
HAL Id: hal-03278445
https://hal.science/hal-03278445

Preprint submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quantitative analysis of Koopman operator methods
for system identification and predictions

Christophe Zhang, Enrique Zuazua

To cite this version:
Christophe Zhang, Enrique Zuazua. A quantitative analysis of Koopman operator methods for system
identification and predictions. 2021. �hal-03278445�

https://hal.science/hal-03278445
https://hal.archives-ouvertes.fr

A quantitative analysis of Koopman operator methods for
system identification and predictions

Christophe Zhanga and Enrique Zuazuaa,b,c

aChair in Dynamics, Control and Numerics, (Alexander von Humboldt Professorship),
Department of Data Science, Friedrich Alexander Universität Erlangen-Nürnberg, 91058

Erlangen, Germany.
bChair of Computational Mathematics, Fundación Deusto, Avenida de las Universidades

24, 48007 Bilbao,Basque Country, Spain.
cDepartamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid,

Spain.

July 5, 2021

Abstract

We give convergence and cost estimates for a data-driven system identification method: given an
unknown dynamical system, the aim is to recover its vector field and its flow from trajectory data.
It is based on the so-called Koopman operator, which uses the well-known link between differential
equations and linear transport equations. Data-driven methods recover specific finite-dimensional
approximations of the Koopman operator, which can be understood as a transport operator. We focus
on such approximations given by classical finite-elements spaces, which allow us to give estimates on
the approximation of the Koopman operator as well as the solutions of the associated linear transport
equation. These approximations are thus relevant objects to solve the system identification problem.

We then analyze the convergence of a variant of the generator Extended Dynamic Mode Decom-
position (gEDMD) algorithm, one of the main algorithms developed to compute approximations of
the Koopman operator from data. We find however that, when combining this algorithm with clas-
sical finite elements spaces, the results are not satisfactory numerically, as the convergence of the
data-driven approximation is too slow for the method to benefit from the accuracy of finite elements
spaces. In particular, for problems in dimension 1 it is less efficient than direct interpolation methods
to recover the vector field. We provide some numerical examples to illustrate this last point.

Keywords. Koopman operator, system identification, finite elements spaces, data-driven approximation,
Extended Dynamic Mode Decomposition.

Contents
1 Introduction 2

1.1 Unknown dynamics and system identification . 2
1.2 Regression, interpolation and operator theoretic approach 3

2 Koopman operators 4
2.1 Definitions . 4
2.2 Koopman operator and data-driven modelling . 5
2.3 Notations . 7

1

3 Finite-dimensional approximations of the Koopman operator 8
3.1 Restricting the Koopman operator to a subdomain Ω . 8
3.2 System identification and predictions with the Koopman operator 8
3.3 Galerkin projection of the Koopman operator . 9
3.4 Galerkin projection on finite elements spaces . 10
3.5 System identification and predictions . 11
3.6 Curse of dimensionality . 13

4 A variant of generator Extended Dynamic Mode Decomposition 13
4.1 The algorithm . 13
4.2 Convergence . 14
4.3 Convergence in matrix norms . 16

5 Quantitative analysis 17
5.1 Using gEDMD for system identification and predictions: convergence analysis 17
5.2 Comparison with direct interpolation in 1-D for linear finite elements 18

6 Numerical illustration 20
6.1 Linear finite elements . 21
6.2 Numerical simulations . 22

7 Conclusion 24

A Linear 1-D finite elements 25

1 Introduction

1.1 Unknown dynamics and system identification
Many problems in applied mathematics rely on the existence of a mathematical model for the system
under consideration. Given the potential complexity of systems that arise in all scientific fields, from
econometry to molecular dynamics, finding relevant and numerically tractable models for applications
such as forecasting and control is a central challenge.

The traditional approach to mathematical modelling consists in deriving governing equations from
fundamental laws of physics such as Newton’s second law or the principle of least action, after a series of
assumptions and ideal simplifications. Models derived in this way have been thoroughly studied, giving
rise to rich theories and a profound understanding of some of the phenomena they describe. But these
remain ideal models, which sometimes fall short of real-life observations and applications. Indeed, as
real-life systems become more complex, the relevance of such models for applications comes into question,
as there is a risk that usual, convenient simplifications could lead to essential features of the dynamics
being overlooked.

On the other hand, the development of data-driven techniques has brought a new perspective to this
challenge (see for example [39, 5, 46]): how can one complement traditional modelling approaches with
data-driven considerations? Can relevant features of the dynamics of the system be recovered from data?
More generally, how can one learn a model from data, and propose a system of governing equations that
allow for reliable predictions, and effective control?

Mathematically speaking, we can cast this as follows: suppose that, for a given system, its behaviour
can be relevantly modelled with an autonomous, nonlinear differential equation

ẋ = f(x), x ∈ Rd. (1)

2

How can one learn an approximation of the vector field f from observational data, that is, samples of
trajectories? Given initial conditions, can one produce predictions on the evolution of the system in a
data driven way?

This is a form of inverse problem, which differs from more classical inverse problems (see for example
[13, 23, 63]) in that the latter rely on the a priori choice of a class of models (heat equation, polynomial
differential equations, balance laws...) so that one has to recover parameters of the given model (diffusivity,
coefficients...).

1.2 Regression, interpolation and operator theoretic approach
The task of recovering a function f : Rd → Rd from a data sample of values {xi, yi = f(xi)}Ni=1 in order
to make predictions lies at the heart of statistical regression analysis (linear regression being perhaps the
simplest example), with examples dating back as early as Legendre’s works on planetary orbits using a
least squares method ([38]). More recently, a variety of supervised learning and deep learning techniques
have been developed to tackle this problem, such as kernel-based methods, neural networks, or deep neural
networks. We refer to [8, 7, 19] for a comprehensive overview and further references.

The core idea of these regression techniques is to find a function f̂ belonging to a certain class of
functions S (linear functions, polynomials, wavelets...), that minimizes the loss

N∑
i=1

‖f̂(xi)− yi‖2, (2)

in such a way that f̂ will also be a good approximation of f on new data. The first approach to solving
(2) would be to find, if it exists, a function in S that interpolates the data, that is,

f̂ ∈ S,
N∑
i=1

‖f̂(xi)− yi‖2 = 0 i.e. f̂(xi) = yi = f(xi), i = 1, · · · , N. (3)

A typical example of functions used for interpolation are polynomials, as there exists a unique polynomial
of degree at most N − 1 that satisfies (3). We refer to [53, Chapter 3] for more details on these interpo-
lation results. However, although f̂ fits the given data perfectly, it has no reason a priori to be a good
approximation of f on new data. Nonetheless under some assumptions on the xi and on f , there are some
well-known estimates for interpolation by polynomials and continuous piecewise polynomial functions (we
refer again to [53, Chapter 3]).

In general, regression techniques are not designed to interpolate the data exactly, as in the above, but
rather to reach a compromise between a small loss function in (2) and a good overall approximation of the
target function f . The goal is to ensure a good generalization of f̂ to new data, without resorting to the
aforementioned general interpolation estimates. There are then two important aspects to consider: first,
the choice of the family of functions S and its representation, which can benefit from prior knowledge on
f . Second, the method used to minimize the loss, which can involve for example regularization to avoid
overfitting f̂ to the data to the detriment of generalization.

In particular, if one has the prior knowledge that f is linear, then the above problem amounts to a
multivariate linear regression, and the least squares problem (2) has a well-known solution. This, among
other things, has motivated an alternative approach system identification, the so-called operator theoretic
approach. Instead of treating system identification directly as a general nonlinear problem, one can recast
this problem as a linear one, using the well-known connection between differential equations and linear
transport equations. This is appealing both on a theoretical level, as it gives an elegant framework to
understand some intricate properties of nonlinear dynamical systems, and on a practical level, due to the
many tools available both for forecasting and control of linear systems. As we will see, with this approach
system identification then becomes a linear regression, but in a potentially much larger space.

3

2 Koopman operators

2.1 Definitions
Consider a vector field f : Rd → Rd. One can view it as the vector field of a nonlinear ordinary differential
equation:

ẋ = f(x), x ∈ Rd, (4)

but also as the velocity field of the linear transport equation:

∂ϕ

∂t
(t, x) = f(x) · ∇ϕ. (5)

The equivalence between these two points of view has been long known. Existence and uniqueness results
for nonlinear differential equations with Sobolev vector fields were obtained by studying the corresponding
transport equation ([18, 22]). Conversely, the method of characteristics solves (5) using (4): if f is
regular enough, it generates a flow Φtf which solves (4), and the solutions of (5) are constant along the
characteristics (t,Φtf (x)), t ≥ 0, x ∈ Rd. The solution of (5) with initial condition ϕ0 ∈ L2(Rd) is then
given by

ϕ(t, x) := ϕ0

(
Φtf (x)

)
. (6)

This corresponds to the following semigroup:

ϕ0 ∈ L2(Rd) 7→ ϕ0 ◦ Φtf , (7)

which is a simple composition operator with the following infinitesimal generator

K := f(x) · ∇, (8)

which is simply the transport operator with velocity field f , on the domain

D(K) = {ϕ ∈ L2(Rd), f · ∇ϕ ∈ L2(Rd)}. (9)

In what follows, we will denote by etK the semigroup (7), generated by the Koopman operator K.
The semigroup and its generator were studied and used by B.O.Koopman in [28] to study properties

of fluid dynamics. They have since then been named after him: what is known as the Koopman operator
of f is the operator K given by (8), and the Koopman semigroup of f is the semigroup etK given by (7).
Practically speaking, for a function ϕ ∈ L2(Rd) and a trajectory x(t) of the differential equation (4), the
Koopman semigroup describes the evolution of t 7→ ϕ(x(t)).

