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Abstract—The segmentation of blood vessels in medical images
is a challenging task as they are thin, connected and tortuous.
The detection of a connected vascular network is of the utmost
importance in clinical applications (e.g. blood flow simulations,
vascular network modeling and analysis). Deep learning ap-
proaches have been developed to tackle this issue, but they
require a large annotated dataset for each new application of
interest, which is very challenging to build for vascular networks.
In this work, rather than learning the segmentation task, we
propose to learn a reconnecting regularization term that learns
geometric properties of vascular networks independent of the
image modality. Therefore, this term generalizes better than deep
learning segmentation models, and can be easily plugged into
variational segmentation frameworks to detect vascular networks
in different datasets without requiring annotations. We apply this
approach on retinal images by training our reconnecting term
on the STARE dataset and applying it on the DRIVE dataset.
We show that our approach better preserves the connectivity
of vascular networks than classic regularization terms in the
literature. Finally, we illustrate the generalization power of our
reconnecting term by applying it to other types of data.

Index Terms—Dblood vessel segmentation, reconnection, deep
learning , variational approach

I. INTRODUCTION

The detection of blood vessels in medical images is the
key task of most vascular network analysis tools that help
clinicians diagnose and treat vascular diseases. Despite being
studied for the past twenty years [1]], the segmentation of blood
vessels is still an open problem as vascular networks are thin,
connected, tortuous, sparse and low-contrasted structures.

In this work, we address the important problem of blood
vessel connectivity loss upon segmentation of vascular net-
works. Preserving connectivity is key, as many subsequent
processing tasks rely on a connected network such as blood
flow simulation or vascular network modeling. Previous work
have focused on this issue. Tracking strategies (see [[1] Section
7) intrinsically preserve the connectivity of blood vessels by
recruiting neighbors pixels recursively, but usually require
to be initialized with manual information. Other methods
estimate the local direction of blood vessels in order to guide
the segmentation in the vessel direction [2} |3]].

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063)
of Université de Lyon, and by the IDEXLYON project within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007 and ANR-16-IDEX-0005)
operated by the French National Research Agency (ANR).

Recently, deep learning strategies have been proposed to
segment vascular networks. Some of them aim at enforcing
the network connectivity by using topological loss [4] or by
computing both the segmentation and centerline of the vessels
with the same network [5]. These strategies yield interesting
results, but require a large annotated dataset to provide good
results. By contrast, variational segmentation strategies do
not require annotated data, but are less flexible to represent
complex information such as connectivity. To combine the
strengths of both methods, decoupled approaches [6] were
proposed. They consist in plugging an external operator to
act as a regularization term in a variational framework. Early
works used denoising algorithms such as BM3D or Non Local
Means [7] to replace classic denoising regularization terms
such as the Total Variation (TV). More recent strategies learn
the external regularization term [8, [9] to take advantage of the
power representation of deep learning.

In this work, we propose to learn a regularization term
designed to preserve the connectivity of vascular networks,
and plug it into a variational iterative segmentation framework
which does not require annotated data. We show that this
regularization term better preserves the connectivity of blood
vessels than classic regularization terms such as TV, and more
complex ones including directional information.

II. MATERIALS AND METHODS
A. Learning a reconnecting term

We propose to learn a reconnecting network by training a
model to reconnect blood vessels from images with artificial
disconnections. This network takes as input a binary image
of disconnected blood vessels and outputs an image with
reconnected vessels. We chose to work on binary images for
two reasons. First, creating realistic disconnections is easier on
binary images. Second, our goal is to learn a reconnecting term
independent of the dataset to apply it on new data for which
ground-truths are not available. Learning on binary images is
then a better strategy, as the model cannot learn any intensity-
based feature of the training dataset.

We first created an algorithm to simulate realistic discon-
nections. It creates random disconnections in blood vessels
with a thickness-dependent probability (the thinner the vessel,
the higher the disconnection probability). The disconnections
have a random shape to emulate disconnection due to image
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Fig. 1.

