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Abstract: The goal of this paper is to provide a comparative analysis of the thermal impact on
the microwave performance of high electron-mobility transistors (HEMTs) based on GaAs and
GaN technologies. To accomplish this challenging goal, the relative sensitivity of the microwave
performance to changes in the ambient temperature is determined by using scattering parameter
measurements and the corresponding equivalent-circuit models. The studied devices are two HEMTs
with the same gate width of 200 µm but fabricated using different semiconductor materials: GaAs
and GaN technologies. The investigation is performed under both cooled and heated conditions, by
varying the temperature from −40 ◦C to 150 ◦C. Although the impact of the temperature strongly
depends on the selected operating condition, the bias point is chosen in order to enable, as much as
possible, a fair comparison between the two different technologies. As will be shown, quite similar
trends are observed for the two different technologies, but the impact of the temperature is more
pronounced in the GaN device.

Keywords: GaAs; GaN; heterostructure; high electron-mobility transistor (HEMT); microwave
performance; temperature-sensitivity

1. Introduction

High electron-mobility transistors (HEMTs, also known as a heterostructure or hetero-
junction FETs) based on AlGaAs/GaAs and AlGaN/GaN heterostructures have greatly
evolved since their inception in the early 1980s [1] and early 1990s [2], respectively. The
most evident difference between the GaAs and GaN technologies is that the former is
more mature, whereas the latter is more suited for high-power applications, owing to its
wide bandgap nature. Over the years, many studies have focused on the high-frequency
characterization and modeling of the temperature-dependent behavior of both GaAs [3–12]
and GaN [13–27] HEMTs. This is because the operating temperature can remarkably affect
the device performance, reliability, and lifetime, which are key features in practical applica-
tions, especially those in harsh environmental conditions [28]. With the aim of contributing
to the assessment of the impact of the temperature on GaAs and GaN technologies, this
article presents a comparative investigation of the temperature-dependent high-frequency
behavior of two HEMTs based on AlGaAs/GaAs and AlGaN/GaN heterojunctions. To
enable this comparative investigation, a sensitivity-based analysis is developed. The as-
sessment of the sensitivity of the two HEMTs to changes in the ambient temperature (Ta)
has been accomplished by using equivalent circuit models extracted from scattering (S-)
parameters. The ambient temperature has been swept over a wide range of values, going
from −40 ◦C to 150 ◦C. The bias point has been selected in order to allow, as much as
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possible, a fair comparison between the two different transistor technologies. The GaAs
and GaN HEMTs have the same gate width of 200 µm but differ in the gate lengths, which
are 0.25 µm and 0.5 µm, respectively. For the first time, the challenging task of comparing
the temperature-dependent performance of the two different semiconductor technologies
is accomplished by reporting an extensive and systematic sensitivity-based analysis, which
is carried out by using the drain current (Ids), the equivalent-circuit parameters (ECPs),
and the major RF figures of merit. The degradations of the device performance at a higher
Ta are found to be more pronounced for the GaN technology, which can be attributed to
the higher dissipated power (Pdiss). It is worth noting that the two tested technologies
are inherently different and that this then clearly impacts on the achieved results. Given
the widely different characteristics of the two tested technologies, it is really not feasible
to distinguish each contribution arising from the different operating conditions (e.g., dis-
sipated power) and peculiar device physics (e.g., thickness and thermal conductivity of
the substrate). Hence, the reported comparative analysis has not aimed at distinguishing
each contribution but at assessing the overall impact of the ambient temperature on the
DC and microwave characteristics of the two tested technologies. Nevertheless, for the
sake of completeness, it should be underlined that the channel temperature is higher than
the ambient temperature because of the heat generated by the self-heating effects, which
are strongly dependent not only on the dissipated power level but also on the thickness
and thermal conductivity of the materials [13,29–36]. Furthermore, it is worth mentioning
that the extraction of the equivalent-circuit elements may be inevitable affected by the
uncertainty inherent in measurements and that, in addition, the model topology itself is an
approximation of the device physics [37–43], which in turn may impact on the achieved
temperature-dependent findings.