Remark 2.1. In applications involving discrete-time dynamical systems

x+ = T (x), x ∈ Rd, (10)

the corresponding discrete-time Koopman operator is simply the composition operator

U : g 7→ g ◦ T. (11)

Equivalently, when dealing with continuous-time systems, the Koopman operator is sometimes defined
as the bounded operator eτK with the notations of (7), for some time increment τ > 0.

Historically, B.O.Koopman used the linear composition operator (7) to study measure-preserving sys-
tems. It was notably instrumental in J. Von Neumann’s proof of the mean ergodic theorem [47], and a first
connection of chaotic behavior to the existence of continuous parts in the spectrum of the Koopman semi-
group was noted in [29]. More recently, spectral properties of the Koopman semigroup have been shown to
be related to a variety of aspects of the underlying dynamical system such as ergodicity, stability, existence
of different time scales, mixing and non-mixing properties (see for example [43, 44, 37, 42, 45, 36]). An
important feature in these works that the spectral analysis of the Koopman operator is done in a rather
geometrical spirit in combination with linearization results and conjugation techniques, focusing on local
behaviour near equilibria or attractors.

4

2.2 Koopman operator and data-driven modelling
In addition to this renewed theoretical exploration, data-driven applications of Koopman operator theory
have gained quite some interest in the last decade, in particular for system identification, modelling,
predictions and control problems [9, 30, 26]. In these works, among others, the idea is that one can identify
the underlying nonlinear dynamical system, (or at least some features of this system), by identifying its
Koopman operator, or its Koopman semigroup, or the discrete-time Koopman operator, depending on the
nature of the system.

There are two potential benefits to this approach:

1. The linearity of the Koopman operators, which offers the possibility to describe nonlinear dynamics
in a linear way.

2. As a consequence, the possibility to make predictions by computing solutions to the linear equations
given by these operators, instead of integrating a nonlinear differential equation.

Numerically speaking, the focus of these methods lies on finite-dimensional reductions of the Koopman
operator, as it is not possible to recover an infinite-dimensional operator from a finite amount of data.

The question then becomes: which finite-dimensional reductions are accurate and relevant for system
identification and predictions? What is their dimension? How does one recover them from data? At what
cost?

• Exact reductions. In some cases, there exist finite-dimensional subspaces V of functions which
are invariant under the action of the Koopman operator. Then, the linear transport equation (5)
reduces exactly to a linear differential equation on these subspaces:

ϕ̇ = Kϕ, ϕ ∈ V.

The main example of such a situation can be found in [9], where a system of 2 polynomial differential
equations are lifted to a system of 3 linear differential equations by considering a basis of multinomials
(note that this is a particular case where the Carleman linearization [14] of a polynomial system is
exact and does not need to be truncated).

Although the existence of such subspaces holds great interest for applications, and there have been
efforts to recover them from data [56], generally speaking, this seems to be a very rare situation.
Let us point out also that even though in this example, the dimension of the invariant subspace is
small, in general it can be much larger the dimension d of the underlying problem.

Another way to find invariant subspaces is to find eigenfunctions of the Koopman operator. Then,
any subspace spanned by a finite number of eigenfunctions ϕ1, · · · , ϕN with eigenvalues λ1, · · · , λN
will be invariant under the action of the Koopman operator, and the linear transport equation (5)
reduces exactly to the following diagonal system of linear differential equations:

ϕ̇i = λiϕi, i ∈ J1, NK.

However, even if there exist eigenfunctions to the Koopman operator, there is no reason a priori for
them to span an approximation of the Koopman operator that is relevant for system identification.

• Spectral properties of the Koopman operator. On the other hand, the complete spectral
analysis of the Koopman operator is a delicate topic, and depends heavily on the choice of a function
space. The transport operator

K = f(x) · ∇,D(K) = H1(Rd)

does not have a natural basis of eigenfunctions, sometimes no eigenfunctions at all. This is related to
the fact that in general transport operators do not have a compact resolvent, and are not generally
self-adjoint unless the velocity field f has zero divergence.

5

Let us nevertheless point out an interesting recent development for the discrete time Koopman
operator introduced in Remark 2.1. In the case where Ω is the unit circle in R2, [54] shows that
an adequate choice of a function space (namely, Hilbert-Hardy spaces) leads to interesting spectral
results. Indeed, by restricting the function space to a class of analytical functions, the adjoint of
the Koopman operator (the Perron-Frobenius operator) becomes compact. By duality, this means
that in this case, by extending the discrete time Koopman operator to a larger space containing L2,
it becomes compact. When it is self-adjoint, which is equivalent to the existence of an invariant
measure, it then has a basis of eigenfunctions. This result however concerns a certain class of
discrete-time dynamical systems, and analogous results in the continuous time setting, regarding
the Koopman generator (8), have yet to be explored.

In terms of data-driven methods, spectral analysis of the Koopman operator from data has received
a lot of attention (see [24, 32, 20, 33]), in particular the data-driven recovery of eigenfunctions when
they exist. As is often the case in numerical analysis, only the smallest eigenvalues can be accurately
approximated. This is of interest to isolate components of the observed system that evolve slowly
in time (or are invariant, if the eigenvalue is 0). However, these give only a very partial picture of
how the system actually evolves.

As we have pointed out earlier, in general, transport operators (Koopman operators) do not have
nice spectral properties. For system identification and predictions, there seems to be better hope
in finding accurate and appropriate finite-dimensional approximations of the Koopman operator
independently of such properties.

• Galerkin projections and Extended Dynamic Mode Decomposition. Classical Galerkin
methods used in numerical analysis, which approximate solutions of partial differential equations
using approximation spaces, seem a natural solution to provide reliable approximations of the Koop-
man operator. They have indeed proven to be an efficient way to obtain reduced-order models of
partial differential equations without having to use spectral decompositions.

To recover a data-driven approximation of such a Galerkin projection, one of the main algorithms
is the so-called Extended Dynamic Mode Decomposition (EDMD) (introduced in [61]). Its prede-
cessing algorithm, Dynamic Mode Decomposition (DMD), computes the “best fit” system of linear
differential equations for the unknown system (4) in the state space Rd. EDMD does this in the
subspace of functions given by the Galerkin projection. As this corresponds to recovering the best
linear approximation of a linear infinite-dimensional operator, this has a better chance of yielding
convincing results than DMD.

EDMD was first introduced in the discrete-time framework, to recover approximations of the
discrete-time Koopman operator, that is, the classical composition operator. It has been actively
explored as a way to perform data-driven system identification and predictions [31, 40, 25]. It can
also provide approximations of so-called coarse-grain models (see [27]) of highly complex systems
such as molecular dynamics ([26]). It has been used in combination with model predictive control
to achieve data-driven control of systems with unknown dynamics [30], and combined with deep
learning techniques [2, 51, 34, 49, 64].

In continuous time, there are two main approaches using EDMD to recover an approximation of the
Koopman operator.

1. The “Koopman lifting method”, proposed in [41], where the authors apply EDMD to a contin-
uous time system to obtain an approximation of the Koopman semigroup U(τ) for a sampling
time τ > 0. Then, they compute its matrix logarithm to produce an approximation of the
infinitesimal generator K.

2. Generator Extended Dynamic Mode Decomposition (gEDMD), proposed in [26], where EDMD
is adapted to directly produce an approximation of K by processing data in different way.

6

In this article, we implement a variant of gEDMD, using classical finite elements spaces to define
finite-dimensional approximations of the Koopman operator. Our central aim is to quantify the quality
and cost of system identification and predictions by this method. More precisely, we will focus on the
case of an unknown vector field f of a certain regularity, on a bounded domain Ω ∈ Rd, as it would
be unreasonable to expect in general a good approximation of f on all of Rd from a finite number of
observations. Moreover, to simplify matters and alleviate notations, we will focus on the case where the
flow Φtf satisfies

Φtf (Ω) ⊂ Ω. (12)

In Section 3, we give estimates on the finite-dimensional approximations of the Koopman operator,
thanks to properties of finite elements spaces. We show how these approximations can be used to solve
the system identification problem. The estimates depend on the size of the mesh and on the degree of
the finite elements functions we consider, which are related to the dimension of the finite elements space.
Accurate Galerkin projections require finite elements spaces of considerable dimension, which increases
exponentially with the dimension d of the system under consideration.

In Section 4 we devise a variant of gEDMD to compute a data-driven approximation of these Galerkin
projections. The convergence of this approximation depends on the number of data samples, and is
essentially based on Monte-Carlo approximation of integrals.

In Section 5 we then analyze the total approximation error of gEDMD with finite elements, and
estimate its computational cost, in order to quantify whether this method can be efficient for system
identification and predictions in practice.

This allows us to give some clear insights on the challenges and limitations of this method. The
overall conclusion is that, even when using accurate approximation spaces such as finite elements, the
approximation error decreases relatively slowly, because on one hand the convergence of the data-driven
approximation is quite slow (in m−

1
2 , m being the number of samples), but also because this convergence

is further slowed if one chooses a finite elements space of greater dimension (i.e. refines the mesh or
considers higher-order finite elements).

Finally in Section 6 we give some numerical illustrations in dimension d = 1 that illustrate the
clear advantage of direct interpolation methods, given the same data sample, due to the slowness of the
convergence of gEDMD.

