Moreover, its approximation, obtained for
a reasonably slow reorientation motion with respect to the ro-
tation of charges, is found to be coinciding with the equation
recently proposed by Wegrove and co-workers. Our analysis
represents therefore an independent derivation of this equa-
tion. The importance of the inertial effect can be appreciated
by taking into account the frequency response of the dipole
system. We provided evidence that both the first and sec-
ond model proposed, and also the Wegrowe equation, lead
to exactly the same mathematical form of the frequency re-
sponse. On the one hand, this proves that the differences be-
tween the mathematical details of the three models have no
observable consequences on the physical response of the sys-
tem. On the other hand, the frequency response is character-
ized by two resonance phenomena: while the first represents
the classical ferromagnetic resonance, the second is induced
by inertial effects. It is important to note that this second res-
onance (between 1011 and 1012 Hz) has been observed ex-
perimentally only recently [55]. If we consider a sufficiently
low applied magnetic field frequency, the proposed models
can be approximated by neglecting inertial effects and pro-
vide Gilbert’s equation as a result. Therefore, we can also
state that a purely mechanical approach to the problem of the
dynamics of a magnetic dipole gives a strong indication that
the damping process is better represented by the Gilbert as-
sumption than the Landau-Lifshitz counterpart. Finally, we
clarified that the motion of a symmetric top with a fixed point,
and with three positive moments of inertia, is coherent with
the LLG dynamics of a magnetic dipole.

Appendix A: Generalized forces

We show here the complete expressions of the generalized
forces defined in Eqs.(20)-(23), which can be summed as in

Eqs.(24) and (25). The results shown here concern the case of
a discrete distribution of charged within the loop. Concerning
the Lorentz force, a long but straightforward calculation leads
to the expressions

Qϑ ,L = q0ωR2
N

∑
i=1

[
−Bz sinϑ cos2(ωt + pi)

+By cosϑ sinϕ cos2(ωt + pi)

+By cosϕ sin(ωt + pi)cos(ωt + pi)

+Bx cosϑ cosϕ cos2(ωt + pi)

−Bx sinϕ sin(ωt + pi)cos(ωt + pi)]

+q0ϕ̇R2
N

∑
i=1

[
−Bz sinϑ cosϑ cos2(ωt + pi)

+By cos2
ϑ sinϕ cos2(ωt + pi)

+By cosϕ cosϑ sin(ωt + pi)cos(ωt + pi)

+Bx cos2
ϑ cosϕ cos2(ωt + pi)

−Bx sinϕ cosϑ sin(ωt + pi)cos(ωt + pi)] , (A1)

Qϕ,L = q0ωR2
N

∑
i=1

[
−Bz sin2

ϑ sin(ωt + pi)cos(ωt + pi)

+By sinϑ cosϕ sin2(ωt + pi)

+By cosϑ sinϑ sinϕ sin(ωt + pi)cos(ωt + pi)

−Bx sinϑ sinϕ sin2(ωt + pi)

+Bx cosϑ sinϑ cosϕ sin(ωt + pi)cos(ωt + pi)] ,

+q0ϑ̇R2
N

∑
i=1

[
Bz sinϑ cosϑ cos2(ωt + pi)

−By cos2
ϑ sinϕ cos2(ωt + pi)

−By cosϑ cosϕ sin(ωt + pi)cos(ωt + pi)

−Bx cos2
ϑ cosϕ cos2(ωt + pi)

+Bx cosϑ sinϕ sin(ωt + pi)cos(ωt + pi)] , (A2)

where, as in the main text, we separated the terms proportional
to ω from the others. On the other hand, the damping force
yields

Qϑ ,D =−k0R2
N

∑
i=1

[
ϑ̇ cos2(ωt + pi)

+ϕ̇ sinϑ sin(ωt + pi)cos(ωt + pi)] , (A3)

Qϕ,D =−k0R2
N

∑
i=1

[
ϑ̇ sinϑ sin(ωt + pi)cos(ωt + pi)

+ϕ̇ sin2
ϑ sin2(ωt + pi)

]
. (A4)

We remember that here, pi =
2π

N (i−1) with i = 1, ...,N.
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