

Al(OPri)3-catalysed halogen exchange processes of relevance to atom transfer radical polymerization: the effect depends on the metal electronic structure

François Stoffelbach, Rinaldo Poli

▶ To cite this version:

François Stoffelbach, Rinaldo Poli. Al(OPri)3-catalysed halogen exchange processes of relevance to atom transfer radical polymerization: the effect depends on the metal electronic structure. Chemical Communications, 2004, 23, pp.2666. 10.1039/B409992C . hal-03278403

HAL Id: hal-03278403 https://hal.science/hal-03278403

Submitted on 7 Jul2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. www.rsc.org/chemcomm

ChemComm

François Stoffelbach^a and Rinaldo Poli*^b

 ^a Laboratoire de Synthèse et d'Electrosynthèse Organométalliques, Faculté des Sciences "Gabriel", Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
^b Laboratoire de Chimie de Coordination, UPR CNRS 8241, 205 Route de Narbonne, 31077 Toulouse Cedex, France. Fax: +33 561 553003; Tel: +33 561 333195; E-mail: poli@lcc-toulouse.fr

This submission was created using the RSC ChemComm Template (DO NOT DELETE THIS TEXT) (LINE INCLUDED FOR SPACING ONLY - DO NOT DELETE THIS TEXT)

Whether tri(isopropoxo)aluminium catalyses or not halogen exchange for an ATRP catalyst depends on the number of valence electrons.

Since its discovery in 1995,^{1, 2} Atom Transfer Radical Polymerisation (ATRP) has become the most actively investigated controlled radical polymerization process. With this technique, the bimolecular terminations are reduced in importance relative to the chain propagation by involving the reactive radicals in a rapid and thermodynamically favourable atom transfer equilibrium by the action of a halogenated spin trap M-X, producing halogen-terminated dormat chains R-X (Scheme 1).

The role of species M, a transition metal complex capable of

Scheme 1.

increasing its formal oxidation state and coordination number by one unit, is to catalyse the chain growth from the dormant species. Thus, ATRP depends critically on transition metal catalysis and a number of studies have been devoted to understanding its mechanistic details.^{3, 4}

It has been shown that the addition of certain Lewis acids, most notably Al(OPrⁱ)₃, in conjunction with a number of catalysts such as RuCl₂(PPh₃)₃,⁵ CpFeX(CO)₂ (X = Br, I),⁶ NiBr₂(PPh₃)₂,⁷ Ni(PPh₃)₄,⁸ ReIO₂(PPh₃)₂,⁹ and CuBr/bipy,¹⁰ results in faster polymerisations and also narrower MW distributions for the resulting polymer. The detailed mechanism of action of this additive, however, is not completely understood, though it appears to be confined to the atom transfer step rather than to the free radical chain propagation.⁴ Parallel work has shown that Al(OPrⁱ)₃ has no effect on the halogen exchange rate between the RuCl₂(PPh₃)₃ catalyst and a bromide initiator, RBr.¹¹ This is a relevant observation, because the simplest possible halogen exchange mechanism involves the ATRP intermediates, Scheme 2. Thus, the fact that Al(OPrⁱ)₃ accelerates ATRP but not halogen exchange appears rather puzzling.

$$M-X + R-Y \xrightarrow{X} M-Y + R \xrightarrow{X} M-Y + R-X$$

Scheme 2.

We have recently shown that a family of half-sandwich Mo(III) complexes catalyzes the ATRP of styrene and acrylates, and that this is accelerated by Al(OPrⁱ)₃.¹²⁻¹⁴ We wish to report here, using CpMoX₂(Prⁱ₂dad) (X = Cl/I; Prⁱ₂dad = PrⁱN=CH-CH=NPrⁱ) as a case study, that Al(OPrⁱ)₃ *does* catalyse the halogen exchange process for an ATRP catalyst, and to rationalize the difference relative to RuCl₂(PPh₃)₃.¹¹

The accelerating effect of Al(OPrⁱ)₃ on the CpMoCl₂(Prⁱ₂dad)catalysed ATRP of methyl acrylate (MA), initiated by ethyl 2iodopropionate (IEA) was shown previously.¹⁴ In order to gain insight on the Al(OPrⁱ)₃ mechanism of action for this ATRP process, a number of EPR investigations were carried out as shown in Figure 1. Warming the solution of the complex under typical ATRP conditions, with or without the IEA initiator, but in the absence of Al(OPrⁱ)₃, did not yield any spectral change, (a). In the presence of 1 equiv of Al(OPrⁱ)₃, a new peak assigned to the new complex CpMoICl(Prⁱ2dad) became evident (b), revealing the catalytic activity of Al(OPrⁱ)₃ on the halide exchange.[†] The nature of the mixed halogen species is proven by the exchange with NaI in THF, which leads, through the same complex (c), to the corresponding diiodide, CpMoI₂(Prⁱ₂dad) (d). The latter has been isolated and fully characterized.[§]