2.3 Notations
We denote the usual Lebesgue measure by µ.

For the rest of this article, when there is no ambiguity we will note L2(Rd, µ) = L2 to alleviate
notations. Notice that if f ∈ L∞(Rd,Rd), by the definition (9) we have

H1(Rd) ⊂ D(K). (13)

We denote by ‖ · ‖ the usual L2 norm, ‖ · ‖Hs(Rd) the usual Sobolev norms for s ≥ 0, and | · |Hk(Rd) the
Sobolev seminorms for k ∈ N:

|ϕ|2Hk(Ω) =
∑
α∈Nd
|α|=k

‖Dαϕ‖2, ϕ ∈ Hk(Ω). (14)

In Euclidean spaces, ‖ · ‖ denotes the usual Euclidean norm.
For matrices ||| · ||| denotes the operator norm induced by the Euclidean norm, ‖ · ‖F denotes the

Frobenius norm, ‖ · ‖∞ denotes the max norm

‖A‖∞ = max
ij
|Aij | .

The sign † denotes the Moore-Penrose pseudo-inverse, and > will denote the usual transposition.

7

3 Finite-dimensional approximations of the Koopman operator

3.1 Restricting the Koopman operator to a subdomain Ω

As we have mentioned in the introduction, we will focus on studying the Koopman operator of a vector
field f on a bounded domain Ω ⊂ Rd. Indeed, from a finite data sample one cannot expect to obtain a
good approximation of f on all of Rd.

When dealing with a vector field that is indeed defined on all of Rd, this means we are studying the
Koopman operator KΩ of the restriction f|Ω:

KΩ = f|Ω · ∇. (15)

Again, KΩ is an unbounded operator, with domain

D(KΩ) = {ϕ ∈ L2(Ω), f · ∇ϕ ∈ L2(Ω)}. (16)

However, with this domain, in general KΩ does not generate a semigroup as in (5). Indeed in general the
flow Φtf does not preserve Ω. Noting

∂Ωout = {x ∈ ∂Ω, f(x) · ν(x) > 0}, (17)

where ν(·) denotes the outward normal unit vector, it is necessary to specify boundary conditions on
∂Ωout in order for the corresponding linear transport equation to be well posed. Typically, the partial
differential equation 

∂ϕ

∂t
= f(x) · ∇ϕ, x ∈ Ω,

ϕ(t, x) = 0 x ∈ ∂Ωout,
(18)

is well posed. Accordingly, the unbounded operator

K̃Ω := f · ∇, D(K̃Ω) = {ϕ ∈ H1(Ω), ϕ = 0 on ∂Ωout}, (19)

generates the C0-semigroup

etK̃Ωϕ0(x) =

{
ϕ0(Φtf (x)) if Φtf (x) ∈ Ω,

0 otherwise,
∀ϕ0 ∈ L2(Ω), ∀x ∈ Ω. (20)

3.2 System identification and predictions with the Koopman operator
We now show how the Koopman operator can be used to recover the vector field f , and in some cases, its
flow Φtf .

Let us note the coordinate functions

gi(x) = xi, x ∈ Ω, i = 1, · · · , d. (21)

Then, as they are polynomial, and Ω is a bounded domain,

gi ∈ D(KΩ), i = 1, · · · , d. (22)

Moreover,
KΩgi = f · ∇gi = fi, i = 1, · · · , d, (23)

where the fi denote the coordinates of the vector field f in (4). It is thus possible, with the restricted
Koopman operator KΩ, to recover the vector field f . On the other hand, in general

gi /∈ D(K̃Ω)

8

due to the boundary conditions in (19). However, we can still apply the semigroup defined in (20):

etK̃Ωgi(x) =

{
(Φtf (x))i if Φtf (x) ∈ Ω,

0 otherwise, ∀x ∈ Ω,
(24)

where the (Φtf (·))i denote the coordinates of the flow (4). Thus, it is possible, with the restricted Koopman
operator K̃Ω, to recover the flow Φtf , and thus make predictions, as long as the flow does not exit Ω.

To make matters simpler, in order to bring forth our conclusions with more clarity, we will for the rest
of this article focus on the case where

µ∂Ω

(
∂Ωout

)
= 0,

i.e., the case where Ω is forward invariant under Φtf . Then, we will set, to alleviate notations,

K := KΩ = f · ∇, D(K) := D(KΩ) = D(K̃Ω).

With this domain, K generates the semigroup:

etKϕ0(x) = ϕ0

(
Φtf (x)

)
, ∀ϕ0 ∈ L2(Ω), ∀x ∈ Ω. (25)

i.e. the linear transport equation
∂ϕ

∂t
(t, x) = f(x) · ∇ϕ(t, x), t ≥ 0, x ∈ Ω,

ϕ(0, ·) = ϕ0(·) ∈ L2(Ω),
(26)

is well-posed.
In particular, (23) remains unchanged, and (24) becomes

etKgi(x) =
(
Φtf (x)

)
i
, ∀x ∈ Ω. (27)

3.3 Galerkin projection of the Koopman operator
We now consider a bounded domain Ω ⊂ Rd, and we focus on the case where f is such that

Φtf (Ω) ⊂ Ω.

On this domain, the Koopman operator of f

K = f · ∇

with domain
D(K) = H1(Ω)

generates the semigroup
etKϕ0 = ϕ0 ◦ Φtf , ∀ϕ0 ∈ L2.

The idea of Koopman operator methods is to observe trajectories of the dynamical system (4), but instead
of trying to identify the vector field f directly, to apply linear regression methods to identify the linear
operator K.

In practice, identifying K numerically is impossible as it is infinite dimensional. Instead, the goal
is to identify a Galerkin projection of K, which corresponds to a reduced-order model of the linear
transport equation (5). The projection is determined by a family of linearly independent functions Ψ :=
{ψ1, · · · , ψN} ⊂ L2, which span a finite-dimensional subspace VN ⊂ L2 which should satisfy

VN ⊂ D(K). (28)

9

Then, the Galerkin projection of K is given by

KN := ΠNKΠN , (29)

where ΠN denotes the L2-orthogonal projection on VN . In particular,

KNϕ = ΠNKϕ, ϕ ∈ VN . (30)

In this article we will focus on a specific choice of VN , given by continuous finite elements. Classical
approximation results for these spaces then ensure the Galerkin projection is a relevant approximation of
the actual Koopman operator.

3.4 Galerkin projection on finite elements spaces
In order to alleviate notations, and simplify matters pertaining to the choice and regularity of meshes, we
fix for the remainder of this article

Ω = Q := [0, L]d (31)

We then define the family of rectangulations of Q:

TM =

d∏
i=1

[
pi
L

M
, (pi + 1)

L

M

]
, 0 ≤ pi ≤M − 1, M ∈ N∗. (32)

In what follows, we will note Th := TM where

h =
L

M
.

These rectangulations form a regular family of rectangulations of Q.
For k ≥ 1, we define Qk the space of polynomials of degree at most k in each variable, and the following

continuous finite elements spaces:

V kh =
{
v ∈ C0(Q), v|K ∈ Qk, ∀K ∈ Th

}
. (33)

We consider the nodes {
x̂α =

h

k
α, α ∈

s
0, k

L

h

{d}
,

and note

Nk
h = (1 + kM)

d
=

(
1 +

kL

h

)d
(34)

in order to re-index the nodes by
x̂j , j ∈ J1, Nk

h K.

Then the classical shape functions ψj which satisfy

ψj(x̂k) = δjk ∀j, k ∈ J1, Nk
h K,

form a basis of V kh , so that
dimV kh = Nk

h , (35)

i.e.,

h =
kL(

Nk
h

) 1
d − 1

. (36)

One can see from (35) that both refining the mesh (h → 0) and taking finite elements of higher degree
(k →∞) will increase the dimension of the approximation subspace at the same rate.

10

We now recall classical projection inequalities for finite elements spaces. Note rkh the classical finite
elements interpolation operator

rkh(ϕ) =

Nkh∑
j=1

ϕ(xj)ψj , ϕ ∈ C0(Ω). (37)

The classical interpolation inequalities for triangular finite elements (see for example Quarteroni and Valli
[53, Section 3.4]) can be adapted to the rectangulation Th:

Proposition 3.1. Let Th be the rectangulation defined by (32). Let s > d/2, ν ∈ {0, 1}, and define
l = min(k, s− 1). Then, for ϕ ∈ Hs(Ω), ϕ ∈ C0(Ω) so that rkh(ϕ) is well defined, and there exists C > 0
independent of h such that

‖rkh(ϕ)− ϕ‖Hν(Q) ≤ Chl+1−ν |ϕ|Hl+1(Q), ∀ϕ ∈ Hs(Q). (38)

Denoting Πk
h the L2-orthogonal projection on V kh , one gets, by property of orthogonal projections in

Hilbert spaces:

Corollary 3.1. With the notations above,

‖Πk
h(ϕ)− ϕ‖Hν(Q) ≤ Chl+1−ν |ϕ|Hl+1(Q), ∀ϕ ∈ Hs(Q). (39)

Now, we have
V kh ⊂ D(K). (40)

Following (29), the Galerkin projection of K is then given by

Kkh := Πk
hKΠk

h.

3.5 System identification and predictions
We know show how the approximation power of finite elements can be combined with (23) and (27) to
obtain approximations of the vector field f and its flow Φtf .

First, as the gi are linear, we clearly have

gi ∈ V kh , ∀i ∈ J1, dK. (41)

We then have, from (23),
Kkhgi = Πk

hKgi = Πk
hfi, (42)

which can be understood as a finite elements approximation of (23).
In the same spirit, we obtain a finite elements approximation of (26) by the Galerkin method:

d

dt
ϕk,hi = Kkhϕ

k,h
i , ϕk,hi ∈ V kh ,

ϕk,hi (0, ·) = gi(·), i ∈ J1, dK.
(43)

Remark 3.1. In accordance with the assumptions we have made on the domain Ω and the behavior of
the flow, there is no need here to specify boundary conditions for the Galerkin method, as the actual linear
transport equation (26) is well-posed without having to specify any boundary conditions.