Pipeline of our proposed method. A reconnecting network is first trained on a separate dataset based on a residual U-Net architecture. Then, a

variational segmentation approach is used with the Chan [[10] data fidelity term and either the total variation regularization term only or both the total variation

and our proposed reconnecting term.

noise. Finally, some artefacts have been added to make the
model distinguish parts of vessels that should be reconnected
and noise that should not be connected to the vascular network.
An example of disconnected image generated by this algorithm
is presented in Figure [I]

To learn the reconnecting term, the residual U-Net [11]]
from Monaﬂ a Pytorch-based framework has been used. U-
Net shows great performance in medical applications and
the residual units increase its robustness to image variations.
20 segmentation ground-truths from the STARE [[12] dataset
were used to create pairs of connected/disconnected vascular
images to learn our reconnecting regularization term. We
performed data augmentation by rotating each image 4 times
and applying on each one different disconnections with our
algorithm. This resulted in a dataset of 80 images. 2 images
were kept for validation and the rest was used for training.
We chose to input patches of size 96 x 96 instead of full
images to the model to avoid learning the global architecture
of the vascular network instead of the reconnecting feature.
Additional random rotations and flips were applied on each
patch and at each epoch to increase variability and prevent
overfitting. A maximum of 1000 epochs, a batch size of 64,
an Adam optimizer with a learning rate of about 1073 and a
Dice loss were chosen.

B. Variational approach

Segmentation may be formulated as a variational problem
consisting in the optimization of a two-term energy:
= argmin Edata(“v f) + )‘Ereg(u)a (1)
u€[0,1]V
where f € RY is the initial image, Fya, 1S the data fidelity,
E,eq the regularisation term and A € R a regularization
coefficient acting as a trade-off between both terms. The form
of Eg,, depends on the choice of application. For segmentation
the Chan et al. term [10] is classically used:

Edala(ua f) = <’U,7 Cf>F ,
e (a1 = f)? = (2 — f)?,
where ¢; and cy are constant values corresponding to the

mean background and foreground intensity of the initial image,
(.,.)p is the Frobenius product.

2)

Uhttps://monai.io/start.html

Eey constrains the problem with regularization and/or prior
knowledge. A well-known term is the Total Variation (TV),
which reduces the noise in the image, and is defined as follows:

TV (u) = A|Vull2,1, 3)

with ||.||2,1 the I3 norm of /3 norm. To solve Eq with a
forward-backward primal-dual algorithm (FBPD) [[13]], we can
reformulate the model as follows:

@ = argmin h(u, f) + g(Lu) + k(u), 4)
h(u, f) = (u,cp) e 9() = Alll[21, L =V and k(u) =

Lueo,1)~ is the indicator function of the set [0, 1]". The FBPD
algorithm is then :

wip1 = prox, . (u; — 7(Vh(z;) + LTv;))

Vi1 = Prox, . (vi + oL(2uip1 — wy)),

(&)

where prox,, is the proximity operator of g, g* is the conjugate
of g, 7 € RT and o € RT are step-size parameters.

C. Decoupled approach

Our reconnecting term takes binary input images and returns
a more connected vascular network. We thus propose to plug
this reconnecting term after a few iterations of the algorithm
presented in Equation [5} when the result u is close to a binary
image. We thus replace, in Eq [5| prox, . (.) by ®(.) defined as

follows:
O(u) = {

where Gleco is the learnt reconnecting term, o € N1* is the
iteration number from which the reconnecting term is applied.
Algorithm [I] present our proposed algorithm.

prox,(u) if i < «
Gieco(u) otherwise

(6)

III. EXPERIMENTS

We applied our approach on the test set of the DRIVE
dataset [14], another retinal image dataset. We compared the
results with the classic Chan et al. model [10], and the more
recent directional total variation model [2]]. We optimized the
parameters of both compared methods on the DRIVE training
set and selected the parameters yielding the best mean results.
We set the parameters of our approach experimentally to
a = 350 and A = 0.005.
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(a) Ground-truth (b) Chan model

(c) Directional TV (d) Proposed method

Fig. 2. Comparison of segmentation results on one DRIVE image. Zooms in the red boxes are presented in Figure [3]

(d) Chan model

(e) Directional TV (f) Proposed method

Fig. 3. Zoom of results from Figure 2] Top row corresponds to box 1 and
bottom row to box 2.