The remainder of this article is organized as follows: Section 2 is focused on the
description of the tested device and experiments, Section 3 is devoted to the sensitivity-
based analysis and the discussion of the findings, and the last section summarizes the main
conclusions of this study.

2. Devices and Experiments

The two studied devices are an AlGaAs/GaAs HEMT grown by molecular beam
epitaxy (MBE) on a semi-insulating undoped GaAs substrate and an AlGaN/GaN HEMT
grown by metal-organic chemical vapor deposition (MOCVD) on a SiC substrate. Figure 1
shows the schematic cross-sectional views and photos of the two tested HEMTs. The
interdigitated layout of both devices is based on the connection in parallel of two fingers,
each being 100-µm long, yielding to a total gate width of 200 µm. The gate lengths of the
GaAs and GaN devices are 0.25 µm and 0.5 µm, respectively. The source-to-gate distance
(LSG) and the gate-to-drain distance (LGD) are 0.5 µm and 2.0 µm for the GaAs device, while
their values are equal to 1 µm and 2.75 µm for the GaN device.

The microwave experiment consists of S-parameters measured from 45 MHz to 50 GHz
at nine different ambient temperatures: −40 ◦C, −25 ◦C, 0 ◦C, 25 ◦C, 50 ◦C, 75 ◦C, 100 ◦C,
125 ◦C, and 150 ◦C. The S-parameters were measured with a vector network analyzer (VNA
HP8510C) in conjunction with a DC source (HP4142B) for biasing, a temperature control
unit (Temptronic TP03200, Temptronic Corporation, Mansfield, MA, USA) for setting the
ambient temperature, and a PC with a specialized software (IC-CAP) for controlling the
full measurement procedure through the GPIB interface. The off-wafer calibration was
performed using line-reflect-reflect-match (LRRM) standards on the alumina calibration
substrate from Cascade Microtech and a commercial calibration software (WinCal). The
comparative analysis is performed using S-parameters at the following two bias points in
the saturation region: Vds = 3 V and Vgs = −0.1 V for the GaAs HEMT and Vds = 9 V and
Vgs = −4 V for the GaN HEMT. This choice has been made based on the analysis of the DC
output characteristics of the two transistors at different Ta (see Figures 2 and 3), in order
to enable, as much as possible, a fair comparison between the two different technologies.
For the GaAs HEMT, two temperature-dependent effects contribute in opposite ways to
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the resultant behavior of Ids with an increasing temperature: the degradation of the carrier
transport properties and the threshold voltage (Vth) shift towards more negative values.
Therefore, Vgs is selected at −0.1 V, in order to minimize the contribution of the Vth shift
that plays a more dominant role at lower Vgs. Vds is selected at 3 V, in order to avoid the pro-
nounced positive slope of Ids at high Vds. For the GaN HEMT, the temperature-dependent
behavior of Ids is mostly due to the degradation of the carrier transport properties and/or
to a reduction in the carrier concentration in the two-dimensional electron gas (2DEG).
Therefore, Vds and Vgs are, respectively, selected at 9 V and −4 V, in order to avoid the
pronounced negative slope of Ids (Vds) at a high Pdiss.
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At the selected bias voltages (see Figure 4), the dimensionless relative sensitivity of
Ids with respect to Ta is calculated by normalizing the relative change in Ids to the relative
change in Ta:

RSIds =
∆Ids
Ids0

Ta0

∆Ta
=

(Ids − Ids0)

Ids0

Ta0

(Ta − Ta0)
(1)

where Ids0 is the value of Ids at the reference temperature (Ta0) of 25 ◦C. As can be observed
in Figure 4, RSIds is negative for both devices, as a consequence of the fact that an increase
in Ta leads to a decrease in Ids, and is of greater magnitude for the GaN technology, as a
consequence of the much higher Pdiss leading to a higher channel temperature (i.e., Tch = Ta
+ RthPdiss where Rth is the thermal resistance).
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Figure 4. (a) The selected bias points for the sensitivity-based analysis are Vds = 3 V and Vgs = −0.1 V for the GaAs HEMT
(top plot) and Vds = 9 V and Vgs = −4 V for the GaN HEMT (bottom plot); (b) Behavior of RSIds versus Ta for the studied
(red line) GaAs and (blue line) GaN HEMTs.