Noting

ϕk,hi (t, ·) =

Nkh∑
j=1

(ϕk,hi (t))jψj , gi =

Nkh∑
j=1

(gi)jψj ,

11

We have the following system of linear differential equationsMk
h

d

dt
ϕk,hi = Rkhϕ

k,h
i ,

ϕk,hi (0) = gi,

(44)

where Mk
h = (〈ψi, ψj〉)i,j , R

k
h =

(〈
ψi,Kkhψj

〉)
i,j

are the mass and stiffness matrices of the basis (ψj),
for the operator Kkh: noting Kk

h its matrix in the basis (ψj), we have

Kk
h =

(
Mk
h

)−1
Rkh. (45)

We see from (42) and (43) that solving the system identification problem with a Galerkin projection
corresponds to projecting the vector field on the finite elements space V kh , and approximating the solutions
of the linear transport equation (26) as in classical numerical analysis. With this in mind, the choice of
classical approximation spaces used in numerical analysis for the approximation of partial differential
equations seems adequate.

Accordingly, under some conditions on the order k of the finite elements, and the regularity of the
vector field f , we have the following estimates both on the approximation of f and its flow Φtf :

Proposition 3.2. Let k + 1 > d/2. There exist constants C1, C2(f) > 0 such that, for f ∈ Ck+1(Ω,Rd),
the following error estimates hold:

‖Kkhgi − fi‖ ≤ C1h
k+1|fi|k+1. (46)

∥∥∥(Φtf)i − ϕk,hi (t, ·)
∥∥∥ ≤ C2(f)hk. (47)

Proof. From (42), we have
‖Kkhgi − fi‖ = ‖Πk

hfi − fi‖. (48)

To estimate the right hand-term, we apply Corollary 3.1 with s = k + 1 to the fi ∈ Ck+1(Ω) ⊂ Hk+1(Ω)
(as Ω is bounded), which directly yields (46).

Now consider the solutions of the following linear transport equations:
∂ϕi
∂t

(t, x) = f(x) · ∇ϕi(t, x), t ≥ 0, x ∈ Ω,

ϕi(0, ·) = gi(·), i ∈ J1, dK,
(49)

Recalling (27), these solutions are given by

ϕi(t, x) = gi
(
Φtf (x)

)
=
(
Φtf (x)

)
i
. (50)

As f ∈ Ck+1(Ω,Rd), by the Cauchy-Lipschitz theorem, for all i ∈ J1, dK,

(t, x) 7→
(
Φtf (x)

)
i

(51)

is in Ck+1([0, T] × Ω). Hence, ϕi ∈ L2
(
0, T ;Hk+1(Ω)

)
∩ H1

(
0, T ;Hk(Ω)

)
. Adapting [53, Chapter 14,

Section 3] to our setting, which is simplified by the absence of boundary conditions and the fact that
ϕk,hi (0, ·) ∈ V kh , we can then estimate the convergence of solutions of (43) to the ϕi: there exists a
constant C2(f) > 0 such that ∥∥∥ϕi(t, ·)− ϕk,hi (t, ·)

∥∥∥ ≤ C2(f)hk. (52)

Together with (50), this directly yields (47).

Thus, Galerkin projections of the Koopman operator on finite elements spaces are relevant objects to
approximately solve the system identification problem, both to recover the vector field f and to approx-
imate its flow Φtf . However the accuracy obtained in the estimates (46) and (47) comes at a cost, as we
will see in the next section.

12

3.6 Curse of dimensionality
In Proposition 3.2 we have given the error estimate (46) for system identification using the Galerkin
projection Kkh of K on finite elements spaces. In terms of the dimension of the finite elements space, we
have the following:

Proposition 3.3. The dimension Nk
h of the finite elements spaces needed to ensure the quality of approx-

imation ε > 0 for system identification grows exponentially with the dimension d of the underlying space:

Nk
h ≥ C ′′(L, f)kdε−

d
k+1 , (53)

for some constant C ′′′(L, f) > 0.

Proof. If one requires the quality of approximation in (46):

C1h
k+1|f |k+1 ≤ ε, (54)

then
h ≤ C ′(f)ε

1
k+1 . (55)

From (34) we then get

N =

(
1 +

kL

h

)d
≤ C ′′(L, f)kdε

d
k+1 , (56)

which proves (53).

This is a form of curse of dimensionality, a phenomenon first pointed out in [6] in the context of dynamic
programming. It is present in a wide range of situations such as function approximation ([17, 35]), integral
computation ([48]), approximation of parametric PDEs ([11, 16]), where the complexity of a problem
increases exponentially with its underlying dimension. On the other hand, for a fixed dimension d, the
required dimension Nk

h is polynomial in the error ε.
This curse of dimensionality is a common feature in approximation theory. It stems from the use

of a mesh to define the approximation spaces (here, continuous functions that are polynomial on each
cell of the mesh). This allows a very accurate approximation, but the complexity of the mesh increases
exponentially with the dimension, hence the curse of dimensionality.

Recalling that predictions are made by integrating the system of Nk
h linear differential equations (44),

this means that in high dimension d, making predictions by using Galerkin projections of the Koopman
operator becomes prohibitively expensive.

In the next sections we will also see that this curse of dimensionality has an impact on the data-driven
approximation of the Galerkin projections.

4 A variant of generator Extended Dynamic Mode Decomposition
Having given estimates on how the Galerkin projection Kkh converges to the Koopman operator K under
suitable regularity assumptions on the vector field f , it remains to compute a data-driven approxima-
tion of Kkh. To achieve this, we present a modified version of the generator Extended Dynamic Mode
Decomposition (gEDMD) algorithm.

4.1 The algorithm
Recalling the identity (45), we see that there two distinct components in the Galerkin projection Kkh: the
mass matrix Mk

h , which depends on the space V kh and the basis (ψj) (thus, essentially, on the domain
Ω), and the stiffness matrix Rkh which depends on the vector field f , the space V kh , and the basis (ψj).
In general, the mass matrix can be approximated by numerical integration methods such as quadrature
formulae, or Monte-Carlo integration. In the case of finite elements, in particular linear finite elements,

13

it can even be given explicitly. In any case, this does not require trajectory data, as it does not depend
on f , and can thus be done separately.

On the other hand, the stiffness matrix Rkh depends on f . The algorithm we now lay out mainly consists
in approximating this matrix from observations of trajectories of the system (4). To our knowledge, this
approach, consisting in separating the approximation of the mass and stiffness matrices, is new. As we
will see, it has the advantage of allowing the gEDMD method to be extended to localized bases such as
finite elements, or wavelets.

Practically speaking, we consider a collection of points {xl ∈ Ω, l ∈ J1,mK}, and for each l ∈ J1,mK,
the solution xl(t) of (4) with initial condition xl.

To account for the potentially random nature of measurements for real-life systems, we make the
common assumption that the xl are drawn independently and uniformly with respect to the Lebesgue
measure on Ω. From an adequate sampling of the corresponding trajectories xl(t), l ∈ J1,mK, the initial
velocities ẋk(0) = f(xk) can be approximated by total variation regularized differentiation, which is also
used in other methods such as SINDy (see [10, 15]). We then proceed as follows:

Step 1 From the data set {xl, yl := f(xl), l ∈ J1,mK}, define the following matrices:

Gmk,h =
(
ψi(x

j)
)
i∈J1,NK
j∈J1,mK

, Amk,h =
(
yj · ∇ψi(xj)

)
i∈J1,NK
j∈J1,mK

, (57)

and compute the following:

Rmk,h :=
1

m
Gmk,h

(
Amk,h

)>
. (58)

As we will establish later on, Rmk,h is an approximation of the stiffness matrix Rkh of (44).

Step 2 Solve the following least-squares problem:

min
K∈RN×N

‖Mk
hK −Rmk,h‖2F . (59)

The solution is then given by
Km
k,h :=

(
Mk
h

)−1
Rmk,h. (60)

4.2 Convergence
We will now prove that Km

k,h converges to the matrix Kk
h given by (45).

Now, as we have considered random points (xl)ml=1, this means that the coefficients of

Kk
h −Km

k,h

are random variables. The notion of convergence of random variables we consider here is then the notion
of convergence in distribution:

Definition 4.1 (Convergence in distribution of a sequence of random variables). A sequence (Xn)n∈N of
real random variables is said to converge in distribution to a real random variable X:

Xn
D−−−−→

n→∞
X

if their cumulative distribution functions converge pointwise to the cumulative distribution function of X
on its continuity set.

We can now state the following convergence result (see also [60, 31, 55]), which focuses on the conver-
gence of the coefficients of the approximate stiffness matrix Rmk,h:

14

Proposition 4.1 (Convergence and complexity of gEDMD). The computational complexity of gEDMD
has the upper bound O(mN2 +N3).

For f ∈ L∞(Ω,Rd), the following convergence in distribution holds:

√
m
((
Rmk,h

)
ij
−
(
Rkh
)
ij

)
D−−−−→

m→∞
N
(

0, σk,hij

)
, (61)

where (
σk,hij

)2

=

∫
Ω

ψ2
i (x) (f(x) · ∇ψj(x))

2
dx−

(∫
Ω

ψi(x)f(x) · ∇ψj(x)dx

)2

, (62)

and N (0, σk,hij) is the normal distribution with mean 0 and standard deviation σk,hij .

Proof. The upper bound for the complexity is given by the complexity of the linear regression that is
performed to compute Km

k,h. It is well-known (see [57, Appendix D]) that this complexity is bounded by
O(mN2 +N3) due to the matrix product operation, and the pseudo-inversion that follows.