Algorithm 1: Decoupled segmentation with learnt
reconnecting term

Data: o € N**, ug € RV vy € R® (7,0) €
10, +00[2, A €0, +00]

for n >1 do
Pn = (un — 7(Vh(u,) + LTv,)
if n < « then

| pn=prox,  (pn)
else

L DPn = Greco(pn)
qn = ProX, g« (U + o L(2pn — up))

(u7L+17 Un—i—l) = (U”, Un) + )\n((pna q”) - (Un, Un))

We performed a quantitative evaluation of the results by
computing the mean sensitivity (TPR), specificity (TNR) and
accuracy (Acc) over the 20 images of the test set (see Eq. [7).
All metrics were computed in the field of view provided in
the dataset for a fair comparison with the literature results.

TPR= — 0 . TNR= N
TP + FN TN + FP %
TN + TP
Acc = ,
TP + TN + FN + FP

with TP (resp. TN) the number of true positives (resp. nega-
tives), and FP (resp. FN) the number of false positives (resp.
negatives).

The quantitative results are shown in Table We also
included the quantitative results from a recent deep learning
approach [15] as a comparison. Illustrations of the results are
presented in Fig. 2] and Fig. [3|

Qualitatively, we observe that our reconnecting term in-
creases the connectivity of the whole vascular network. It also
yields a better connectivity than the directional total variation.
Moreover, blood vessels seem smoother than the ones obtained
with the other two methods, which is for instance an appealing
feature for modeling and blood flow simulations. Our results
also exhibit less noise, as evidenced by the higher TNR.
However, the mean TPR of our approach is lower than for
directional TV. We observed that directional TV tends to detect
fragmented vessel parts at the extremities of the network. Such
fragments are irrelevant for applications requiring connectivity.
By contrast, our approach tends to only preserve connected
vessels: we found that our approach detected 230% less
connected components than the directional TV approach. This
translates into a lower number of true positives, but a better
overall quantitative performance and qualitative results for
connectivity-requiring applications.

We added the quantitative results from a recent deep
learning approach [[15] as a baseline for comparison. These
approaches are trained with images from the same dataset
and thus yield better results. However, these methods do
not generalize well on new data (e.g. blood vessels from
another organ or another modality). They need to be retrained
on each new dataset with their corresponding annotations.
Conversely, our approach only requires annotations to train
the reconnecting term. Once it is trained, it can be applied in
the variational segmentation framework on new data without
requiring annotations. To show the power of generalization of
our method, we applied the same reconnecting term used on
the DRIVE dataset to a different type of image containing
blood vessel-like structures. Figure [4] shows the segmentation
results on this image. We observe that even though the initial
image is different from the STARE dataset, our reconnecting
term generalizes well and is able to reconnect the structures
of interest whereas a trained U-Net has more difficulties to
generalize to this new image type. In this case it seems that
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Fig. 4. Tllustration of the generalization power of our reconnecting term.

TABLE I
QUANTITATIVE SEGMENTATION RESULTS ON THE DRIVE DATABASE.
| TPR | TNR | Acc
Chan model [[10] 0.6615 | 0.9833 | 0.9423
Directional TV model [2] 0.6822 | 0.9809 | 0.9427
Our approach 0.6631 | 0.9839 | 0.9429
Deep learning approach (Arias et al. [15]) | 0.8597 | 0.9690 | 0.9563

the network is not able to generalize on images with a larger
range of vessel diameters.

IV. CONCLUSION

We developed a reconnecting term for blood vessel segmen-
tation. This term learns to reconnect blood vessels by focusing
on their geometry instead of learning grey-level features in the
image. By plugging this term into a variational segmentation
framework as a decoupled approach, we are able to better
preserve the connectivity of vascular networks than standard
regularization terms. Our approach can be applied to unseen
data and performs well, unlike deep learning segmentation
approaches that have to be trained on each new dataset. Future
work will extend our reconnecting term in 3D for the seg-
mentation of various 3D vascular networks, where annotations
are far more complicated to obtain. We will also modify our
reconnecting network to learn a maximally monotone operator
to ensure the convergence of our algorithm [16].
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