Complex CpMoI₂(Prⁱ₂dad) is a better ATRP catalyst than the dichloride analogue. Under the same experimental conditions (MA/Mo/IEA = 165/1/1 in toluene, 30% v/v, 80°C) the apparent polymerization rate constant k_{app} is 5.0×10^{-5} min⁻¹ with no Al(OPrⁱ)₃ and 1.9×10^{-3} min⁻¹ with 1 equiv of Al(OPrⁱ)₃ [cf. 3.7×10^{-4} min⁻¹ for the CpMoCl₂(Prⁱ₂dad)-catalyzed process].¹⁴ Thus, k_{app} increases by a factor of 5 on going from the dichloride to the diiodide catalyst. For the Al-containing polymerization, a conversion of 87% was achieved in 19 h, leading to a PMA with PDI = 1.22 (as low as 1.11 at intermediate conversions), see Figure 2. The measured (SEC) M_n are only slightly lower than theory, indicating the possible intervention of catalyzed chain transfer.[‡] Unlike the CpMoCl₂(Prⁱ₂dad)-catalyzed process,¹⁴ nothing indicates an initiator efficiency factor *f* lower than 1.

The observed catalytic action of Al(OPrⁱ)₃ on both the ATRP of MA (the dormant species being a -CH₂-CH(I)-COOMe terminated polymer) with either CpMoCl₂(Prⁱ₂dad) or CpMoI₂-(Prⁱ₂dad), and on the halogen exchange between CpMoCl₂(Prⁱ₂dad) and CH₃CH(I)COOEt, provides persuasive evidence that the processes involve the same intermediates (Scheme 2).

1

Fig. 2. Left: $\overline{M_n}$ (diamonds) and PDI (triangles) against conversion for PMA obtained from CpMoI₂('Pr₂-dad)/Al(O'Pr)₃/IEA (MA/Mo/IEA/Al = 165/1/1/1) in toluene (30% v/v) at 80 °C. The line corresponds to the theoretical $\overline{M_n}$. Right: first order kinetics.

Now the interesting question is why the RuCl₂(PPh₃)₃ system exhibits a selective acceleration of ATRP with no effect on halogen exchange. The logical explanation is that a second halogen exchange pathway, at lower energy, is viable for the Ru complex, but not for the Mo complex, and that this second pathway is not catalyzed by Al(OPrⁱ)₃. Complexes of type RuX₂L₃ have a 16-electron configuration and are in principle capable to coordinate an additional 2-electron donor ligand. We can therefore easily imagine an equilibrium involving coordination of the halogenated dormant species to the Ru(II) centre, enhancing the C atom electrophilicity and triggering an internal nucleophilic substitution (S_Ni), see Figure 3.

Fig. 3. Ideal reaction coordinate for the atom transfer and halogen exchange processes involving an ATRP catalyst [M]-X and a dormant polymer chain R-Y.

Complexes of type CpMoX₂L₂, on the other hand, have a 17electron configuration, thus addition of a 2-electron donor would lead to an unstable 19-electron complex. In order to obtain supporting evidence for this hypothesis, DFT calculations[&] were carried out on the model systems RuCl₂(PH₃)₃ and CpMoCl₂(PH₃)₂ (a model of CpMoCl₂(PMe₃)₂, which also acts an ATRP catalyst)¹² and on their adducts with RCl [R = CH₃, CH(CH₃)COOCH₃] as models of initiators or dormant polymer chains.

As expected, the addition of either RCl molecule to the 17electron Mo complex turned out repulsive. No stable local minimum for a 19-electron CpMoCl₂(PH₃)₂(RCl) complex could be optimized. Conversely, addition of RCl to RuCl₂(PH₃)₃ afforded stable adducts, as shown in Figure 4. These adducts are in fact lower in energy than the sum of the separated molecules, though a large negative entropy results in a positive free energy at 298 K for the addition process [calculated $\Delta G^{\circ}_{298} = 7.3$ and 3.9 kcal mol⁻¹ for R = CH₃ and CH(CH₃)COOCH₃, respectively]. Isomeric adducts where RCl occupies a position trans to a Cl ligand are also local minima, but slightly higher in energy.