As for the convergence in distribution, notice that the coefficients of Rmk,h are given by

(
Rmk,h

)
ij

=
1

m

m∑
l=1

ψi(x
l)f(xl) · ∇ψj(xl),

which is none other than the classical Monte-Carlo approximation of the integral

〈ψi, f · ∇ψj〉 =

∫
Ω

ψi(x)f(x) · ∇ψj(x)dx =
(
Rkh
)
ij
,

as the sampling points xl are drawn independently and uniformly with respect to the Lebesgue measure.
Convergence (61) then follows directly from a classical result of Monte-Carlo integration (see [12,

Theorem 2.1]:

√
m

((
1

m

m∑
l=1

ψi(x
l)f(xl) · ∇ψj(xl)

)
−
∫

Ω

ψi(x)f(x) · ∇ψj(x)dx

)
D−−−−→

m→∞
N (0, σk,hij). (63)

Remark 4.1. In the usual implementation of gEDMD, the mass matrix is not computed offline, but also
approximated with the Monte-Carlo approximation

Mm
k,h :=

1

m
Gmk,h

(
Gmk,h

)
.

The matrix Km
k,h is then given by

Km
k,h =

(
Mm
k,h

)†
Rmk,h,

which converges to Kk
h provided the pseudo-inverses converge. By a classical result due to R.Penrose [50],

this is the case if, for m large enough, the Mm
k,h are invertible with probability 1. This corresponds to the

following condition:
ϕ(x1) = · · · = ϕ(xm) = 0 =⇒ ϕ = 0, ∀ϕ ∈ V kh . (64)

When the (xj)j are drawn uniformly, this is equivalent to

∀ϕ ∈ VN \ {0}, µ{x ∈ Ω, ϕ(x) = 0} = 0, (65)

which is not satisfied by the shape functions (ψj)j, nor by other classical localized approximation functions
such as wavelets.

In our case, to ensure (64), it would be necessary to draw sample points in every element of the
rectangulation Th, which would be extremely impractical.

15

4.3 Convergence in matrix norms
Proposition 4.1 essentially means that, for a given confidence rate α ∈ [0, 1), there exists a constant
Ck,hij (α) given by the normal distribution N (0, σk,hij), such that for large enough m the following estimate
holds with probability at least α: ∣∣∣(Rmk,h)ij − (Rkh)ij∣∣∣ ≤ Ck,hij (α)m−

1
2 . (66)

This probabilistic estimate tells us that the coefficients converge in m−
1
2 , with a constant which depends

on the standard deviation σk,hij , that is, recalling its expression (62), on the shape functions (ψj) and f .
We then note

Ckh(f, α) := max
ij

(Ck,hij (α)). (67)

Now as we work with L2 functions, we need to relate this matrix norm to the operator norm on L2(Ω).
We define the following norm on RN

k
h :

‖c‖2L2 =

∥∥∥∥∥∥
Nkh∑
j=1

cjψj

∥∥∥∥∥∥
2

= c>Mk
h c =

∥∥∥(Mk
h)

1
2 c
∥∥∥2

. (68)

The matrix Mk
h is symmetric definite positive, we note ρ+

k,h and ρ−k,h its largest and smallest eigenvalue
respectively. We then have √

ρ−k,h‖c‖ ≤ ‖c‖L2 ≤
√
ρ+
k,h‖c‖, ∀c ∈ RN

k
h . (69)

With this norm we then define the induced operator norm on RN
k
h×N

k
h :

|||A|||L2 = sup
‖c‖L2=1

‖Ac‖L2 . (70)

Applying (69), we then have√√√√ρ−k,h

ρ+
k,h

|||A|||L2 ≤ |||A||| ≤

√√√√ρ+
k,h

ρ−k,h
|||A|||L2 , ∀A ∈ RN

k
h×N

k
h . (71)

We can now state the following proposition:

Proposition 4.2 (Convergence of gEDMD in matrix norm). Let α ∈ [0, 1). For f ∈ L∞(Ω,Rd), there
exists a constant Ckh(f, α) such that, for m large enough and with probability at least α,

|||Kk
h −Km

k,h|||L2 ≤
Nk
h

ρ−k,h

√√√√ρ+
k,h

ρ−k,h
Ckh(f, α)m−

1
2 . (72)

Proof. From the probabilistic estimate (66) we can then deduce the following estimate on the max matrix
norm: for m large enough, with probability at least α,

‖Rmk,h −Rkh‖∞ ≤ Ckh(f, α)m−
1
2 (73)

Now, we recall the result of [58] on sharp equivalence constants for matrix norms:

1

Nk
h

|||A||| ≤ ‖A‖∞ ≤ |||A|||, ∀A ∈ RN
k
h×N

k
h . (74)

16

Putting (74), (71) and (73) together, we get, for m large enough and with probability at least α:

|||Rkh −Rmk,h|||L2 ≤ Nk
h

√√√√ρ+
k,h

ρ−k,h
Ckh(f, α)m−

1
2 (75)

Finally, by submultiplicativity of operator norms, and the expression of Km
k,h, we have

|||Kk
h −Km

k,h|||L2 = |||(Mk
h)−1(Rkh −Rmk,h)|||

L2 ≤ |||(Mk
h)−1|||L2 |||Rkh −Rmk,h|||L2 . (76)

Now, as

|||(Mk
h)−1|||L2 = |||(Mk

h)−1||| = 1

ρ−k,h
, (77)

we finally deduce (72) from (75).

This shows that the convergence of Kk
h to Km

k,h, i.e. the convergence of gEDMD, is asymptotically
in m−

1
2 , which is quite slow but does not depend on the underlying dimension d of the problem (4). It

is however further slowed down by numerous factors: the standard deviation σk,hij , which represents the
oscillatory behavior of the shape functions, the conditioning number and smallest eigenvalue of the mass
matrix Mk

h , and the dimension of the finite elements space V kh .

5 Quantitative analysis

5.1 Using gEDMD for system identification and predictions: convergence
analysis

We now use the matrix Km
k,h computed by gEDMD to give an approximation of f and its flow Φtf .

Recalling (23) and (42), an approximation of the fi is given by

Kmk,hgi, i ∈ J1, dK. (78)

Recalling (26), (27), (43), (45) and (60), an approximation of the
(
Φtf
)
i
is given by the solutions to

d

dt
ϕk,hi,m = Kmk,hϕ

k,h
i,m, ϕk,hi,m ∈ V

k
h ,

ϕk,hi,m(0, ·) = gi(·), i ∈ J1, dK.
(79)

In the basis (ψj), noting gi =

Nkh∑
j=1

γijψj , the components of the Kmk,hgi are given by

Km
k,hγ

i ∈ RN
k
h , i ∈ J1, dK (80)

and the components of the ϕk,hi,m(t, ·) are given by the solutions to
d

dt
ϕk,hi,m = Km

k,hϕ
k,h
i,m, ϕk,hi,m ∈ RN

k
h ,

ϕk,hi,m(0, ·) = γi, i ∈ J1, dK.
(81)

We now give quantitative estimates for system identification and predictions, using gEDMD with finite
elements spaces:

17

Proposition 5.1. Let f ∈ Ck+1(Ω). There exists constants C1, C2(f), C3 > 0 such that, for a given
probability rate α ∈ [0, 1], one has for m large enough and with probability at least α:

‖Kmk,hgi − fi‖ ≤
Nk
h

ρ−k,h

√√√√ρ+
k,h

ρ−k,h
Ckh(f, α)m−

1
2 ‖gi‖+ C1h

k+1|fi|k+1,

∥∥∥ϕk,hi,m(t, ·)−
(
Φtf
)
i

∥∥∥ ≤ C3te
t|||Kk

h |||L2
Nk
h

ρ−k,h

√√√√ρ+
k,h

ρ−k,h
Ckh(f, α)m−

1
2 ‖gi‖+ C2(f)hk, ∀i ∈ J1, dK.

(82)

Proof. Recalling (23) and (42), we have the following: for i ∈ J1, dK,

‖Kmk,hgi − fi‖ ≤ ‖Kmk,hgi −Kkhgi‖+ ‖Kkhgi − fi‖
≤ |||Km

k,h −Kk
h |||L2‖gi‖+ ‖Kkhgi − fi‖.

(83)

Applying (72) and (46) yields the first inequality of (82).
Recalling (27) and (43), we have the following: for i ∈ J1, dK,∥∥∥ϕk,hi,m(t, ·)−

(
Φtf
)
i

∥∥∥ ≤ ∥∥∥ϕk,hi,m(t, ·)− ϕk,hi (t, ·)
∥∥∥+

∥∥∥ϕk,hi (t, ·)− ϕi(t, ·)
∥∥∥

≤ |||etK
m
k,h − etK

k
h |||L2‖gi‖+

∥∥∥(Φtf)i − ϕk,hi (t, ·)
∥∥∥ . (84)

By property of the matrix exponential,

|||etK
m
k,h − etK

k
h |||L2 ≤ t|||Km

k,h −Kk
h |||L2e

t|||Kk
h |||L2 et|||K

m
k,h−K

k
h |||L2 (85)

Combining (85) with (84) and (72) then yields the second inequality of (82).