For the sake of completeness, we report the impact of the ambient temperature on the
Ids-Vgs curves and the corresponding transconductance at Vds = 3 V for the GaAs device
and at Vds = 9 V for the GaN device (see Figure 5). By increasing the temperature, the drain
current and the transconductance are remarkably reduced for the GaN device, whereas
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operating bias points at which their values are temperature insensitive (the so-called
current and transconductance zero temperature coefficient (CZTC and GZTC) points) can
be observed for the GaAs device, owing to the counterbalancing of temperature-dependent
effects contributing in opposite ways [12].
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Figure 5. DC transcharacteristics and transconductances at different Ta for (a,c) the GaAs HEMT at Vds = 3 V and (b,d) the
GaN HEMT at Vds = 9 V.

Figure 6 shows the impact of Ta on the measured S-parameters at the selected bias
points. By increasing Ta, the low-frequency S21 is reduced, due to the degradation of the
carrier transport properties. Both devices are affected by the kink effect in S22 [44–49],
which is more marked at a lower Ta because of the higher gm. As a matter of fact, it has
been demonstrated that the kink effect is mainly due to high values of gm.
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Figure 6. Measured S-parameters of the studied (a) GaAs and (b) GaN HEMTs at different Ta. The
illustrated bias points are: Vds = 3 V and Vgs = −0.1 V for the GaAs HEMT and Vds = 9 V and
Vgs = −4 V for the GaN HEMT. The frequency range goes from 45 MHz to 50 GHz. (“*” means
product (the multiplication operation)).

3. Sensitivity-Based Analysis

The S-parameters have been modelled using the equivalent-circuit model in Figure 7.
The ECPs have been obtained by using a standard “cold” pinch-off approach [50]. As
illustrated in Figure 8, a good agreement between the measured and simulated S-parameter
has been achieved for the two tested devices.
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illustrated bias points are: Vds = 3 V and Vgs = −0.1 V for the GaAs HEMT and Vds = 9 V and
Vgs = −4 V for the GaN HEMT. The frequency range goes from 45 MHz to 50 GHz. (“*” means
product (the multiplication operation)).

Table 1 reports the values of the drain current, the ECPs, the intrinsic input and
feedback time constants (i.e., τgs = RgsCgs and τgd = RgdCgd), the unity current gain cut-off
frequency (ft), and the maximum frequency of oscillation (fmax). The three intrinsic time
constants (τm, τgs, and τgd) model the intrinsic non-quasi-static (NQS) effects, which arise
from the inertia of the intrinsic device in responding to rapid signal changes [51]. The
values of ft and fmax are, respectively, determined from the measured short-circuit current
gain (h21) and maximum stable/available gain (MSG/MAG). Although the GaAs HEMT
has a shorter gate length that should result in a higher operation frequency, the GaN HEMT
has smaller time constants (except for τgd) and higher ft and fmax, which are desired in order
to enable device applications at high frequencies. This is can be linked to the fact that the
conventional scaling rules cannot be directly applied to make a straightforward comparison
between devices that are based on different semiconductor materials, technologies, and
layouts. As a matter of fact, this could be foreseen from the values of Ids, which are larger
for the GaN HEMT, even if the GaAs HEMT has a shorter gate length that should result in
a higher Ids. The same observation can be made for the intrinsic gm.