The Lewis acidic Al(OPrⁱ)₃ can in principle interact only with nucleophilic centers, such as the negatively polarized halogen ligands. Therefore, it seems logical that the presence of Al(OPrⁱ)₃ would have no effect on the S_{Ni} mechanism. The question remains of how this additive catalyzes the atom transfer process. A possibility that should be considered is a greater Lewis acid-base interaction with the halogen lone pairs in the

MXY intermediate (Scheme 2) and also in the transition state that leads to it, where these atoms are more negatively polarized relative to the organic initiator/dormant chain. Additional calculations are in progress to verify this hypothesis, as well as to probe the entire reaction coordinate for the different mechanisms (atom transfer and S_{Ni}) leading to halogen exchange.

Fig. 4. DFT study of the RCl addition to $RuCl_2(PH_3)_3$ (R = CH₃, CH(CH₃)COOCH₃)

We thank the CNRS and the Conseil Régional de Bourgogne for financial support and for a Ph.D. fellowship to FS, CINES and CICT for granting free computational time, Mr B. Rebière for the X-ray analysis, and Dr. José Mata for a verification experiment.

Notes and references

[†] The same phenomenon was observed for the Cl/Br exchange using BrEA.

§ Cyclic voltammetry (THF): irreversible oxidation at $E_{p,a} = 0,17$ V. A single crystals used for the X-ray investigation were obtained by slowly cooling a saturated toluene solution to -30°C. Crystal data: $C_{13}H_{21}I_2N_2Mo$, M = 555.06, orthorhombic, a = 12.4552(3), b = 17.2336(6), c = 7.7943(2) Å, U = 1673.03(8) Å³, T = 110(2) K, space group Pnma (no. 62), Z = 4, μ (Mo-K α) = 4.462 mm⁻¹, 6813 reflections measured, 1983 unique ($R_{int} = 0.0338$) which were used in all calculations. The final $wR(F^2)$ was 0.0478 (all data). The data have been deposited with the Cambridge Crystallographic Data Centre (number CCDC-243377)

[‡] The growth of PDI at high conversions in the presence of transfer to monomer is well understood, see K. Matyjaszewski, *ACS Symposium Series* 1998, **685**, 2.

& Geometry optimizations were carried out at the B3LYP level. The LANL2DZ basis, augmented with an *f* polarization punction ($\alpha = 0.8$) was used for Mo and Ru. All other atoms were described with 6-31G* bases. No symmetry constraints were used and all normal modes had positive frequencies for all converged geometries.

- ¹ J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 1995, **117**, 5614.
- ² M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, *Macromolecules*, 1995, **28**, 1721.
- ³ K. Matyjaszewski and J. H. Xia, *Chemical Reviews*, 2001, **101**, 2921.
- ⁴ M. Kamigaito, T. Ando, and M. Sawamoto, *Chemical Reviews*, 2001, **101**, 3689.
- ⁵ T. Ando, M. Kamigaito, and M. Sawamoto, *Macromolecules*, 2000, **33**, 6732.
- ⁶ Y. Kotani, M. Kamigaito, and M. Sawamoto, *Macromolecules*, 1999, **32**, 6877.
- ⁷ H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, *Macromolecules*, 1997, **30**, 2249.
- ⁸ H. Uegaki, M. Kamigaito, and M. Sawamoto, *Journal of Polymer Science Part A-Polymer Chemistry*, 1999, **37**, 3003.
- ⁹ Y. Kotani, M. Kamigaito, and M. Sawamoto, *Macromolecules*, 1999, **32**, 2420.
- ¹⁰ J. Guo, Z. Han, and P. Wu, *Journal of Molecular Catalysis A: Chemical*, 2000, **159**, 77.
- ¹¹ T. Ando, M. Kamigaito, and M. Sawamoto, *Macromolecules*, 2000, **33**, 2819.
- ¹² E. Le Grognec, J. Claverie, and R. Poli, J. Am. Chem. Soc., 2001, 123, 9513.
- ¹³ F. Stoffelbach, R. Poli, and P. Richard, J. Organometal. Chem., 2002, 663, 269.
- ¹⁴ F. Stoffelbach, D. M. Haddleton, and R. Poli, *Eur. Polym. J.*, 2003, **39**, 2099.

Graphical Content Entry

Text for graphical abstract:

Tri(isopropoxo)aluminium is found to catalyse halogen exchange between metal complex and organic halide initiator, as well as ATRP, when using a 17-electron half-sandwich molybdenum(III) compound.