With these inequalities it is now clear that the “slowest” term is the data-driven approximation error
term in m−

1
2 . It depends both on the number of samples m and the dimension of the Galerkin projection

space V kh .
More precisely, for given k and h, we see from the first inequality of (82) that for the data-driven

approximation error to reach the same accuracy as the finite elements approximation error, m has to
satisfy

m ≥

(
Nk
h

ρ−k,h

)2
ρ+
k,h

ρ−k,h
Ckh(f, α)2h−2k−2. (86)

For a fixed k, choosing more accurate finite elements spaces by decreasing the mesh size h has a double
impact on the required number of samples m: on the h−2k−2 term, on one hand, and on the quantity
(Nk

h/ρ
−
k,h)2(ρ+

k,h/ρ
−
k,h)Ckh(f, α)2 on the other hand. Moreover, due to the presence of Nk

h we see that this
number of samples must also increase exponentially with d. Thus, indirectly, the convergence of gEDMD
is also subject to the curse of dimensionality.

Overall, the slowness of convergence of classical Monte-Carlo approximations usually employed in
gEDMD conceals the high accuracy one can obtain from classical approximation spaces, which in a way
defeats the purpose of choosing good approximation spaces.

In the next section we will focus on the case d = 1 and fix k = 1, in order to give precise estimates
of the terms in (86). This will in turn allow us to give a precise estimate of the computational cost of
gEDMD and give a clear comparison to direct interpolation methods.

5.2 Comparison with direct interpolation in 1-D for linear finite elements
In this subsection, d = 1 and k = 1. That is, we focus on gEDMD for systems on the interval [0, L], using
Galerkin projections on linear finite elements.

18

System identification using the Koopman operator appears as a quite indirect method, as it consists
in observing trajectories of the differential equation, working with the associated transport equation, then
coming back to the differential equation.

In the gEDMD algorithm, the values f(xl) at the sample points are approximated. Instead of using
them to compute an approximation of the Koopman operator, one could also use them to interpolate f
directly, without resorting to Koopman operator methods. In that case, predictions are then made by
integrating the nonlinear ODE

ẋ = f̃(x), x ∈ Rd,

where f̃ is the interpolant of f , instead of a Galerkin method of the linear transport equation such as
(81). We will focus here on linear and cubic spline interpolation.

In theory, the linear interpolant `(f, xi) and the natural cubic spline interpolant σ(f, xi) (with deriva-
tive 0 at the endpoints) satisfy the following inequalities

‖`(f, xi)− f‖ ≤ C1δ
2|f |2, f ∈ H2(0, L),

‖σ(f, xi)− f‖ ≤ C2δ
4|f |4, f ∈ H4(0, L),

(87)

where
δ = max{xn+1 − xn, x1 + L,L− xm, n ∈ J1,mK} (88)

The inequality for the linear interpolant follows from classical inequalities on C2 functions, for the cubic
spline interpolation error bounds, we refer to [21].

The m samples are drawn in the whole interval, and for large m we have (see [52])

δ ∝ log(m)

m

so that (3) becomes

‖`(f, xi)− f‖ ≤ C2

(
log(m)

m

)2

|f |2, f ∈ H2(0, L),

‖σ(f, xi)− f‖ ≤ C2

(
log(m)

m

)4

|f |4, f ∈ H4(0, L).

(89)

Comparing with the m−
1
2 rate of convergence of gEDMD, we get

m
1
2

(
log(m)

m

)2

=

(
log(m)

m
3
4

)2

−−−−→
m→∞

0

m
1
2

(
log(m)

m

)4

=

(
log(m)

m
7
8

)4

−−−−→
m→∞

0.

(90)

Hence, for a given number of samples m, gEDMD is less accurate than direct interpolation methods.
To give a more thorough comparison, let ε > 0. We now compare the number m of samples required

in each method in order to to achieve an accuracy of at most ε.
For linear interpolation, the required number of samples satisfies:

log(m)

m
∼ ε 1

2 =⇒ ε−
1
2 ≤ m ≤ Cε− 1

2 +ε, ∀ε > 0.

For cubic spline interpolation, the required number of samples satisfies:

log(m)

m
∼ ε 1

4 =⇒ ε−
1
4 ≤ m ≤ Cε− 1

4 +ε, ∀ε > 0.

19

For modified gEDMD, first consider the Galerkin projection. From (53), h must satisfy:

h ≤ Cε 1
2 . (91)

Recalling (86):

m ≥

(
C1
h(f, α)

1 + 1
h

ρ−1,h

)2

c1h h
−4

and using the estimates (110), (111), and (120) from Appendix A, one has:

m ≥ C ′
(
C(α)‖f‖L∞h−2 1 + 1

h

h

)2

ε−2

≥ C ′′C(α)2‖f‖2L∞h−8ε−2

≥ C ′′′C(α)2‖f‖2L∞ε−6

(92)

Now, it is well-known that interpolation methods have linear complexity (see [59]). On the other hand, we
have seen in Proposition 4.1 that the computational complexity of gEDMD is in O(mN2+N3). Regarding
N , (91) implies

N ≥ C ′ε− 1
2 .

Together with (92), this yields the following complexity in terms of ε:

O
(
ε−7 + ε−

3
2

)
= O(ε−7)

.
We summarize the above in the following table:

Parameters Cost
Koopman h
operator k ε−7

method m

Linear m ε−
1
2 +ε

interpolation
Splines m ε−

1
4 +ε

interpolation

This clearly shows that interpolation methods are more cost-effective than gEDMD with linear finite
elements.

6 Numerical illustration
We show the results of some implementations of gEDMD, focusing on the approximation of the vector
field f . Given our remarks on the curse of dimensionality in Section 3.6, we focus on the case d = 1. We
have given precise estimates in the previous section that show how the convergence of the data-driven
approximation is affected by the choice of the Galerkin projection. Given (53) and (86), this problem
worsens in higher dimensions.

We take f given by combinations of trigonometric functions, polynomials, and exponentials on the
interval [0, 1]. We implement gEDMD with linear finite elements to recover an approximation of f . We
compare the results with linear interpolation and spline interpolation on the same data sample.

20

6.1 Linear finite elements
Data sample we form the data set:

{xn, f(xn), n ∈ J1,mK} (93)

To simplify matters we directly take the values of the nonlinearity f we have chosen, at the sample points
xn. In practice, f is unknown, so one obtains approximate values of f at the sample points by observing
the trajectories of the system with initial conditions xn, and approximating the initial velocities by finite
differences (see Section 4 and [15]).

gEDMD. Compute the following matrices from the data:

Gm1,h := (ψi(xj))i∈J1,NKh
j∈J1,mK

Am1,h := (ẋj · ∇ψi(xj))i∈J1,NKh
j∈J1,mK

,

(94)

and define
Rm1,h =

1

m
Gm1,h

(
Am1,h

)>
.

Perform the linear least squares regression:

Km
1,h := argminA∈RN×N

∥∥M1
hA−Rm1,h

∥∥2
=
(
Mm

1,h

)−1
Rm1,h. (95)

Identifying the nonlinearity in the differential equation. Now consider the identity function
g(x) = x: g ∈ P1 as it is linear, and

g(x) =

M∑
j=0

jhψj(x) = c>ψ(x), ∀x ∈ [0, L]. (96)

To recover f , we compute
c̃> := c>Km

1,h (97)

to get the following approximation of f on the interval [0, L]:

f̃m1,h(x) = c̃>ψ(x) =

M∑
j=0

c̃jψj(x), ∀x ∈ [0, L]. (98)

21

6.2 Numerical simulations

Figure 1: Identification of different functions using gEDMD with linear finite elements.

Figure 1 shows approximations of f (given by the thicker black curve) computed with gEDMD for a fixed
dimension of the finite elements space, and different numbers of samples m. One can see that for a small
number of samples, there are sizeable discrepancies. For a larger number of samples the curves obtained
by gEDMD seem to match the curve rather well.

In Figure 2, we plot the relative approximation error

‖f̃mN − f‖
‖f‖

as a function of the number of samples m, for several values of N : as expected, increasing the number of
samples decreases the error. This decrease appears to be slower for greater values of N (see the red dots
in the figure below), which is consistent with (86).

22

Figure 2: Relative error of gEDMD with linear elements for different values of N . Dependence on the
number m of samples.

Figure 3: Comparison with direct interpolation methods. m = 100(N − 1).
23

Finally, in Figure 3 we compare the relative approximation error of gEDMD with that of direct
interpolation methods. We implement gEDMD for increasing values of N , with m = 100N samples. We
compare the results with linear interpolation and spline interpolation with m random samples. There is
a clear hierarchy between the three methods, gEDMD being the least accurate by far.

7 Conclusion
In this article, we have presented the implementation of a system identification method, based on
finite-dimensional, data-driven approximations KmN of the so-called Koopman operator, which is the
transport operator associated to the unknown vector field f :

f(x) · ∇.

From trajectory data on the system
ẋ = f(x),

measured at randomly drawn sample points (xn)n∈J1,mK one can compute the sample values

f(xn), xn ∈ Ω, n ∈ J1,mK.

From this data set, the method provides an approximation of the vector field f and its flow Φtf , using the
coordinate functions gi(x) = xi:

fi ≈ KmNgi,
(
Φtf
)
i
≈ etK

m
N gi.

The potential advantage of this method lies in its linearity of the Koopman operator: as can be seen
above, the nonlinear flow Φtf is approximated thanks to the linear flow etK

m
N , which is however defined on

a subspace of functions rather than the state space Ω ⊂ Rd.
We have focused on the case of Galerkin projections of the Koopman operator on finite elements spaces.

They are generic approximation spaces, widely used in numerical analysis to approximate PDEs. In this
case, the approximating properties of these spaces guarantee that the corresponding Galerkin projection
of the Koopman operator is a reliable approximation, without having to rely on hypothetical spectral
properties. Indeed the Koopman operator (which is essentially a transport operator) does not have nice
spectral properties in general.

For 1-dimensional problems, we have compared this method with direct interpolation of the vector
field f from the sample values

f(xn), xn ∈ Ω, n ∈ J1,mK.