Likewise, in the case of Ids, the relative sensitivities of the other parameters in Table 1
are estimated by using Equation (1) and are then illustrated in Figures 9–11. Relative
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sensitivities of the extrinsic capacitances and inductances of close to zero were achieved
(see Figure 9a–e), owing to their weak temperature dependence. On the other hand, the
relative sensitivities of the extrinsic and intrinsic resistances are positive (see Figures 9f–h
and 10d–f), due to the increase of the resistive contributions with an increasing Ta. Contrary
to the resistances, the transconductance shows a relative sensitivity that is negative (see
Figure 11a), enlightening its degradation with an increasing Ta. The relative sensitivities of
the intrinsic capacitances can be positive or negative (see Figure 10a–c), depending on the
considered device and capacitance. The relative sensitivities of the intrinsic time constants
are positive (see Figure 11b–d), reflecting their increase at a higher Ta and thus a shift of the
onset of the NQS effects at lower frequencies. On the other hand, the relative sensitivities
of the frequencies ft and fmax are negative (see Figure 11e,f), reflecting their decrease at a
higher Ta and thus a reduction of the device operation frequencies. The analysis of the
relative sensitivities of the crucial parameters such as gm, ft, and fmax shows that larger
negative values are observed for the GaN device compared to the GaAs counterpart (see
Figure 11a,e,f), in line with what was seen for Ids (see Figure 4).
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Table 1. Parameters for GaAs and GaN HEMTs at 25 ◦C.

Parameters GaAs HEMT GaN HEMT

Ids (mA) 14.7 63.5
Cpg (fF) 13.1 32.0
Cpd (fF) 41.6 50.0
Lg (pH) 104.0 142.0
Ls (pH) 5.41 1.43
Ld (pH) 37.8 84.0
Rg (Ω) 2.3 2.7
Rs (Ω) 4.0 3.1
Rd (Ω) 6.3 8.2
Cgs (fF) 275.0 199.9
Cgd (fF) 30.4 26.9
Cds (fF) 55.9 89.2
Rgs (Ω) 1.5 1.2
Rgd (Ω) 6.3 13.0
Rds (Ω) 360.0 322.4
gm (mS) 29.6 63.0
τm (ps) 3.8 1.8
τgs (ps) 2.6 1.5
τgd (ps) 1.2 2.2
ft (GHz) 14.9 40.0

fmax (GHz) 44.8 97.0
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the GaN HEMT.
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GaAs HEMT and Vds = 9 V and Vgs = −4 V for the GaN HEMT.

4. Conclusions

For the first time, an extensive and systematic comparative analysis of the GaAs
and GaN HEMT technologies has been performed by investigating the impact of the
temperature variations on the device performance in terms of the relative sensitivities
of Ids, ECPs, and major RF figures of merit over a broad temperature range, spanning
from −40 ◦C to 150 ◦C. By increasing Ta, performance degradations are observed for both
devices but they are more pronounced for the GaN technology. This can be attributed to
the higher Pdiss leading to a stronger degradation of the electron transport properties.

It is worth pointing out that establishing a fair comparison between the temperature-
dependent performance of such inherently widely different semiconductor technologies
is a very challenging task, since it is hard to define “homogeneous” operating conditions
for devices exhibiting highly “heterogeneous” performances (e.g., the current density has
to be referred to the tested technology) and to distinguish each contribution arising from
the different peculiar features (e.g., different thermal conductivities of the substrates). In
light of that, the selection of relatively balanced bias conditions has been based on the
analysis of the specific DC output characteristics and then used as the benchmark for
assessing the overall impact of Ta on the microwave characteristics of the two devices. The
relative sensitivity has been chosen as an assessment indicator as this parameter allows one
to evaluate quantitatively, systematically, and straightforwardly the impact of Ta on the
microwave characteristics. Although the achieved findings are not of general validity as
they can depend on the combined effects of ECPs whose values can change with the specific
device, the investigation methodology is technology-independent and straightforwardly
applicable to other FETs in order to target a quantitative and systematic comparison.
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