Interpolation yields an approximation f̃ of f . Predictions can then be made by integrating the nonlinear
differential equation

ẋ = f̃(x).

We have found that this Koopman operator based system identification method is generally not ad-
vantageous in practice, due to two drawbacks.

1. Dimension of the Galerkin projections With Galerkin projections on classical approximation
spaces, high accuracy requires high-dimensional spaces of functions. This drawback, due to the
well-known curse of dimensionality, is a recurring feature of approximation spaces. On these spaces,
the approximation of the linear transport equation associated to the Koopman operator then comes
at a high computational cost.

2. Data-driven approximation of the Galerkin projections Galerkin projection on finite ele-
ments spaces provide accurate, albeit high-dimensional, approximations of the Koopman operator
for system identification and predictions. However, for the system identification problem we have
formulated, these projections must be recovered from a finite amount of data. To that effect, we
have brought a novel modification to the usual gEDMD algorithm. As we are working with classical

24

finite elements spaces, the mass matrix can be computed offline. Then, recovering the Galerkin
projection of the Koopman operator reduces to approximating the stiffness matrix from data. To
approximate the integrals in the stiffness matrix, given the nature of the data set, the natural path
is to use Monte-Carlo integration (as is the case for regular EDMD in the literature).

In addition to the inherent slowness of Monte-Carlo integration, we furthermore observe that the
rate of convergence of the data-driven approximation has multiple dependencies in the parameters h
(mesh size) and k (degree) of the finite elements space. As a consequence, the more accurate Galerkin
projection we take, the harder it becomes to approximate from data by the gEDMD method.

We have quantified this precisely in 1-D, which allows for a clear comparison between recovery of
the vector field f by the gEDMD method and direct interpolation (linear or cubic splines) of f .

We have based our analysis on a specific choice of approximation space, but our estimates illustrate
what is probably a general phenomenon: the Galerkin projection of the Koopman operator on generic
approximation spaces is prohibitively slow to approximate from data.

Let us conclude with some prospects that could be explored to overcome these drawbacks:

Galerkin projections of low dimension Considering that classical interpolation methods (or SINDy
with sparsity constraints) provide a very good approximation of the vector field, the goal for the gEDMD
method is to provide a numerically interesting approximation of the flow Φtf in order to make predictions.
This will be the case if adequate lower-dimensional Galerkin projections can be found, which still allow for
reliable estimates as in Proposition 3.2 with finite elements spaces. Finding such spaces would also reduce
the impact of the choice of the Galerkin projection on the Monte-Carlo convergence, which in addition to
being inherently slow, is further slowed down when taking higher-dimensional finite elements spaces.

It seems very likely that there are many situations where this is not possible (chaotic systems are a
frequently cited example [3, 4]). Between the universal solution of classical approximation spaces, and
the ideal situation of subspaces of functions that are invariant under the Koopman operator (see [9]),
the complete picture is still missing: what characterizes the existence of these relevant low-dimensional
Galerkin projections? How “rare” is it? Is there a data-driven way to determine if they exist and find
them?

Use of deep neural networks There have been many recent attempts to find such low-dimensional
Galerkin projections, using deep neural networks [51, 64, 62, 34, 56]. The output of such networks is
a family of functions ψ1, · · · , ψN , where N is fixed beforehand. These functions are taken from a large
class of functions (essentially given by the architecture of the network) and the network is trained to
minimize the prediction error made when performing EDMD with the subspace VN = Span{ψ1, · · · , ψN},
while additionally penalizing situations where VN does not contain the gi, for the purpose of system
identification (see Section 5.1). Although numerical implementations yield promising results, there is still
much work to be done to interpret the outputs of these deep neural networks. Moreover, as is mentioned
in [56], there is no guarantee that the output is not a local minimizer.

Acknowledgements We would like to thank Pr.Lars Grüne for fruitful discussions on this topic.
We are greatly indebted to Jesus Oroya Villalta, for his help on the numerical experiments and his

astute comments.

A Linear 1-D finite elements
We fix a mesh size

h :=
1

M
, M ∈ N∗, (99)

we define the mesh
Th = {jh, j ∈ J0,MK}, (100)

25

Figure 4: The shape function ψj

which is a subdivision of [0, 1]. We define the finite elements of degree 1:

V 1
h :=

{
v ∈ C0 ([0, 1]) , v|[jh,(j+1)h] is affine, j ∈ J0,M − 1K

}
. (101)

We note
N := dimV 1

h = M + 1 =
1

h
+ 1. (102)

We denote by ψj , j ∈ J0,MK the node functions, which satisfy

ψj(kh) = δjk, j, kJ0,MK, (103)

they form a basis of V 1
h .

Explicitly, for a given node jh, ψj is defined by

j ∈ J1,M − 1K, ψj(x) =



0 on [−L, (j − 1)h] ∪ [(j + 1)h, L]

x− (j − 1)h

h
on [(j − 1)h, jh]

(j + 1)h− x
h

on [jh, (j + 1)h]

(104)

Ψ0(x) =


h− x
h

on [0, h]

0 on [h, L]

(105)

ΨM (x) =


0 on [−L,L− h]

x− L+ h

h
on [L− h, L]

(106)

Classically, the mass matrix is given by:

M1
h = h



1/3 1/6 0 · · · · · · · · · 0

1/6 2/3 1/6 0
. . . · · ·

...

0 1/6 2/3 1/6 0
. . .

...
...

.
...

...
. 0

...
. 1/6 2/3 1/6

0 · · · · · · · · · 0 1/6 1/3


(107)

26

and its eigenvalues are given by (after a slight modification of [1, Exercise 7.4.1]):

λj =
h

3

(
2 + cos

(
jhπ

1 + 2h

))
, j ∈ J1, NK. (108)

Consequently,

ρ+
1,h =

h

3

(
2 + cos

(
πh

1 + 2h

))
, (109)

ρ−1,h =
h

3

(
2 + cos

(
Nπh

1 + 2h

))
−−−→
h→0

0, (110)

and

c1h =
ρ+

1,h

ρ−1,h
=

2 + cos
(

πh
1+2h

)
2 + cos

(
π(h+1)
1+2h

) −−−→
h→0

3. (111)

Let us now give estimates on the variances of the coefficients of the rigidity matrix, which is involved
in the convergence of the Monte-Carlo method in Section 4.2. First, an obvious remark is that

σk,hij = 0, |i− j| > 1. (112)

On the other hand, assuming that f ∈ C2(Ω): for i ∈ J0,M − 1K,∫
Ω

(
ψi(x)f(x)ψ′i+1(x)

)2
dx− f(xi)

2

h2

∫ xi+1

xi

ψi(x)2dx =
1

h2

∫ xi+1

xi

ψi(x)2(f(x)2 − f(xi)
2)dx ≤ ‖f ′‖∞

C1

h
,

(113)
for some constant C1 > 0. Similarly,∫

Ω

(ψi+1(x)f(x)ψ′i(x))
2
dx−f(xi)

2

h2

∫ xi+1

xi

ψi+1(x)2dx =
1

h2

∫ xi+1

xi

ψi+1(x)2(f(x)2−f(xi)
2)dx ≤ ‖f ′‖∞

C2

h
,

(114)
and (∫

Ω

ψi(x)f(x)ψ′i+1(x)dx

)2

− f(xi)
2

h2

(∫ xi+1

xi

ψi(x)dx

)2

≤ ‖f ′‖∞
C3

h
, (115)

(∫
Ω

ψi+1(x)f(x)ψ′i(x)dx

)2

− f(xi)
2

h2

(∫ xi+1

xi

ψi+1(x)dx

)2

≤ ‖f ′‖∞
C4

h
, (116)

for some constants C2, C3, C4 > 0.
Putting (113) and (115) together, we get, for i ∈ J0,M − 1K,(

σk,hi,i+1

)2

=
1

3h2
f(xi)

2 +O
(

1

h

)
, (117)

and similarly with (114) and (116),(
σk,hi+1,i

)2

=
1

3h2
f(xi)

2 +O
(

1

h

)
, (118)

and, for i ∈ J0,MK, (
σk,hii

)2

=
2

3h2
f(xi)

2 +O
(

1

h

)
. (119)

Recalling (67), this yields

C1
h(f, α) =

2

3h2
‖f‖2∞ +O

(
1

h

)
. (120)

27

References
[1] Grégoire Allaire. Numerical analysis and optimization: an introduction to mathematical modelling

and numerical simulation. Oxford university press, 2007.

[2] H. Arbabi, M. Korda, and I. Mezić. A Data-Driven Koopman Model Predictive Control Framework
for Nonlinear Partial Differential Equations. In 2018 IEEE Conference on Decision and Control
(CDC), pages 6409–6414, 2018.

[3] Hassan Arbabi and Igor Mezić. Ergodic theory, dynamic mode decomposition, and computation
of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems,
16(4):2096–2126, 2017.

[4] Hassan Arbabi and Themistoklis Sapsis. Generative stochastic modeling of strongly nonlinear flows
with non-gaussian statistics, 2020.

[5] Bassam Bamieh and Laura Giarré. Identification of linear parameter varying models.
International Journal of Robust and Nonlinear Control, 12(9):841–853, 2002. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.706.

[6] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition,
1957.

[7] Peter Binev, Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Universal algorithms for learning
theory. part ii: Piecewise polynomial functions. Constructive approximation, 26(2):127–152, 2007.

[8] Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, and Vladimir Temlyakov. Universal
algorithms for learning theory part i: piecewise constant functions. Journal of Machine Learning
Research, 6(Sep):1297–1321, 2005.

[9] Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman Invariant
Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLOS
ONE, 11(2):1–19, 2016.

[10] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016.

[11] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[12] Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1–49, 1998.

[13] Alberto P Calderón. On an inverse boundary value problem. Computational & Applied Mathematics,
25(2-3):133–138, 2006.

[14] Torsten Carleman. Application de la théorie des équations intégrales linéaires aux systèmes
d’équations différentielles non linéaires. Acta Mathematica, 59:63–87, 1932. Publisher: Institut
Mittag-Leffler.

[15] Rick Chartrand. Numerical differentiation of noisy, nonsmooth, multidimensional data. 12 2017.

[16] Abdellah Chkifa, Albert Cohen, and Christoph Schwab. Breaking the curse of dimensionality in sparse
polynomial approximation of parametric PDEs. Journal de Mathématiques Pures et Appliquées,
103(2):400 – 428, 2015.

[17] Ronald A DeVore. Nonlinear approximation. Acta numerica, 7:51–150, 1998.

28

[18] R. J. DiPerna and P. L. Lions. Ordinary differential equations, transport theory and Sobolev spaces.
Inventiones mathematicae, 98(3):511–547, October 1989.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[20] Nithin Govindarajan, Ryan Mohr, Shivkumar Chandrasekaran, and Igor Mezic. On the Approx-
imation of Koopman Spectra for Measure Preserving Transformations. SIAM Journal on Applied
Dynamical Systems, 18(3):1454–1497, 2019. _eprint: https://doi.org/10.1137/18M1175094.

[21] Charles A. Hall and W. Weston Meyer. Optimal error bounds for cubic spline interpolation. Journal
of Approximation Theory, 16(2):105–122, 1976.

[22] Maxime Hauray, Claude Le Bris, and Pierre-Louis Lions. Deux remarques sur les flots généralisés
d’équations différentielles ordinaires. Comptes Rendus Mathematique, 344(12):759 – 764, 2007.

[23] Victor Isakov. Inverse problems for partial differential equations, volume 127. Springer, 2006.

[24] Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of koopman eigen-
functions for control, 2017.

[25] Stefan Klus, Feliks Nüske, and Boumediene Hamzi. Kernel-Based Approximation of the Koopman
Generator and Schrödinger Operator. Entropy, 22(7):722, June 2020. Publisher: MDPI AG.

[26] Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof
Schütte. Data-driven approximation of the koopman generator: Model reduction, system identifica-
tion, and control. Physica D: Nonlinear Phenomena, 406:132416, 2020.

[27] Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksandra Elzbieta Dawid,
and Andrzej Kolinski. Coarse-Grained Protein Models and Their Applications. Chemical Reviews,
116(14):7898–7936, July 2016. Publisher: American Chemical Society.

[28] B. O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space. Proceedings of the Na-
tional Academy of Sciences, 17(5):315–318, 1931. Publisher: National Academy of Sciences _eprint:
https://www.pnas.org/content/17/5/315.full.pdf.

[29] BO Koopman and JV Neumann. Dynamical systems of continuous spectra. Proceedings of the
National Academy of Sciences of the United States of America, 18(3):255—263, March 1932.

[30] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149 – 160, 2018.

[31] Milan Korda and Igor Mezić. On Convergence of Extended Dynamic Mode Decomposition to the
Koopman Operator. Journal of Nonlinear Science, 28(2):687–710, April 2018.

[32] Milan Korda and Igor Mezić. Optimal construction of Koopman eigenfunctions for prediction and
control. 2018. _eprint: 1810.08733.

[33] Milan Korda, Mihai Putinar, and Igor Mezić. Data-driven spectral analysis of the Koopman operator.
Applied and Computational Harmonic Analysis, 48(2):599 – 629, 2020.

[34] Milan Korda, Yoshihiko Susuki, and Igor Mezić. Power grid transient stabilization using koopman
model predictive control. IFAC-PapersOnLine, 51(28):297 – 302, 2018. 10th IFAC Symposium on
Control of Power and Energy Systems CPES 2018.

[35] Robert J. Kunsch. Breaking the curse for uniform approximation in Hilbert spaces via Monte Carlo
methods. Journal of Complexity, 48:15 – 35, 2018.

29

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[36] Matthew D. Kvalheim and Shai Revzen. Existence and uniqueness of global koopman eigenfunctions
for stable fixed points and periodic orbits. arXiv: Dynamical Systems, 2019.

[37] Yueheng Lan and Igor Mezić. Linearization in the large of nonlinear systems and koopman operator
spectrum. Physica D: Nonlinear Phenomena, 242(1):42 – 53, 2013.

[38] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des comètes. F. Didot,
1805.

[39] Ljung Lennart. System identification: theory for the user. PTR Prentice Hall, Upper Saddle River,
NJ, pages 1–14, 1999.

[40] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018. Publisher: Nature Publishing
Group.

[41] A. Mauroy and J. Goncalves. Koopman-based lifting techniques for nonlinear systems identification.
IEEE Transactions on Automatic Control, 65(6):2550–2565, 2020.

[42] Alexandre Mauroy and Igor Mezic. Global Stability Analysis Using the Eigenfunctions of the Koop-
man Operator. IEEE Transactions on Automatic Control, 61(11):3356–3369, November 2016. Pub-
lisher: Institute of Electrical and Electronics Engineers (IEEE).

[43] Igor Mezić. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions. Non-
linear Dynamics, 41(1):309–325, August 2005.

[44] Igor Mezić. Analysis of fluid flows via spectral properties of the koopman operator. Annual Review
of Fluid Mechanics, 45(1):357–378, 2013.

[45] Mezić Igor. Spectrum of the Koopman Operator, Spectral Expansions in Functional Spaces, and
State-Space Geometry. Journal of Nonlinear Science, 2019.

[46] Oliver Nelles. Nonlinear system identification: from classical approaches to neural networks and fuzzy
models. Springer Science & Business Media, 2013.

[47] J. v. Neumann. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of
Sciences, 18(1):70–82, 1932.

[48] Erich Novak and Klaus Ritter. The curse of dimension and a universal method for numerical inte-
gration. In Multivariate approximation and splines, pages 177–187. Springer, 1997.

[49] Samuel Otto and Clarence Rowley. Linearly-recurrent autoencoder networks for learning dynamics.
SIAM Journal on Applied Dynamical Systems, 18, 12 2017.

[50] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 51(3):406–413, 1955.

[51] Zuowei Ping, Zhun Yin, Xiuting Li, Yefeng Liu, and Tao Yang. Deep Koopman model predictive
control for enhancing transient stability in power grids. International Journal of Robust and Nonlinear
Control, n/a(n/a). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rnc.5043.

[52] R. Pyke. Spacings. (With discussion.). J. Roy. Statist. Soc. Ser. B, 27:395–449, 1965.

[53] Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations, vol-
ume 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994.

[54] Julia Slipantschuk, Oscar F. Bandtlow, and Wolfram Just. Dynamic mode decomposition for analytic
maps. Communications in Nonlinear Science and Numerical Simulation, 84:105179, 2020.

30

[55] Péter Koltai Stefan Klus and Christof Schütte. On the numerical approximation of the perron-
frobenius and koopman operator, 2016.

[56] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 1130–1140. Curran Associates, Inc., 2017.

[57] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, (First Edition).
Addison-Wesley Longman Publishing Co., Inc., USA, 2005.

[58] Andrew Tonge. Equivalence constants for matrix norms: a problem of goldberg. Linear Algebra and
its Applications, 306(1):1–13, 2000.

[59] Kazuo Toraichi, Kazuki Katagishi, Iwao Sekita, and Ryoichi Mori. Computational complexity of
spline interpolation. International Journal of Systems Science, 18(5):945–954, 1987. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/00207728708964021.

[60] Matthew O. Williams, Maziar S. Hemati, Scott T. M. Dawson, Ioannis G. Kevrekidis, and
Clarence W. Rowley. Extending Data-Driven Koopman Analysis to Actuated Systems. IFAC-
PapersOnLine, 49(18):704 – 709, 2016.

[61] Williams Matthew O., Kevrekidis Ioannis G., and Rowley Clarence W. A Data–Driven Approxi-
mation of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear
Science, 25(6):1307–1346, 2015.

[62] Yongqian Xiao, Xinglong Zhang, Xin Xu, Xueqing Liu, and Jiahang Liu. A deep learning framework
based on koopman operator for data-driven modeling of vehicle dynamics, 2020.

[63] Masahiro Yamamoto. Carleman estimates and an inverse heat source problem for the thermoelasticity
system. Inverse Problems, 27(1):015006, December 2010. Publisher: IOP Publishing.

[64] E. Yeung, S. Kundu, and N. Hodas. Learning deep neural network representations for koopman
operators of nonlinear dynamical systems. In 2019 American Control Conference (ACC), pages
4832–4839, 2019.

31

	Introduction
	Unknown dynamics and system identification
	Regression, interpolation and operator theoretic approach

	Koopman operators
	Definitions
	Koopman operator and data-driven modelling
	Notations

	Finite-dimensional approximations of the Koopman operator
	Restricting the Koopman operator to a subdomain
	System identification and predictions with the Koopman operator
	Galerkin projection of the Koopman operator
	Galerkin projection on finite elements spaces
	System identification and predictions
	Curse of dimensionality

	A variant of generator Extended Dynamic Mode Decomposition
	The algorithm
	Convergence
	Convergence in matrix norms

	Quantitative analysis
	Using gEDMD for system identification and predictions: convergence analysis
	Comparison with direct interpolation in 1-D for linear finite elements

	Numerical illustration
	Linear finite elements
	Numerical simulations

	Conclusion
	Linear 1-D finite elements

